
Java Interview Questions

To view the live version of the
page, click here.

© Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Basic Interview Questions
1. Why is Java a platform independent language?

2. Why is Java not a pure object oriented language?

3. Pointers are used in C/ C++. Why does Java not make use of pointers?

4. What do you understand by an instance variable and a local variable?

5. What do you mean by data encapsulation?

6. Tell us something about JIT compiler.

7. Can you tell the difference between equals() method and equality operator (==) in
Java?

8. How is an infinite loop declared in Java?

9. Briefly explain the concept of constructor overloading

10. Comment on method overloading and overriding by citing relevant examples.

11. A single try block and multiple catch blocks can co-exist in a Java Program.
Explain.

12. Explain the use of final keyword in variable, method and class.

13. Do final, finally and finalize keywords have the same function?

14. When can you use super keyword?

15. Can the static methods be overloaded?

16. Can the static methods be overridden?

17. What is the main objective of garbage collection?

18. What part of memory - Stack or Heap - is cleaned in garbage collection process?

Java Intermediate Interview Questions

Page 1 © Copyright by Interviewbit

Contents

Java Interview Questions

Java Intermediate Interview Questions (.....Continued)

19. Apart from the security aspect, what are the reasons behind making strings
immutable in Java?

20. How would you differentiate between a String, StringBuffer, and a
StringBuilder?

21. Using relevant properties highlight the differences between interfaces and
abstract classes.

22. In Java, static as well as private method overriding is possible. Comment on the
statement.

23. What makes a HashSet different from a TreeSet?

24. Why is the character array preferred over string for storing confidential
information?

25. What are the differences between JVM, JRE and JDK in Java?

26. What are the differences between HashMap and HashTable in Java?

27. What is the importance of reflection in Java?

28. What are the different ways of threads usage?

29. What are the differences between constructor and method of a class in Java?

30. Java works as “pass by value” or “pass by reference” phenomenon?

31. Which among String or String Buffer should be preferred when there are lot of
updates required to be done in the data?

32. How to not allow serialization of attributes of a class in Java?

33. What happens if the static modifier is not included in the main method
signature in Java?

34. What happens if there are multiple main methods inside one class in Java?

35. What do you understand by Object Cloning and how do you achieve it in Java?

36. How does an exception propagate in the code?

37. Is it mandatory for a catch block to be followed a�er a try block?

38. Will the finally block get executed when the return statement is written at the
end of try block and catch block as shown below?

https://www.interviewbit.com/java-interview-questions/

Page 2 © Copyright by Interviewbit

Java Interview Questions

Java Intermediate Interview Questions (.....Continued)

39. Can you call a constructor of a class inside the another constructor?

40. Contiguous memory locations are usually used for storing actual values in an
array but not in ArrayList. Explain.

Java Advanced Interview Questions
41. Although inheritance is a popular OOPs concept, it is less advantageous than

composition. Explain.

42. How is the creation of a String using new() different from that of a literal?

43. Is exceeding the memory limit possible in a program despite having a garbage
collector?

44. Why is synchronization necessary? Explain with the help of a relevant example.

45. In the given code below, what is the significance of ... ?

46. Can you explain the Java thread lifecycle?

47. What could be the tradeoff between the usage of an unordered array versus the
usage of an ordered array?

48. Is it possible to import the same class or package twice in Java and what
happens to it during runtime?

49. In case a package has sub packages, will it suffice to import only the main
package? e.g. Does importing of com.myMainPackage.* also import
com.myMainPackage.mySubPackage.*?

50. Will the finally block be executed if the code System.exit(0) is written at the end
of try block?

51. What do you understand by marker interfaces in Java?

52. Explain the term “Double Brace Initialisation” in Java?

53. Why is it said that the length() method of String class doesn't return accurate
results?

54. What is the output of the below code and why?

55. What are the possible ways of making object eligible for garbage collection (GC)
in Java?

https://www.interviewbit.com/java-interview-questions/

Java Interview ProgramsPage 3 © Copyright by Interviewbit

Java Interview Questions

Java Interview Programs (.....Continued)

56. Check if a given string is palindrome using recursion.

57. Write a Java program to check if the two strings are anagrams.

58. Write a Java Program to find the factorial of a given number.

59. Given an array of non-duplicating numbers from 1 to n where one number is
missing, write an efficient java program to find that missing number.

60. Write a Java Program to check if any number is a magic number or not. A
number is said to be a magic number if a�er doing sum of digits in each step and
inturn doing sum of digits of that sum, the ultimate result (when there is only
one digit le�) is 1.

Conclusion
61. Conclusion

Page 4 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Do you have what it takes to ace a Java Interview? We are here to help you in
consolidating your knowledge and concepts in Java. The following article will cover
all the popular Java interview questions for freshers as well as experienced
candidates in depth.

Go through all the questions to enhance your chances of performing well in the
interviews. The questions will revolve around the basic and core fundamentals of
Java.

So, let’s dive deep into the plethora of useful interview questions on Java.

Java Basic Interview Questions
1. Why is Java a platform independent language?

Java language was developed in such a way that it does not depend on any hardware
or so�ware due to the fact that the compiler compiles the code and then converts it
to platform-independent byte code which can be run on multiple systems.

The only condition to run that byte code is for the machine to have a runtime
environment (JRE) installed in it.

2. Why is Java not a pure object oriented language?

Java supports primitive data types - byte, boolean, char, short, int, float, long, and
double and hence it is not a pure object-oriented language.

3. Pointers are used in C/ C++. Why does Java not make use of
pointers?

Page 5 © Copyright by Interviewbit

Let's get Started

Java Interview Questions

Pointers are quite complicated and unsafe to use by beginner programmers. Java
focuses on code simplicity, and the usage of pointers can make it challenging. Pointer
utilization can also cause potential errors. Moreover, security is also compromised if
pointers are used because the users can directly access memory with the help of
pointers.

Thus, a certain level of abstraction is furnished by not including pointers in Java.
Moreover, the usage of pointers can make the procedure of garbage collection quite
slow and erroneous. Java makes use of references as these cannot be manipulated,
unlike pointers.

4. What do you understand by an instance variable and a local
variable?

Instance variables are those variables that are accessible by all the methods in the
class. They are declared outside the methods and inside the class. These variables
describe the properties of an object and remain bound to it at any cost.

All the objects of the class will have their copy of the variables for utilization. If any
modification is done on these variables, then only that instance will be impacted by
it, and all other class instances continue to remain unaffected.

