
C Interview Questions

To view the live version of the
page, click here.

© Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

Basic Interview Questions On C
1. What's the value of the expression 5["abxdef"]?

2. What is a built-in function in C?

3. In C, What is the #line used for?

4. How can a string be converted to a number?

5. How can a number be converted to a string?

6. Why doesn’t C support function overloading?

7. What is the difference between global int and static int declaration?

8. Difference between const char* p and char const* p?

9. Why n++ execute faster than n+1 ?

10. What are the advantages of Macro over function?

C Intermediate Interview Questions
11. Specify different types of decision control statements?

12. What is the difference between struct and union in C?

13. What is call by reference in functions?

14. What is pass by reference in functions?

15. What is a memory leak? How to avoid it?

16. What is Dynamic memory allocation in C? Name the dynamic allocation
functions.

17. What is typedef?

18. Why is it usually a bad idea to use gets()? Suggest a workaround.

Page 1 © Copyright by Interviewbit

Contents

C Interview Questions

C Intermediate Interview Questions (.....Continued)

19. What is the difference between #include "..." and #include <...>?

20. What are dangling pointers? How are dangling pointers different from memory
leaks?

21. What is the difference between ‘g’ and “g” in C?

C Interview Questions For Experienced
22. Can you tell me how to check whether a linked list is circular?

23. What is the use of a semicolon (;) at the end of every program statement?

24. Differentiate Source Codes from Object Codes

25. What are header files and what are its uses in C programming?

26. When is the "void" keyword used in a function

27. What is dynamic data structure?

28. Add Two Numbers Without Using the Addition Operator

29. Subtract Two Number Without Using Subtraction Operator

30. Multiply an Integer Number by 2 Without Using Multiplication Operator

31. Check whether the number is EVEN or ODD, without using any arithmetic or
relational operators

32. Reverse the Linked List. Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1-
>NULL

33. Check for Balanced Parentheses using Stack

34. Program to find n’th Fibonacci number

35. Write a program to find the node at which the intersection of two singly linked
lists begins.

36. Merge Two sorted Linked List

Page 2 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C, one of the most popular computer languages today because of its structure, high-
level abstraction, machine-independent feature, etc.

C language was developed to write the UNIX operating system, hence it is strongly
associated with UNIX, which is one of the most popular network operating systems in
use today and the heart of internet data superhighway.

In this article, you will understand the questions you could expect at a fresher,
intermediate, and advanced level.

Basic Interview Questions On C
1. What's the value of the expression 5["abxdef"]?

The answer is 'f'.

Explanation: The string mentioned "abxdef" is an array, and the expression is equal
to "abxdef"[5]. Why is the inside-out expression equivalent? Because a[b] is
equivalent to *(a + b) which is equivalent to *(b + a) which is equivalent to b[a].

2. What is a built-in function in C?

The most commonly used built-in functions in C are sacnf(), printf(), strcpy, strlwr,
strcmp, strlen, strcat, and many more.

Built-function is also known as library functions are provided by the system to make
the life of a developer easy by assisting them to do the certain commonly used
predefined task. For example: if you need to print output or your program into the
terminal we use printf() in C.

3. In C, What is the #line used for?

In C #line is used as a preprocessor to re-set the line number in the code, which takes
a parameter as line number, herewith is an example for the same.

Page 3 © Copyright by Interviewbit

Let's get Started

C Interview Questions

#include <stdio.h> /*line 1*/
 /*line 2*/
 int main(){ /*line 3*/
 /*line 4*/
 printf("Nello world\n"); /*line 5*/
 //print current line /*line 6*/
 printf("Line: %d\n",_LINE_); /*line 7*/
 //reset the line number by 36 /*line 8*/
 #line 36 /*reseting*/
 //print current line /*line 36*/
 printf("Line: %d\n",_LINE_); /*line 37*/
 printf("Bye bye!!!\n"); /*line 39*/
 /*line 40*/
 return 0; /*line 41*/
} /*line 42*/

4. How can a string be converted to a number?

The function takes the string as an input that needs to be converted to an integer.

int atoi(const char *string)

Return Value:

On successful conversion, it returns the desired integer value
If the string starts with alpha-numeric char or only contains alpha-num char, 0 is
returned.
In case string starts with numeric character but followed by alpha-num char, the
string is converted to integer till the first occurrence of alphanumeric char.