Example:

class Athlete {
public String athleteName;
public double athleteSpeed;
public int athleteAge;
}

Local variables are those variables present within a block, function, or constructor
and can be accessed only inside them. The utilization of the variable is restricted to
the block scope. Whenever a local variable is declared inside a method, the other
class methods don’t have any knowledge about the local variable.

Example:

Page 6 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

public void athlete() {
String athleteName;
double athleteSpeed;
int athleteAge;
}

5. What do you mean by data encapsulation?

Data Encapsulation is an Object-Oriented Programming concept of hiding the
data attributes and their behaviors in a single unit.
It helps developers to follow modularity while developing so�ware by ensuring
that each object is independent of other objects by having its own methods,
attributes, and functionalities.
It is used for the security of the private properties of an object and hence serves
the purpose of data hiding.

Page 7 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/
https://www.interviewbit.com/oops-interview-questions/

Java Interview Questions

6. Tell us something about JIT compiler.

JIT stands for Just-In-Time and it is used for improving the performance during
run time. It does the task of compiling parts of byte code having similar
functionality at the same time thereby reducing the amount of compilation time
for the code to run.
The compiler is nothing but a translator of source code to machine-executable
code. But what is special about the JIT compiler? Let us see how it works:

First, the Java source code (.java) conversion to byte code (.class) occurs
with the help of the javac compiler.
Then, the .class files are loaded at run time by JVM and with the help of an
interpreter, these are converted to machine understandable code.
JIT compiler is a part of JVM. When the JIT compiler is enabled, the JVM
analyzes the method calls in the .class files and compiles them to get more
efficient and native code. It also ensures that the prioritized method calls
are optimized.
Once the above step is done, the JVM executes the optimized code directly
instead of interpreting the code again. This increases the performance and
speed of the execution.

Page 8 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

7. Can you tell the difference between equals() method and
equality operator (==) in Java?

equals() ==

This is a method defined
in the Object class.

It is a binary operator in Java.

This method is used for
checking the equality of
contents between two
objects as per the
specified business logic.

This operator is used for
comparing addresses (or
references), i.e checks if both
the objects are pointing to the
same memory location.

Note:

Page 9 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

In the cases where the equals method is not overridden in a class, then the class
uses the default implementation of the equals method that is closest to the
parent class.
Object class is considered as the parent class of all the java classes. The
implementation of the equals method in the Object class uses the == operator to
compare two objects. This default implementation can be overridden as per the
business logic.

8. How is an infinite loop declared in Java?

Infinite loops are those loops that run infinitely without any breaking conditions.
Some examples of consciously declaring infinite loop is:

Using For Loop:

for (;;)
{
 // Business logic
 // Any break logic
}

Using while loop:

while(true){
 // Business logic
 // Any break logic
}

Using do-while loop:

do{
 // Business logic
 // Any break logic
}while(true);

9. Briefly explain the concept of constructor overloading

Page 10 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Constructor overloading is the process of creating multiple constructors in the class
consisting of the same name with a difference in the constructor parameters.
Depending upon the number of parameters and their corresponding types,
distinguishing of the different types of constructors is done by the compiler.

class Hospital {
int variable1, variable2;
double variable3;
public Hospital(int doctors, int nurses) {
 variable1 = doctors;
 variable2 = nurses;
}
public Hospital(int doctors) {
 variable1 = doctors;
}
public Hospital(double salaries) {
 variable3 = salaries
}
}

Three constructors are defined here but they differ on the basis of parameter type
and their numbers.

Page 11 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

10. Comment on method overloading and overriding by citing
relevant examples.

In Java, method overloading is made possible by introducing different methods in
the same class consisting of the same name. Still, all the functions differ in the
number or type of parameters. It takes place inside a class and enhances program
readability.

The only difference in the return type of the method does not promote method
overloading. The following example will furnish you with a clear picture of it.

class OverloadingHelp {
 public int findarea (int l, int b) {
 int var1;
 var1 = l * b;
 return var1;
 }
 public int findarea (int l, int b, int h) {
 int var2;
 var2 = l * b * h;
 return var2;
 }
}

Page 12 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Both the functions have the same name but differ in the number of arguments. The
first method calculates the area of the rectangle, whereas the second method
calculates the area of a cuboid.

Method overriding is the concept in which two methods having the same method
signature are present in two different classes in which an inheritance relationship is
present. A particular method implementation (already present in the base class) is
possible for the derived class by using method overriding.
Let’s give a look at this example:

class HumanBeing {
 public int walk (int distance, int time) {
 int speed = distance / time;
 return speed;
 }
}
class Athlete extends HumanBeing {
 public int walk(int distance, int time) {
 int speed = distance / time;
 speed = speed * 2;
 return speed;
 }
}

Page 13 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Both class methods have the name walk and the same parameters, distance, and
time. If the derived class method is called, then the base class method walk gets
overridden by that of the derived class.

11. A single try block and multiple catch blocks can co-exist in a
Java Program. Explain.

Yes, multiple catch blocks can exist but specific approaches should come prior to the
general approach because only the first catch block satisfying the catch condition is
executed. The given code illustrates the same:

public class MultipleCatch {
public static void main(String args[]) {
 try {
 int n = 1000, x = 0;
 int arr[] = new int[n];
 for (int i = 0; i <= n; i++) {
 arr[i] = i / x;
 }
 }
 catch (ArrayIndexOutOfBoundsException exception) {
 System.out.println("1st block = ArrayIndexOutOfBoundsException");
 }
 catch (ArithmeticException exception) {
 System.out.println("2nd block = ArithmeticException");
 }
 catch (Exception exception) {
 System.out.println("3rd block = Exception");
 }
}
}

Here, the second catch block will be executed because of division by 0 (i / x). In case x
was greater than 0 then the first catch block will execute because for loop runs till i =
n and array index are till n-1.

12. Explain the use of final keyword in variable, method and
class.

In Java, the final keyword is used as defining something as constant /final and
represents the non-access modifier.

Page 14 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

final variable:
When a variable is declared as final in Java, the value can’t be modified
once it has been assigned.
If any value has not been assigned to that variable, then it can be assigned
only by the constructor of the class.

final method:
A method declared as final cannot be overridden by its children's classes.
A constructor cannot be marked as final because whenever a class is
inherited, the constructors are not inherited. Hence, marking it final
doesn't make sense. Java throws compilation error saying - modifier final

not allowed here

final class:
No classes can be inherited from the class declared as final. But that final
class can extend other classes for its usage.