Page 4 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Converting String to Number

5. How can a number be converted to a string?

The function takes a pointer to an array of char elements that need to be converted,
and a format string needs to be written in a buffer as a string

int sprintf(char *str, const char *format, ...)

#include<stdio.h>
#include <math.h>
int main()
{
 char str[80];

 sprintf(str, "The value of PI = %f", M_PI);
 puts(str);

 return 0;
}

Below is the output a�er running the above code:

Output: Value of Pi = 3.141593

6. Why doesn’t C support function overloading?

Page 5 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

A�er you compile the C source, the symbol names need to be intact in the object
code. If we introduce function overloading in our source, we should also provide
name mangling as a preventive measure to avoid function name clashes. Also, as C is
not a strictly typed language many things(ex: data types) are convertible to each
other in C, Therefore the complexity of overload resolution can introduce confusion
in a language such as C.

When you compile a C source, symbol names will remain intact. If you introduce
function overloading, you should provide a name mangling technique to prevent
name clashes. Consequently, like C++, you'll have machine-generated symbol names
in the compiled binary.

Additionally, C does not feature strict typing. Many things are implicitly convertible to
each other in C. The complexity of overload resolution rules could introduce
confusion in such kind of language

7. What is the difference between global int and static int
declaration?

The difference between this is in scope. A truly global variable has a global scope and
is visible everywhere in your program.

#include <stdio.h>

int my_global_var = 0;

int
main(void)

{
 printf("%d\n", my_global_var);
 return 0;
}

global_temp is a global variable that is visible to everything in your program,
although to make it visible in other modules, you'd need an ”extern int global_temp;
” in other source files if you have a multi-file project.

Page 6 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

A static variable has a local scope but its variables are not allocated in the stack
segment of the memory. It can have less than global scope, although - like global
variables - it resides in the .bss segment of your compiled binary.

#include <stdio.h>

int
myfunc(int val)

{
 static int my_static_var = 0;

 my_static_var += val;
 return my_static_var;
}

int
main(void)

{
 int myval;

 myval = myfunc(1);
 printf("first call %d\n", myval);

 myval = myfunc(10);

 printf("second call %d\n", myval);

 return 0;
}

8. Difference between const char* p and char const* p?

const char* p is a pointer to a const char.

char const* p is a pointer to a char const.

Since const char and char const are the same, it's the same.

9. Why n++ execute faster than n+1 ?

Page 7 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

n++ being a unary operation that just needs one variable whereas n = n + 1 is a binary
operation that adds overhead to take more time(Also binary operation: n += 1).
However, in modern platforms, it depends on few things such as Processor
Architecture, C Compiler, Usage in your code, Other factors such as hardware
problems.

However in the modern compiler even if you write n = n + 1 it will get converted into
n++ when it goes into the optimized binary, and it will be equivalently efficient.

10. What are the advantages of Macro over function?

Macro on a high-level copy-paste its definitions to places wherever it is called due to
which it saves a lot of time, as no time is spent while passing the control to a new
function as the control is always with the callee function. However, one downside is
the size of the compiled binary is large but once compiled the program
comparatively runs faster.

C Intermediate Interview Questions
11. Specify different types of decision control statements?

All statements written in a program are executed from top to bottom one by one.
Control statements are used to execute/transfer the control from one part of the
program to another depending on the condition.

Page 8 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

If-else statement.
normal if-else statement.
Else-if statement
nested if-else statement.

Switch statement.

12. What is the difference between struct and union in C?

A struct is a group of complex data structure which is stored in a block of memory
where each member on the block gets separate memory location which makes them
accessible at once

Whereas in union all the member variables are stored at the same location on the
memory as a result to which while assigning a value to a member variable will change
the value of all other members.