13. Do final, finally and finalize keywords have the same
function?

All three keywords have their own utility while programming.

Final: If any restriction is required for classes, variables, or methods, the final
keyword comes in handy. Inheritance of a final class and overriding of a final method
is restricted by the use of the final keyword. The variable value becomes fixed a�er
incorporating the final keyword. Example:

final int a=100;
a = 0; // error

The second statement will throw an error.

Finally: It is the block present in a program where all the codes written inside it get
executed irrespective of handling of exceptions. Example:

Page 15 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

try {
int variable = 5;
}
catch (Exception exception) {
System.out.println("Exception occurred");
}
finally {
System.out.println("Execution of finally block");
}

Finalize: Prior to the garbage collection of an object, the finalize method is called so
that the clean-up activity is implemented. Example:

public static void main(String[] args) {
String example = new String("InterviewBit");
example = null;
System.gc(); // Garbage collector called
}
public void finalize() {
// Finalize called
}

14. When can you use super keyword?

The super keyword is used to access hidden fields and overridden methods or
attributes of the parent class.
Following are the cases when this keyword can be used:

Accessing data members of parent class when the member names of the
class and its child subclasses are same.
To call the default and parameterized constructor of the parent class inside
the child class.
Accessing the parent class methods when the child classes have overridden
them.

The following example demonstrates all 3 cases when a super keyword is used.

Page 16 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

15. Can the static methods be overloaded?

Yes! There can be two or more static methods in a class with the same name but
differing input parameters.

16. Can the static methods be overridden?

Page 17 © Copyright by Interviewbit

public class Parent{
 private int num = 1;

 Parent(){
 System.out.println("Parent class default constructor.");
 }

 Parent(String x){
 System.out.println("Parent class parameterised constructor.");
 }

 public void foo(){
 System.out.println("Parent class foo!");
 }
 }

 public class Child extends Parent{
 private int num = 2;

 Child(){
 System.out.println("Child class default Constructor");

 super(); // to call default parent constructor
 super("Call Parent"); // to call parameterised constructor.
 }

 void printNum(){
 System.out.println(num);
 System.out.println(super.num); //prints the value of num of parent class
 }

 @Override
 public void foo(){
 System.out.println("Parent class foo!");
 super.foo(); //Calls foo method of Parent class inside the Overriden foo
 }
 }

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

No! Declaration of static methods having the same signature can be done in the
subclass but run time polymorphism can not take place in such cases.
Overriding or dynamic polymorphism occurs during the runtime, but the static
methods are loaded and looked up at the compile time statically. Hence, these
methods cant be overridden.

17. What is the main objective of garbage collection?

The main objective of this process is to free up the memory space occupied by the
unnecessary and unreachable objects during the Java program execution by deleting
those unreachable objects.

This ensures that the memory resource is used efficiently, but it provides no
guarantee that there would be sufficient memory for the program execution.

18. What part of memory - Stack or Heap - is cleaned in garbage
collection process?

Heap.

Java Intermediate Interview Questions
19. Apart from the security aspect, what are the reasons behind

making strings immutable in Java?

A String is made immutable due to the following reasons:

String Pool: Designers of Java were aware of the fact that String data type is
going to be majorly used by the programmers and developers. Thus, they
wanted optimization from the beginning. They came up with the notion of using
the String pool (a storage area in Java heap) to store the String literals. They
intended to decrease the temporary String object with the help of sharing. An
immutable class is needed to facilitate sharing. The sharing of the mutable
structures between two unknown parties is not possible. Thus, immutable Java
String helps in executing the concept of String Pool.

Page 18 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Multithreading: The safety of threads regarding the String objects is an
important aspect in Java. No external synchronization is required if the String
objects are immutable. Thus, a cleaner code can be written for sharing the
String objects across different threads. The complex process of concurrency is
facilitated by this method.
Collections: In the case of Hashtables and HashMaps, keys are String objects. If
the String objects are not immutable, then it can get modified during the period
when it resides in the HashMaps. Consequently, the retrieval of the desired data
is not possible. Such changing states pose a lot of risks. Therefore, it is quite safe
to make the string immutable.

20. How would you differentiate between a String, StringBuffer,
and a StringBuilder?

Page 19 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Storage area: In string, the String pool serves as the storage area. For
StringBuilder and StringBuffer, heap memory is the storage area.
Mutability: A String is immutable, whereas both the StringBuilder and
StringBuffer are mutable.
Efficiency: It is quite slow to work with a String. However, StringBuilder is the
fastest in performing operations. The speed of a StringBuffer is more than a
String and less than a StringBuilder. (For example appending a character is
fastest in StringBuilder and very slow in String because a new memory is
required for the new String with appended character.)
Thread-safe: In the case of a threaded environment, StringBuilder and
StringBuffer are used whereas a String is not used. However, StringBuilder is
suitable for an environment with a single thread, and a StringBuffer is suitable
for multiple threads.
Syntax:

// String
String first = "InterviewBit";
String second = new String("InterviewBit");
// StringBuffer
StringBuffer third = new StringBuffer("InterviewBit");
// StringBuilder
StringBuilder fourth = new StringBuilder("InterviewBit");

21. Using relevant properties highlight the differences between
interfaces and abstract classes.

Page 20 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Availability of methods: Only abstract methods are available in interfaces,
whereas non-abstract methods can be present along with abstract methods in
abstract classes.
Variable types: Static and final variables can only be declared in the case of
interfaces, whereas abstract classes can also have non-static and non-final
variables.
Inheritance: Multiple inheritances are facilitated by interfaces, whereas abstract
classes do not promote multiple inheritances.
Data member accessibility: By default, the class data members of interfaces
are of the public- type. Conversely, the class members for an abstract class can
be protected or private also.
Implementation: With the help of an abstract class, the implementation of an
interface is easily possible. However, the converse is not true;

Abstract class example:

public abstract class Athlete {
public abstract void walk();
}

Interface example:

public interface Walkable {
void walk();
}

22. In Java, static as well as private method overriding is
possible. Comment on the statement.

The statement in the context is completely False. The static methods have no
relevance with the objects, and these methods are of the class level. In the case of a
child class, a static method with a method signature exactly like that of the parent
class can exist without even throwing any compilation error.

Page 21 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

The phenomenon mentioned here is popularly known as method hiding, and
overriding is certainly not possible. Private method overriding is unimaginable
because the visibility of the private method is restricted to the parent class only. As a
result, only hiding can be facilitated and not overriding.