/* struct & union definations*/
struct bar {
 int a; // we can use a & b both simultaneously
 char b;
} bar;

union foo {
 int a; // we can't use both a and b simultaneously
 char b;
} foo;

/* using struc and union variables*/

struct bar y;
y.a = 3; // OK to use
y.b = 'c'; // OK to use

union foo x;
x.a = 3; // OK
x.b = 'c'; // NOl this affects the value of x.a!

13. What is call by reference in functions?

Page 9 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

When we caller function makes a function call bypassing the addresses of actual
parameters being passed, then this called call by reference. Incall by reference, the
operation performed on formal parameters affects the value of actual parameters
because all the operations performed on the value stored in the address of actual
parameters.

14. What is pass by reference in functions?

In Pass by reference, the callee receives the address and makes a copy of the address
of an argument into the formal parameter. Callee function uses the address to access
the actual argument (to do some manipulation). If the callee function changes the
value addressed at the passed address it will be visible to the caller function as well.

Pass By Reference

15. What is a memory leak? How to avoid it?

When we assign a variable it takes space of our RAM (either heap or RAM)dependent
on the size of data type, however, if a programmer uses a memory available on the
heap and forgets to a delta it, at some point all the memory available on the ram will
be occupied with no memory le� this can lead to a memory leak.

Page 10 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

int main()
{
 char * ptr = malloc(sizeof(int));

 /* Do some work */
 /*Not freeing the allocated memory*/
 return 0;
}

To avoid memory leaks, you can trace all your memory allocations and think forward,
where you want to destroy (in a good sense) that memory and place delete there.
Another way is to use C++ smart pointer in C linking it to GNU compilers.

16. What is Dynamic memory allocation in C? Name the dynamic
allocation functions.

C is a language known for its low-level control over the memory allocation of
variables in DMA there are two major standard library malloc() and free. The malloc()
function takes a single input parameter which tells the size of the memory requested
It returns a pointer to the allocated memory. If the allocation fails, it returns NULL.
The prototype for the standard library function is like this:

void *malloc(size_t size);
The free() function takes the pointer returned by malloc() and de-allocates the
memory. No indication of success or failure is returned. The function prototype is like
this:

void free(void *pointer);
There are 4 library functions provided by C defined under <stdlib.h> header file to
facilitate dynamic memory allocation in C programming. They are:

malloc()
calloc()
free()
realloc()

17. What is typedef?

Page 11 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

typedef is a C keyword, used to define alias/synonyms for an existing type in C
language. In most cases, we use typedef's to simplify the existing type declaration
syntax. Or to provide specific descriptive names to a type.

typedef <existing-type> <new-type-identifiers>;

typedef provides an alias name to the existing complex type definition. With typedef,
you can simply create an alias for any type. Whether it is a simple integer to complex
function pointer or structure declaration, typedef will shorten your code.

18. Why is it usually a bad idea to use gets()? Suggest a
workaround.

The standard input library gets() reads user input till it encounters a new line
character. However, it does not check on the size of the variable being provided by
the user is under the maximum size of the data type due to which makes the system
vulnerable to buffer overflow and the input being written into memory where it isn’t
supposed to.

We, therefore, use fgets() to achieve the same with a restricted range of input

Bonus: It remained an official part of the language up to the 1999 ISO C standard,
but it was officially removed by the 2011 standard. Most C implementations still
support it, but at least GCC issues a warning for any code that uses it.

19. What is the difference between #include "..." and #include
<...>?

In practice, the difference is in the location where the preprocessor searches for the
included file.

For #include <filename> the C preprocessor looks for the filename in the predefined
list of system directories first and then to the directories told by the user(we can use -
I option to add directories to the mentioned predefined list).

Page 12 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

For #include "filename" the preprocessor searches first in the same directory as the
file containing the directive, and then follows the search path used for the #include
<filename> form. This method is normally used to include programmer-defined
header files.

20. What are dangling pointers? How are dangling pointers
different from memory leaks?

The dangling pointer points to a memory that has already been freed. The storage is
no longer allocated. Trying to access it might cause a Segmentation fault. A common
way to end up with a dangling pointer:

#include<stdio.h>
#include<string.h>

char *func()
{
 char str[10];
 strcpy(str,"Hello!");
 return(str);
}

You are returning an address that was a local variable, which would have gone out of
scope by the time control was returned to the calling function. (Undefined behavior)

*c = malloc(5izeof(int));
free(c);
*c = 3; //writing to freed location!

In the figure shown above writing to a memory that has been freed is an example of
the dangling pointer, which makes the program crash.

A memory leak is something where the memory allocated is not freed which causes
the program to use an undefined amount of memory from the ram making it
unavailable for every other running program(or daemon) which causes the programs
to crash. There are various tools like O profile testing which is useful to detect
memory leaks on your programs.

Page 13 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

void function(){
 char *leak = malloc (10); //leak assigned but not freed
}

21. What is the difference between ‘g’ and “g” in C?

In C double-quotes variables are identified as a string whereas single-quoted
variables are identified as the character. Another major difference being the string
(double-quoted) variables end with a null terminator that makes it a 2 character
array.

C Interview Questions For Experienced
22. Can you tell me how to check whether a linked list is

circular?

Single Linked List

Single Linked List

Circular Linked List

Circular linked list is a variation of a linked list where the last node is pointing to the
first node's information part. Therefore the last node does not point to null.

Algorithm to find whether the given linked list is circular

A very simple way to determine whether the linked list is circular or not

Page 14 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Traverse the linked list
Check if the node is pointing to the head.
If yes then it is circular.

Let's look at the snippet where we code this algorithm.

23. What is the use of a semicolon (;) at the end of every
program statement?

It is majorly related to how the compiler reads(or parses) the entire code and breaks
it into a set of instructions(or statements), to which semicolon in C acts as a
boundary between two sets of instructions.

24. Differentiate Source Codes from Object Codes

Page 15 © Copyright by Interviewbit

Create a structure for a linked list
Declare
-Variable to store data of the node.
-Pointer variable of struct type to store the address of next node.

function of datatype tool isCircular(firstgode){

-Store the value of first node in temp variable and make it traverse all nodes.
-temp-firstgode
-tempenext node pointed by temp(temp->next)
-run until temp is at null or firstNode

if (temp at null)
 not circular and returns false
if (temp points first node)
 return true as its circular.
 }

function of datatype node newNode(data){

-To insert new nodes and link each one of them to the previous node by storing the addr
-Then make them point to NULL.
}

In int main function

-First insert nodes for circular linked list and check its nature by calling isCircular
-Since it is true through if statement it prints "yes..
-Second insert a normal linked list and check its nature by calling isCircular function

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Source Code and Object Code Difference

The difference between the Source Code and Object Code is that Source Code is a
collection of computer instructions written using a human-readable programming
language while Object Code is a sequence of statements in machine language, and is
the output a�er the compiler or an assembler converts the Source Code.

The last point about Object Code is the way the changes are reflected. When the
Source Code is modified, each time the Source Code needs to be compiled to reflect
the changes in the Object Code.

25. What are header files and what are its uses in C
programming?

Page 16 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Header Files in C

In C header files must have the extension as .h, which contains function definitions,
data type definitions, macro, etc. The header is useful to import the above definitions
to the source code using the #include directive. For example, if your source code
needs to take input from the user do some manipulation and print the output on the
terminal, it should have stdio.h file included as #include <stdio.h>, with which we can
take input using scanf() do some manipulation and print using printf().

26. When is the "void" keyword used in a function

The keyword “void” is a data type that literally represents no data at all. The most
obvious use of this is a function that returns nothing:

void PrintHello()
{
 printf("Hello\n");
 return; // the function does "return", but no value is returned
}

Page 17 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Here we’ve declared a function, and all functions have a return type. In this case,
we’ve said the return type is “void”, and that means, “no data at all” is returned.
The other use for the void keyword is a void pointer. A void pointer points to the
memory location where the data type is undefined at the time of variable definition.
Even you can define a function of return type void* or void pointer meaning “at
compile time we don’t know what it will return” Let’s see an example of that.

void MyMemCopy(void* dst, const void* src, int numBytes)
{
 char* dst_c = reinterpret_cast<char*>(dst);
 const char* src_c = reinterpret_cast<const char*>(src);
 for (int i = 0; i < numBytes; ++i)
 dst_c[i] = src_c[i];
}

27. What is dynamic data structure?

A dynamic data structure (DDS) refers to an organization or collection of data in
memory that has the flexibility to grow or shrink in size, enabling a programmer to
control exactly how much memory is utilized. Dynamic data structures change in size
by having unused memory allocated or de-allocated from the heap as needed.