23. What makes a HashSet different from a TreeSet?

Although both HashSet and TreeSet are not synchronized and ensure that duplicates
are not present, there are certain properties that distinguish a HashSet from a
TreeSet.

Implementation: For a HashSet, the hash table is utilized for storing the
elements in an unordered manner. However, TreeSet makes use of the red-black
tree to store the elements in a sorted manner.
Complexity/ Performance: For adding, retrieving, and deleting elements, the
time amortized complexity is O(1) for a HashSet. The time complexity for
performing the same operations is a bit higher for TreeSet and is equal to O(log
n). Overall, the performance of HashSet is faster in comparison to TreeSet.
Methods: hashCode() and equals() are the methods utilized by HashSet for
making comparisons between the objects. Conversely, compareTo() and
compare() methods are utilized by TreeSet to facilitate object comparisons.
Objects type: Heterogeneous and null objects can be stored with the help of
HashSet. In the case of a TreeSet, runtime exception occurs while inserting
heterogeneous objects or null objects.

24. Why is the character array preferred over string for storing
confidential information?

In Java, a string is basically immutable i.e. it cannot be modified. A�er its declaration,
it continues to stay in the string pool as long as it is not removed in the form of
garbage. In other words, a string resides in the heap section of the memory for an
unregulated and unspecified time interval a�er string value processing is executed.

Page 22 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

As a result, vital information can be stolen for pursuing harmful activities by hackers
if a memory dump is illegally accessed by them. Such risks can be eliminated by using
mutable objects or structures like character arrays for storing any variable. A�er the
work of the character array variable is done, the variable can be configured to blank
at the same instant. Consequently, it helps in saving heap memory and also gives no
chance to the hackers to extract vital data.

25. What are the differences between JVM, JRE and JDK in Java?

Page 23 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Criteria JDK JRE JVM

Abbreviation Java
Development
Kit

Java
Runtime
Environment

Java Virtual
Machine

Definition

JDK is a
complete
so�ware
development
kit for
developing
Java
applications.
It comprises
JRE,
JavaDoc,
compiler,
debuggers,
etc.

JRE is a
so�ware
package
providing
Java class
libraries,
JVM and all
the required
components
to run the
Java
applications.

JVM is a
platform-
dependent,
abstract
machine
comprising of 3
specifications -
document
describing the
JVM
implementatio
requirements,
computer
program
meeting the JV
requirements
and instance
object for
executing the
Java byte code
and provide the
runtime
environment fo
execution.

Main
Purpose JDK is mainly

used for code
development
and
execution.

JRE is mainly
used for
environment
creation to
execute the

d

JVM provides
specifications fo
all the
implementatio
to JRE.

Page 24 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

26. What are the differences between HashMap and HashTable
in Java?

HashMap HashTable

HashMap is not synchronized
thereby making it better for
non-threaded applications.

HashTable is synchronized
and hence it is suitable for
threaded applications.

Allows only one null key but
any number of null in the
values.

This does not allow null in
both keys or values.

Supports order of insertion by
making use of its subclass
LinkedHashMap.

Order of insertion is not
guaranteed in HashTable.

27. What is the importance of reflection in Java?

The term reflection is used for describing the inspection capability of a code
on other code either of itself or of its system and modify it during runtime.
Consider an example where we have an object of unknown type and we have a
method ‘fooBar()’ which we need to call on the object. The static typing system
of Java doesn't allow this method invocation unless the type of the object is
known beforehand. This can be achieved using reflection which allows the code
to scan the object and identify if it has any method called “fooBar()” and only
then call the method if needed.

Method methodOfFoo = fooObject.getClass().getMethod("fooBar", null);
methodOfFoo.invoke(fooObject, null);

Page 25 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Using reflection has its own cons:
Speed — Method invocations due to reflection are about three times slower
than the direct method calls.
Type safety — When a method is invoked via its reference wrongly using
reflection, invocation fails at runtime as it is not detected at compile/load
time.
Traceability — Whenever a reflective method fails, it is very difficult to find
the root cause of this failure due to a huge stack trace. One has to deep dive
into the invoke() and proxy() method logs to identify the root cause.

Hence, it is advisable to follow solutions that don't involve reflection and use
this method as a last resort.

28. What are the different ways of threads usage?

We can define and implement a thread in java using two ways:
Extending the Thread class

class InterviewBitThreadExample extends Thread{
 public void run(){
 System.out.println("Thread runs...");
 }
 public static void main(String args[]){
 InterviewBitThreadExample ib = new InterviewBitThreadExample();
 ib.start();
 }
}

Implementing the Runnable interface

class InterviewBitThreadExample implements Runnable{
 public void run(){
 System.out.println("Thread runs...");
 }
 public static void main(String args[]){
 Thread ib = new Thread(new InterviewBitThreadExample());
 ib.start();
 }
}

Page 26 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Implementing a thread using the method of Runnable interface is more
preferred and advantageous as Java does not have support for multiple
inheritances of classes.
start() method is used for creating a separate call stack for the thread

execution. Once the call stack is created, JVM calls the run() method for
executing the thread in that call stack.

29. What are the differences between constructor and method
of a class in Java?

Page 27 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Constructor Method

Constructor is used for initializing the
object state.

Method is used for
exposing the
object's behavior.

Constructor has no return type.

Method should
have a return
type. Even if it
does not return
anything, return
type is void.

Constructor gets invoked implicitly.
Method has to be
invoked on the
object explicitly.

If the constructor is not defined, then a
default constructor is provided by the
java compiler.

If a method is not
defined, then the
compiler does not
provide it.

The constructor name should be equal
to the class name.

The name of the
method can have
any name or have
a class name too.

A constructor cannot be marked as final
because whenever a class is inherited,
the constructors are not inherited.
Hence, marking it final doesn't make
sense. Java throws compilation error
saying - modifier final not allowed here

A method can be
defined as final
but it cannot be
overridden in its
subclasses.

Page 28 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

30. Java works as “pass by value” or “pass by reference”
phenomenon?

Java always works as a “pass by value”. There is nothing called a “pass by reference”
in Java. However, when the object is passed in any method, the address of the value
is passed due to the nature of object handling in Java. When an object is passed, a
copy of the reference is created by Java and that is passed to the method. The
objects point to the same memory location. 2 cases might happen inside the
method:

Case 1: When the object is pointed to another location: In this case, the changes
made to that object do not get reflected the original object before it was passed
to the method as the reference points to another location.

For example:

Page 29 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Case 2: When object references are not modified: In this case, since we have the
copy of reference the main object pointing to the same memory location, any
changes in the content of the object get reflected in the original object.

For example:

Page 30 © Copyright by Interviewbit

class InterviewBitTest{
 int num;
 InterviewBitTest(int x){
 num = x;
 }
 InterviewBitTest(){
 num = 0;
 }
}
class Driver {
 public static void main(String[] args)
 {
 //create a reference
 InterviewBitTest ibTestObj = new InterviewBitTest(20);
 //Pass the reference to updateObject Method
 updateObject(ibTestObj);
 //After the updateObject is executed, check for the value of num in the object.
 System.out.println(ibTestObj.num);
 }
 public static void updateObject(InterviewBitTest ibObj)
 {
 // Point the object to new reference
 ibObj = new InterviewBitTest();
 // Update the value
 ibObj.num = 50;
 }
}
Output:
20

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

31. Which among String or String Buffer should be preferred
when there are lot of updates required to be done in the
data?

StringBuffer is mutable and dynamic in nature whereas String is immutable. Every
updation / modification of String creates a new String thereby overloading the string
pool with unnecessary objects. Hence, in the cases of a lot of updates, it is always
preferred to use StringBuffer as it will reduce the overhead of the creation of multiple
String objects in the string pool.

32. How to not allow serialization of attributes of a class in
Java?

Page 31 © Copyright by Interviewbit

class InterviewBitTest{
 int num;
 InterviewBitTest(int x){
 num = x;
 }
 InterviewBitTest(){
 num = 0;
 }
}
class Driver{
 public static void main(String[] args)
 {
 //create a reference
 InterviewBitTest ibTestObj = new InterviewBitTest(20);
 //Pass the reference to updateObject Method
 updateObject(ibTestObj);
 //After the updateObject is executed, check for the value of num in the object.
 System.out.println(ibTestObj.num);
 }
 public static void updateObject(InterviewBitTest ibObj)
 {
 // no changes are made to point the ibObj to new location
 // Update the value of num
 ibObj.num = 50;
 }
}
Output:
50

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

In order to achieve this, the attribute can be declared along with the usage of
transient keyword as shown below:

public class InterviewBitExample {

 private transient String someInfo;
 private String name;
 private int id;
 // :
 // Getters setters
 // :
}

In the above example, all the fields except someInfo can be serialized.

33. What happens if the static modifier is not included in the
main method signature in Java?

There wouldn't be any compilation error. But then the program is run, since the JVM
cant map the main method signature, the code throws “NoSuchMethodError” error
at the runtime.

34. What happens if there are multiple main methods inside one
class in Java?

The program can't compile as the compiler says that the method has been already
defined inside the class.

35. What do you understand by Object Cloning and how do you
achieve it in Java?

It is the process of creating an exact copy of any object. In order to support this,
a java class has to implement the Cloneable interface of java.lang package and
override the clone() method provided by the Object class the syntax of which is:

protected Object clone() throws CloneNotSupportedException{
 return (Object)super.clone();
}

Page 32 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

In case the Cloneable interface is not implemented and just the method is
overridden, it results in CloneNotSupportedException in Java.

36. How does an exception propagate in the code?

When an exception occurs, first it searches to locate the matching catch block. In
case, the matching catch block is located, then that block would be executed. Else,
the exception propagates through the method call stack and goes into the caller
method where the process of matching the catch block is performed. This
propagation happens until the matching catch block is found. If the match is not
found, then the program gets terminated in the main method.

37. Is it mandatory for a catch block to be followed a�er a try
block?

No, it is not necessary for a catch block to be present a�er a try block. - A try block
should be followed either by a catch block or by a finally block. If the exceptions
likelihood is more, then they should be declared using the throws clause of the
method.

Page 33 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

38. Will the finally block get executed when the return
statement is written at the end of try block and catch block
as shown below?

public int someMethod(int i){
 try{
 //some statement
 return 1;
 }catch(Exception e){
 //some statement
 return 999;
 }finally{
 //finally block statements
 }
}

finally block will be executed irrespective of the exception or not. The only case
where finally block is not executed is when it encounters ‘System.exit()’ method
anywhere in try/catch block.

39. Can you call a constructor of a class inside the another
constructor?

Yes, the concept can be termed as constructor chaining and can be achieved using
this() .

Page 34 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

40. Contiguous memory locations are usually used for storing
actual values in an array but not in ArrayList. Explain.

In the case of ArrayList, data storing in the form of primitive data types (like int, float,
etc.) is not possible. The data members/objects present in the ArrayList have
references to the objects which are located at various sites in the memory. Thus,
storing of actual objects or non-primitive data types (like Integer, Double, etc.) takes
place in various memory locations.

Page 35 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

However, the same does not apply to the arrays. Object or primitive type values can
be stored in arrays in contiguous memory locations, hence every element does not
require any reference to the next element.

Java Advanced Interview Questions

Page 36 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

41. Although inheritance is a popular OOPs concept, it is less
advantageous than composition. Explain.

Inheritance lags behind composition in the following scenarios:

Multiple-inheritance is not possible in Java. Classes can only extend from one
superclass. In cases where multiple functionalities are required, for example - to
read and write information into the file, the pattern of composition is preferred.
The writer, as well as reader functionalities, can be made use of by considering
them as the private members.
Composition assists in attaining high flexibility and prevents breaking of
encapsulation.
Unit testing is possible with composition and not inheritance. When a developer
wants to test a class composing a different class, then Mock Object can be
created for signifying the composed class to facilitate testing. This technique is
not possible with the help of inheritance as the derived class cannot be tested
without the help of the superclass in inheritance.
The loosely coupled nature of composition is preferable over the tightly coupled
nature of inheritance.