Dynamic data structures play a key role in programming languages like C, C++, and
Java because they provide the programmer with the flexibility to adjust the memory
consumption of so�ware programs.

28. Add Two Numbers Without Using the Addition Operator

For the sum of two numbers, we use the addition (+) operator. In these tricky C
programs, we will write a C program to add two numbers without using the addition
operator.

Page 18 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

#include<stdio.h>
#include<stdlib.h>
int main()
{
 int x, y;
 printf("Enter two number: ");
 scanf("%d %d",&x,&y);

 // method 1
 printf("%d\n", x-(-y));

 // method 2
 printf("%d\n", -(-x-y));

 // method 3
 printf("%d\n", abs(-x-y));

 // method 4
 printf("%d", x-(~y)-1);

 return 0;
}

29. Subtract Two Number Without Using Subtraction Operator

#include<stdio.h>
#include<stdlib.h>
int main()
{
 int x, y;
 printf("Enter two number: ");
 scanf("%d %d",&x,&y);
 printf("%d", x+(~y)+1);
 return 0;
}

The bitwise complement operator is used in this program. The bitwise complement
of number ~y=-(y+1). So, expression will become x+(-(y+1))+1=x-y-1+1=x-y

30. Multiply an Integer Number by 2 Without Using
Multiplication Operator

Page 19 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

#include<stdio.h>
int main()
{
 int x;
 printf("Enter a number: ");
 scanf("%d",&x);
 printf("%d", x<<1);
 return 0;
}

The le� shi� operator shi�s all bits towards the le� by a certain number of specified
bits. The expression x<<1 always returns x*2. Note that the shi� operator doesn’t
work on floating-point values.

For multiple of x by 4, use x<<2. Similarly x<<3 multiply x by 8. For multiple of the
number x by 2^n, use x<<n.

31. Check whether the number is EVEN or ODD, without using
any arithmetic or relational operators

#include<stdio.h>
int main()
{
 int x;
 printf("Enter a number: ");
 scanf("%d", &x);
 (x&1)?printf("Odd"):printf("Even");
 return 0;
}

The bitwise and(&) operator can be used to quickly check the number is odd or even.

32. Reverse the Linked List. Input: 1->2->3->4->5->NULL Output:
5->4->3->2->1->NULL

Assume that we have linked list 1 → 2 → 3 → Ø, we would like to change it to Ø ← 1 ← 2 ←
3.

Page 20 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

While you travel the linked list, change the current node's next pointer to point to its
previous element. reference to the previous nodes should be stored into a temp
variable as shown so that we don’t lose track of the swapped node. You also need
another pointer to store the next node before changing the reference. Also when we
are done return the new head of the reversed list.

/* Function to reverse the linked list */
static void reverse(struct Node** head_ref)
{
 struct Node* prev = NULL;
 struct Node* current = *head_ref;
 struct Node* next;
 while (current != NULL)
 {
 // store next
 next = current->next;

 // reverse curr node pointer
 current->next = prev;

 // move pointer one position ahead
 prev = current;
 current = next;
 }
 *head_ref = prev;
}

Page 21 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

33. Check for Balanced Parentheses using Stack

Given a string s containing just the characters '(', ')', '{', '}', '[' and ']', determine if the
input string is valid.

An input string is valid if:

Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.