Let’s take an example:

package comparison;
public class Top {
public int start() {
 return 0;
}
}
class Bottom extends Top {
 public int stop() {
 return 0;
 }
}

In the above example, inheritance is followed. Now, some modifications are done to
the Top class like this:

Page 37 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

public class Top {
 public int start() {
 return 0;
 }
 public void stop() {
 }
}

If the new implementation of the Top class is followed, a compile-time error is bound
to occur in the Bottom class. Incompatible return type is there for the Top.stop()
function. Changes have to be made to either the Top or the Bottom class to ensure
compatibility. However, the composition technique can be utilized to solve the given
problem:

class Bottom {
 Top par = new Top();
 public int stop() {
 par.start();
 par.stop();
 return 0;
 }
}

42. How is the creation of a String using new() different from
that of a literal?

When a String is formed as a literal with the assistance of an assignment operator, it
makes its way into the String constant pool so that String Interning can take place.
This same object in the heap will be referenced by a different String if the content is
the same for both of them.

public bool checking() {
String first = "InterviewBit";
String second = "InterviewBit";
if (first == second)
 return true;
else
 return false;
}

Page 38 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

The checking() function will return true as the same content is referenced by both the
variables.

Conversely, when a String formation takes place with the help of a new() operator,
interning does not take place. The object gets created in the heap memory even if
the same content object is present.

public bool checking() {
String first = new String("InterviewBit");
String second = new String("InterviewBit");
if (first == second)
 return true;
else
 return false;
}

The checking() function will return false as the same content is not referenced by
both the variables.

Page 39 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

43. Is exceeding the memory limit possible in a program despite
having a garbage collector?

Yes, it is possible for the program to go out of memory in spite of the presence of a
garbage collector. Garbage collection assists in recognizing and eliminating those
objects which are not required in the program anymore, in order to free up the
resources used by them.

In a program, if an object is unreachable, then the execution of garbage collection
takes place with respect to that object. If the amount of memory required for
creating a new object is not sufficient, then memory is released for those objects
which are no longer in the scope with the help of a garbage collector. The memory
limit is exceeded for the program when the memory released is not enough for
creating new objects.

Moreover, exhaustion of the heap memory takes place if objects are created in such a
manner that they remain in the scope and consume memory. The developer should
make sure to dereference the object a�er its work is accomplished. Although the
garbage collector endeavors its level best to reclaim memory as much as possible,
memory limits can still be exceeded.

Page 40 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Let’s take a look at the following example:

List<String> example = new LinkedList<String>();
while(true){
example.add(new String("Memory Limit Exceeded"));
}

44. Why is synchronization necessary? Explain with the help of a
relevant example.

Concurrent execution of different processes is made possible by synchronization.
When a particular resource is shared between many threads, situations may arise in
which multiple threads require the same shared resource.

Synchronization assists in resolving the issue and the resource is shared by a single
thread at a time. Let’s take an example to understand it more clearly. For example,
you have a URL and you have to find out the number of requests made to it. Two
simultaneous requests can make the count erratic.

No synchronization:

package anonymous;
public class Counting {
 private int increase_counter;
 public int increase() {
 increase_counter = increase_counter + 1;
 return increase_counter;
 }
}

Page 41 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

If a thread Thread1 views the count as 10, it will be increased by 1 to 11.
Simultaneously, if another thread Thread2 views the count as 10, it will be increased
by 1 to 11. Thus, inconsistency in count values takes place because the expected final
value is 12 but the actual final value we get will be 11.

Now, the function increase() is made synchronized so that simultaneous accessing
cannot take place.

With synchronization:

package anonymous;
public class Counting {
 private int increase_counter;
 public synchronized int increase() {
 increase_counter = increase_counter + 1;
 return increase_counter;
 }
}

Page 42 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

If a thread Thread1 views the count as 10, it will be increased by 1 to 11, then the
thread Thread2 will view the count as 11, it will be increased by 1 to 12. Thus,
consistency in count values takes place.

45. In the given code below, what is the significance of ... ?

public void fooBarMethod(String... variables){
 // method code
}

Ability to provide ... is a feature called varargs (variable arguments) which
was introduced as part of Java 5.
The function having ... in the above example indicates that it can receive
multiple arguments of the datatype String.
For example, the fooBarMethod can be called in multiple ways and we can still
have one method to process the data as shown below:

Page 43 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

fooBarMethod("foo", "bar");
fooBarMethod("foo", "bar", "boo");
fooBarMethod(new String[]{"foo", "var", "boo"});
public void myMethod(String... variables){
 for(String variable : variables){
 // business logic
 }
}

46. Can you explain the Java thread lifecycle?

Java thread life cycle is as follows:

New – When the instance of the thread is created and the start() method has not
been invoked, the thread is considered to be alive and hence in the NEW state.
Runnable – Once the start() method is invoked, before the run() method is
called by JVM, the thread is said to be in RUNNABLE (ready to run) state. This
state can also be entered from the Waiting or Sleeping state of the thread.
Running – When the run() method has been invoked and the thread starts its
execution, the thread is said to be in a RUNNING state.
Non-Runnable (Blocked/Waiting) – When the thread is not able to run despite
the fact of its aliveness, the thread is said to be in a NON-RUNNABLE state.
Ideally, a�er some time of its aliveness, the thread should go to a runnable state.

A thread is said to be in a Blocked state if it wants to enter synchronized
code but it is unable to as another thread is operating in that synchronized
block on the same object. The first thread has to wait until the other thread
exits the synchronized block.
A thread is said to be in a Waiting state if it is waiting for the signal to
execute from another thread, i.e it waits for work until the signal is
received.

Terminated – Once the run() method execution is completed, the thread is said
to enter the TERMINATED step and is considered to not be alive.

The following flowchart clearly explains the lifecycle of the thread in Java.

Page 44 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

47. What could be the tradeoff between the usage of an
unordered array versus the usage of an ordered array?

The main advantage of having an ordered array is the reduced search time
complexity of O(log n) whereas the time complexity in an unordered array is
O(n) .

The main drawback of the ordered array is its increased insertion time which is
O(n) due to the fact that its element has to reordered to maintain the order of
array during every insertion whereas the time complexity in the unordered array
is only O(1).
Considering the above 2 key points and depending on what kind of scenario a
developer requires, the appropriate data structure can be used for
implementation.

48. Is it possible to import the same class or package twice in
Java and what happens to it during runtime?

It is possible to import a class or package more than once, however, it is redundant
because the JVM internally loads the package or class only once.

Page 45 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

49. In case a package has sub packages, will it suffice to import
only the main package? e.g. Does importing of
com.myMainPackage.* also import
com.myMainPackage.mySubPackage.*?

This is a big NO. We need to understand that the importing of the sub-packages of a
package needs to be done explicitly. Importing the parent package only results in the
import of the classes within it and not the contents of its child/sub-packages.

50. Will the finally block be executed if the code System.exit(0)
is written at the end of try block?

NO. The control of the program post System.exit(0) is immediately gone and the
program gets terminated which is why the finally block never gets executed.

51. What do you understand by marker interfaces in Java?

Marker interfaces, also known as tagging interfaces are those interfaces that have no
methods and constants defined in them. They are there for helping the compiler and
JVM to get run time-related information regarding the objects.

52. Explain the term “Double Brace Initialisation” in Java?

This is a convenient means of initializing any collections in Java. Consider the below
example.

Page 46 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

import java.util.HashSet;
import java.util.Set;

public class IBDoubleBraceDemo{
 public static void main(String[] args){
 Set<String> stringSets = new HashSet<String>()
 {
 {
 add("set1");
 add("set2");
 add("set3");
 }
 };

 doSomething(stringSets);
 }

 private static void doSomething(Set<String> stringSets){
 System.out.println(stringSets);
 }
}

In the above example, we see that the stringSets were initialized by using double
braces.

The first brace does the task of creating an anonymous inner class that has the
capability of accessing the parent class’s behavior. In our example, we are
creating the subclass of HashSet so that it can use the add() method of HashSet.
The second braces do the task of initializing the instances.

Care should be taken while initializing through this method as the method involves
the creation of anonymous inner classes which can cause problems during the
garbage collection or serialization processes and may also result in memory leaks.

53. Why is it said that the length() method of String class
doesn't return accurate results?

Page 47 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

The length method returns the number of Unicode units of the String. Let's
understand what Unicode units are and what is the confusion below.
We know that Java uses UTF-16 for String representation. With this Unicode, we
need to understand the below two Unicode related terms:

Code Point: This represents an integer denoting a character in the code
space.
Code Unit: This is a bit sequence used for encoding the code points. In order
to do this, one or more units might be required for representing a code
point.

Under the UTF-16 scheme, the code points were divided logically into 17 planes
and the first plane was called the Basic Multilingual Plane (BMP). The BMP has
classic characters - U+0000 to U+FFFF. The rest of the characters- U+10000 to
U+10FFFF were termed as the supplementary characters as they were contained
in the remaining planes.

The code points from the first plane are encoded using one 16-bit code unit
The code points from the remaining planes are encoded using two code
units.

Now if a string contained supplementary characters, the length function would count
that as 2 units and the result of the length() function would not be as per what is
expected.

In other words, if there is 1 supplementary character of 2 units, the length of that
SINGLE character is considered to be TWO - Notice the inaccuracy here? As per the
java documentation, it is expected, but as per the real logic, it is inaccurate.

54. What is the output of the below code and why?

public class InterviewBit{
 public static void main(String[] args)
 {
 System.out.println('b' + 'i' + 't');
 }
}

Page 48 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

“bit” would have been the result printed if the letters were used in double-quotes (or
the string literals). But the question has the character literals (single quotes) being
used which is why concatenation wouldn't occur. The corresponding ASCII values of
each character would be added and the result of that sum would be printed.
The ASCII values of ‘b’, ‘i’, ‘t’ are:

‘b’ = 98
‘i’ = 105
‘t’ = 116

98 + 105 + 116 = 319

Hence 319 would be printed.

55. What are the possible ways of making object eligible for
garbage collection (GC) in Java?

First Approach: Set the object references to null once the object creation purpose is
served.

public class IBGarbageCollect {
 public static void main (String [] args){
 String s1 = "Some String";
 // s1 referencing String object - not yet eligible for GC
 s1 = null; // now s1 is eligible for GC
 }
 }

Second Approach: Point the reference variable to another object. Doing this, the
object which the reference variable was referencing before becomes eligible for GC.

Page 49 © Copyright by Interviewbit

public class IBGarbageCollect {
 public static void main(String [] args){
 String s1 = "To Garbage Collect";
 String s2 = "Another Object";
 System.out.println(s1); // s1 is not yet eligible for GC
 s1 = s2; // Point s1 to other object pointed by s2
 /* Here, the string object having the content "To Garbage Collect" is not referre
 }
}

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Third Approach: Island of Isolation Approach: When 2 reference variables pointing to
instances of the same class, and these variables refer to only each other and the
objects pointed by these 2 variables don't have any other references, then it is said to
have formed an “Island of Isolation” and these 2 objects are eligible for GC.

public class IBGarbageCollect {
 IBGarbageCollect ib;
 public static void main(String [] str){
 IBGarbageCollect ibgc1 = new IBGarbageCollect();
 IBGarbageCollect ibgc2 = new IBGarbageCollect();
 ibgc1.ib = ibgc2; //ibgc1 points to ibgc2
 ibgc2.ib = ibgc1; //ibgc2 points to ibgc1
 ibgc1 = null;
 ibgc2 = null;
 /*
 * We see that ibgc1 and ibgc2 objects refer
 * to only each other and have no valid
 * references- these 2 objects for island of isolcation - eligible for GC
 */
 }
}

Java Interview Programs
56. Check if a given string is palindrome using recursion.

Page 50 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

57. Write a Java program to check if the two strings are
anagrams.

The main idea is to validate the length of strings and then if found equal, convert the
string to char array and then sort the arrays and check if both are equal.

Page 51 © Copyright by Interviewbit

/*
* Java program to check if a given inputted string is palindrome or not using recursion
*/
import java.util.*;
public class InterviewBit {
 public static void main(String args[]) {
 Scanner s = new Scanner(System.in);
 String word = s.nextLine();
 System.out.println("Is "+word+" palindrome? - "+isWordPalindrome(word));
 }

 public static boolean isWordPalindrome(String word){
 String reverseWord = getReverseWord(word);
 //if word equals its reverse, then it is a palindrome
 if(word.equals(reverseWord)){
 return true;
 }
 return false;
 }

 public static String getReverseWord(String word){
 if(word == null || word.isEmpty()){
 return word;
 }

 return word.charAt(word.length()- 1) + getReverseWord(word.substring(0, word.len
 }
}

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

import java.util.Arrays;
import java.util.Scanner;
public class InterviewBit {
 public static void main(String[] args) {
 Scanner s = new Scanner(System.in);
 //Input from two strings
 System.out.print("First String: ");
 String string1 = s.nextLine();
 System.out.print("Second String: ");
 String string2 = s.nextLine();
 // check for the length
 if(string1.length() == string2.length()) {
 // convert strings to char array
 char[] characterArray1 = string1.toCharArray();
 char[] characterArray2 = string2.toCharArray();
 // sort the arrays
 Arrays.sort(characterArray1);
 Arrays.sort(characterArray2);
 // check for equality, if found equal then anagram, else not an anagram
 boolean isAnagram = Arrays.equals(characterArray1, characterArray2);
 System.out.println("Anagram: "+ isAnagram);
 }
}

58. Write a Java Program to find the factorial of a given number.

public class FindFactorial {
 public static void main(String[] args) {
 int num = 10;
 long factorialResult = 1l;
 for(int i = 1; i <= num; ++i)
 {
 factorialResult *= i;
 }
 System.out.println("Factorial: "+factorialResult);
 }
}

59. Given an array of non-duplicating numbers from 1 to n
where one number is missing, write an efficient java
program to find that missing number.