Example 1:
 Input: s = "()"
 Output: true

Example 2:
 Input: s = "()[]{}"
 Output: true

Example 3:
 Input: s = "(]"
 Output: false

Page 22 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Below is the source code for C Program to Check for Balanced Parentheses using
Stack which is successfully compiled and run on Windows System to produce desired
output as shown below :

Page 23 © Copyright by Interviewbit

int check(char exp[])
{
 int i;
 char temp;
 for(i=0;i<strlen(exp);i++)
 {
 if(exp[i]=='(' || exp[i]=='{' || exp[i]=='[')
 push(exp[i]);
 if(exp[i]==')' || exp[i]=='}' || exp[i]==']')
 if(top==-1) /*stack empty*/
 {
 printf("Right parentheses are more than left parenthese
 return 0;
 }
 else
 {
 temp=pop();
 if(!match(temp, exp[i]))
 {
 printf("Mismatched parentheses are : ");
 printf("%c and %c\n",temp,exp[i]);
 return 0;
 }
 }
 }
 if(top==-1) /*stack empty*/
 {
 printf("Balanced Parentheses\n");
 return 1;
 }
 else
 {
 printf("Left parentheses more than right parentheses\n");
 return 0;
 }
}

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

34. Program to find n’th Fibonacci number

Fibonacci sequence is characterized by the fact that every number a�er the first two
is the sum of the two preceding ones. For example, consider below sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . .. and so on

Where in F{n} = F{n-1} + F{n-2} with base values F(0) = 0 and <code>F(1) = 1

Below is naive implementation for finding the nth member of the Fibonacci
sequence

// Function to find the nth Fibonacci number
int fib(int n)
{
 if (n <= 1) {
 return n;
 }

 return fib(n - 1) + fib(n - 2);
}

int main()
{
 int n = 8;

 printf("nth Fibonacci number is %d", fib(8));

 return 0;
}

35. Write a program to find the node at which the intersection
of two singly linked lists begins.

Let's take an example of the following two linked lists which intersect at node c1.

Page 24 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Intersection of Two Linked List

Solution -

Get count of the nodes in the first list, let count be c1.
Get count of the nodes in the second list, let count be c2.
Get the difference of counts d = abs(c1 – c2)
Now traverse the bigger list from the first node till d nodes so that from here
onwards both the lists have an equal no of nodes
Then we can traverse both the lists in parallel till we come across a common
node. (Note that getting a common node is done by comparing the address of
the nodes)

Page 25 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

// Function to get the intersection point
// of the given linked lists
int getIntersectionNode(Node* head1, Node* head2)
{
 Node *curr1 = head1, *curr2 = head2;

 // While both the pointers are not equal
 while (curr1 != curr2) {

 // If the first pointer is null then
 // set it to point to the head of
 // the second linked list
 if (curr1 == NULL) {
 curr1 = head2;
 }

 // Else point it to the next node
 else {
 curr1 = curr1->next;
 }

 // If the second pointer is null then
 // set it to point to the head of
 // the first linked list
 if (curr2 == NULL) {
 curr2 = head1;
 }

 // Else point it to the next node
 else {
 curr2 = curr2->next;
 }
 }

 // Return the intersection node
 return curr1->data;
}

36. Merge Two sorted Linked List

Merge two sorted linked lists and return them as a sorted list. The list should be made
by splicing together the nodes of the first two lists.

Page 26 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Merging Two Sorted Linked List

Page 27 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

NodePtr merge_sorted(NodePtr head1, NodePtr head2) {

 // if both lists are empty then merged list is also empty
 // if one of the lists is empty then other is the merged list
 if (head1 == nullptr) {
 return head2;
 } else if (head2 == nullptr) {
 return head1;
 }

 NodePtr mergedHead = nullptr;
 if (head1->data <= head2->data) {
 mergedHead = head1;
 head1 = head1->next;
 } else {
 mergedHead = head2;
 head2 = head2->next;
 }

 NodePtr mergedTail = mergedHead;

 while (head1 != nullptr && head2 != nullptr) {
 NodePtr temp = nullptr;
 if (head1->data <= head2->data) {
 temp = head1;
 head1 = head1->next;
 } else {
 temp = head2;
 head2 = head2->next;
 }

 mergedTail->next = temp;
 mergedTail = temp;
 }

 if (head1 != nullptr) {
 mergedTail->next = head1;
 } else if (head2 != nullptr) {
 mergedTail->next = head2;
 }

 return mergedHead;
}

Runtime Complexity Linear, O(m + n) where m and n are lengths of both linked lists.
Memory Complexity Constant, O(1)