Page 52 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

Idea is to find the sum of n natural numbers using the formula and then finding the
sum of numbers in the given array. Subtracting these two sums results in the number
that is the actual missing number. This results in O(n) time complexity and O(1) space
complexity.

public class IBMissingNumberProblem {

 public static void main(String[] args) {

 int[] array={4,3,8,7,5,2,6};
 int missingNumber = findMissingNum(array);
 System.out.println("Missing Number is "+ missingNumber);
 }

 public static int findMissingNum(int[] array) {
 int n=array.length+1;
 int sumOfFirstNNums=n*(n+1)/2;
 int actualSumOfArr=0;
 for (int i = 0; i < array.length; i++) {
 actualSumOfArr+=array[i];
 }
 return sumOfFirstNNums-actualSumOfArr;
 }
}

60. Write a Java Program to check if any number is a magic
number or not. A number is said to be a magic number if
a�er doing sum of digits in each step and inturn doing sum
of digits of that sum, the ultimate result (when there is only
one digit le�) is 1.

Example, consider the number:

Step 1: 163 => 1+6+3 = 10
Step 2: 10 => 1+0 = 1 => Hence 163 is a magic number

Page 53 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/

Java Interview Questions

public class IBMagicNumber{

 public static void main(String[] args) {
 int num = 163;
 int sumOfDigits = 0;
 while (num > 0 || sumOfDigits > 9)
 {
 if (num == 0)
 {
 num = sumOfDigits;
 sumOfDigits = 0;
 }
 sumOfDigits += num % 10;
 num /= 10;
 }

 // If sum is 1, original number is magic number
 if(sumOfDigits == 1) {
 System.out.println("Magic number");
 }else {
 System.out.println("Not magic number");
 }
 }
}

Conclusion
61. Conclusion

Java is one of the simple high-level languages that provides powerful tools and
impressive standards required for application development. It was also one of the
first languages to provide amazing threading support for tackling concurrency-based
problems. The easy-to-use syntax and the built-in features of Java combined with the
stability it provides to applications are the main reasons for this language to have
ever-growing usage in the so�ware community.

Join our community and share your java interview experiences.

Recommended tutorials:

Java Tutorial

Puzzles

Page 54 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/
https://discuss.interviewbit.com/t/a-cheat-sheet-for-your-java-interview/62512
https://www.interviewbit.com/courses/fast-track-java/
https://www.interviewbit.com/puzzles/

Java Interview Questions

Coding Interview Questions

Java 8 Interview Questions

How to Become a Java Developer?

Java Frameworks:

Spring

Hibernate

JAVA SE Download

Page 55 © Copyright by Interviewbit

https://www.interviewbit.com/java-interview-questions/
https://www.interviewbit.com/coding-interview-questions/
https://www.interviewbit.com/java-8-interview-questions/
https://www.interviewbit.com/blog/java-developer/
https://www.interviewbit.com/spring-interview-questions/
https://www.interviewbit.com/hibernate-interview-questions/
https://www.oracle.com/in/java/technologies/javase-downloads.html

C Interview Questions Php Interview Questions C Sharp Interview Questions

Web Api Interview
Questions

Hibernate Interview
Questions

Node Js Interview Questions

Cpp Interview Questions Oops Interview Questions Devops Interview Questions

Machine Learning Interview
Questions

Docker Interview Questions Mysql Interview Questions

Css Interview Questions Laravel Interview Questions Asp Net Interview Questions

Django Interview Questions Dot Net Interview Questions Kubernetes Interview
Questions

Operating System Interview
Questions

React Native Interview
Questions

Aws Interview Questions

Git Interview Questions Java 8 Interview Questions Mongodb Interview
Questions

Dbms Interview Questions Spring Boot Interview
Questions

Power Bi Interview Questions

Pl Sql Interview Questions Tableau Interview
Questions

Linux Interview Questions

Ansible Interview Questions Java Interview Questions Jenkins Interview Questions

Page 56 © Copyright by Interviewbit

Links to More Interview
Questions

https://www.interviewbit.com/c-interview-questions
https://www.interviewbit.com/php-interview-questions
https://www.interviewbit.com/c-sharp-interview-questions
https://www.interviewbit.com/web-api-interview-questions
https://www.interviewbit.com/hibernate-interview-questions
https://www.interviewbit.com/node-js-interview-questions
https://www.interviewbit.com/cpp-interview-questions
https://www.interviewbit.com/oops-interview-questions
https://www.interviewbit.com/devops-interview-questions
https://www.interviewbit.com/machine-learning-interview-questions
https://www.interviewbit.com/docker-interview-questions
https://www.interviewbit.com/mysql-interview-questions
https://www.interviewbit.com/css-interview-questions
https://www.interviewbit.com/laravel-interview-questions
https://www.interviewbit.com/asp-net-interview-questions
https://www.interviewbit.com/django-interview-questions
https://www.interviewbit.com/dot-net-interview-questions
https://www.interviewbit.com/kubernetes-interview-questions
https://www.interviewbit.com/operating-system-interview-questions
https://www.interviewbit.com/react-native-interview-questions
https://www.interviewbit.com/aws-interview-questions
https://www.interviewbit.com/git-interview-questions
https://www.interviewbit.com/java-8-interview-questions
https://www.interviewbit.com/mongodb-interview-questions
https://www.interviewbit.com/dbms-interview-questions
https://www.interviewbit.com/spring-boot-interview-questions
https://www.interviewbit.com/power-bi-interview-questions
https://www.interviewbit.com/pl-sql-interview-questions
https://www.interviewbit.com/tableau-interview-questions
https://www.interviewbit.com/linux-interview-questions
https://www.interviewbit.com/ansible-interview-questions
https://www.interviewbit.com/java-interview-questions
https://www.interviewbit.com/jenkins-interview-questions