Page 28 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/

C Interview Questions

Maintain a head and a tail pointer on the merged linked list. Then choose the head of
the merged linked list by comparing the first node of both linked lists. For all
subsequent nodes in both lists, you choose the smaller current node and link it to the
tail of the merged list, and moving the current pointer of that list one step forward.

You keep doing this while there are some remaining elements in both the lists. If
there are still some elements in only one of the lists, you link this remaining list to the
tail of the merged list.

Initially, the merged linked list is NULL. Compare the value of the first two nodes and
make the node with the smaller value the head node of the merged linked list. In this
example, it is 4 from head1.

Since it’s the first and only node in the merged list, it will also be the tail. Then move
head1 one step forward.

Additional Resources

C++ Interview Questions

Practice Coding

Page 29 © Copyright by Interviewbit

https://www.interviewbit.com/c-interview-questions/
https://www.interviewbit.com/cpp-interview-questions/
https://www.interviewbit.com/practice/

C Interview Questions Php Interview Questions C Sharp Interview Questions

Web Api Interview
Questions

Hibernate Interview
Questions

Node Js Interview Questions

Cpp Interview Questions Oops Interview Questions Devops Interview Questions

Machine Learning Interview
Questions

Docker Interview Questions Mysql Interview Questions

Css Interview Questions Laravel Interview Questions Asp Net Interview Questions

Django Interview Questions Dot Net Interview Questions Kubernetes Interview
Questions

Operating System Interview
Questions

React Native Interview
Questions

Aws Interview Questions

Git Interview Questions Java 8 Interview Questions Mongodb Interview
Questions

Dbms Interview Questions Spring Boot Interview
Questions

Power Bi Interview Questions

Pl Sql Interview Questions Tableau Interview
Questions

Linux Interview Questions

Ansible Interview Questions Java Interview Questions Jenkins Interview Questions

Page 30 © Copyright by Interviewbit

Links to More Interview
Questions

https://www.interviewbit.com/c-interview-questions
https://www.interviewbit.com/php-interview-questions
https://www.interviewbit.com/c-sharp-interview-questions
https://www.interviewbit.com/web-api-interview-questions
https://www.interviewbit.com/hibernate-interview-questions
https://www.interviewbit.com/node-js-interview-questions
https://www.interviewbit.com/cpp-interview-questions
https://www.interviewbit.com/oops-interview-questions
https://www.interviewbit.com/devops-interview-questions
https://www.interviewbit.com/machine-learning-interview-questions
https://www.interviewbit.com/docker-interview-questions
https://www.interviewbit.com/mysql-interview-questions
https://www.interviewbit.com/css-interview-questions
https://www.interviewbit.com/laravel-interview-questions
https://www.interviewbit.com/asp-net-interview-questions
https://www.interviewbit.com/django-interview-questions
https://www.interviewbit.com/dot-net-interview-questions
https://www.interviewbit.com/kubernetes-interview-questions
https://www.interviewbit.com/operating-system-interview-questions
https://www.interviewbit.com/react-native-interview-questions
https://www.interviewbit.com/aws-interview-questions
https://www.interviewbit.com/git-interview-questions
https://www.interviewbit.com/java-8-interview-questions
https://www.interviewbit.com/mongodb-interview-questions
https://www.interviewbit.com/dbms-interview-questions
https://www.interviewbit.com/spring-boot-interview-questions
https://www.interviewbit.com/power-bi-interview-questions
https://www.interviewbit.com/pl-sql-interview-questions
https://www.interviewbit.com/tableau-interview-questions
https://www.interviewbit.com/linux-interview-questions
https://www.interviewbit.com/ansible-interview-questions
https://www.interviewbit.com/java-interview-questions
https://www.interviewbit.com/jenkins-interview-questions

