Making Everything Easier!”

Learn to:

« Think like a programmer and understand
how C++ works

« Create programs and get bugs out
of your code

« Master basic development concepts
and techniques in C++

Find source code from the book
and the Code::Blocks C++ compiler
on the companion CD-ROM

Stephen R. Davis

Author of C++ For Dummies

http://www.it-ebooks.info/

Beginning
Programming with C++

DUMMIES'

by Stephen R. Davis

WILEY
Wiley Publishing, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Programming with C++ For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://

www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010930969
ISBN: 978-0-470-61797-7

Manufactured in the United States of America
109 87654321

@

WILEY

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

JOEPOAUCTION «eeeeeeeeeeeeeeeeneeaeeeennnaeeeeennnaeeeennnaeeeeennnne |

Part I: Let’s Get Startedcccceeeeeeeeeeeeeeeeeeeeneennences

Chapter 1: What Is @ Program?..............cooeoiiiiiiieieeceeecceeeieeeeeee e eaeese s saen 9
Chapter 2: Installing Code::BIOCKS ..o 21
Chapter 3: Writing Your First Program...........c.ccooooioviiininiceeeeeceeeeeeeee e 33

Part 1I: Writing a Program: Decisions, Decisions 45

Chapter 4: Integer EXPreSSiOnSc.coiiveeierierierieeieeese e st see e saeesaeseesaesaesaens 47
Chapter 5: Character EXPreSSions...........ccceoeoueiueeieeereeeeceeeceeeaeeesee e saeeseseesaesaeenens 59
Chapter 6: if I Could Make My Own DecCiSionsccoeeuererereeeneeneeeeeeeceeeieneeeene 69
Chapter 7: SWitching Pathis........c.oviiiiiieieeeeeeeeeeee e 81
Chapter 8: Debugging Your Programs, Part L..........ccccooueoiiiiieciieceececeeeeeee 89

Part 11I: Becoming a Functional Programmer............... 97

Chapter 9: while RUNning in Circlesccoooueiiiiiienicieceeeeeecee e 99
Chapter 10: Looping for the Fun of It ..o 109
Chapter 11: Functions, I Declare!ccooooiiiinioeeeeeceeeeeeeesee e 117
Chapter 12: Dividing Programs into Modulescccocueoiieveninieeieniereeeeceeeeneee 129
Chapter 13: Debugging Your Programs, Part 2...........ccccooviioieneeienieeeececeeeene 139
Part IU: Data Structures............cccceeeeceeeeceeesseeeaseeees 149
Chapter 14: Other Numerical Variable Types........ccccooviivmircninenenereeeeeeseee 151
ChAPEET 15: ATTAYS ..ceeueeveieeeiieeeeeeie ettt eae st a e as e e esessesaesaese s eseesasaenaesanseseesenns 165
Chapter 16: Arrays with Character...........c.ccoouoiiiieeceeeeceeeeeece e 173
Chapter 17: Pointing the Way to C++ PoINters..........cocooieoiincninenienierececeeeeeee 187
Chapter 18: Taking a Second Look at C++ Pointers...........ccoceoeveeeveeeneneeeceiecennn 203
Chapter 19: Programming With Classccoeueiiiioeienieceeeceeesee e 223
Chapter 20: Debugging Your Programs, Part 3..........cccoooooieoeoineeieeiereeeceeeee 235

Part U: Object-Oriented Programming 251

Chapter 21: What Is Object-Oriented Programming?............ccceeveeeieriuenveenruenveeneenne 253
Chapter 22: Structured Play: Making Classes Do Things.........ccccocevriinevencncnnenne. 259
Chapter 23: PoInters t0 ODJECES......c.ovirereereeieieeeee et ee e ene 269
Chapter 24: Do Not Disturb: Protected Members............cccooveveeveveeveneeneeneeceeeeeneene 281
Chapter 25: Getting Objects Off to a Good Startcoeeveeeeeeceeececeereeeeeeeenee 289

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Argumentscccceeeeecieeciiecieeiesieseeeeeseesneenne 303

Chapter 27: Coping with the Copy Constructor.........coceeevvierriiriencienienienieseeneene 323
Part Ul: Advanced Strokes...............ccccoueeeeeeeececenneeee 333
Chapter 28: Inheriting @ Classccccevviiriiirierienieeceereee ettt see e 335
Chapter 29: Are Virtual Functions for Real?..........ccccccoeieiiiiiinciieiieiecieceeeeseeieee 343
Chapter 30: Overloading Assignment OPerators...........cccceecveeeieeiieeiesieseeseeseenseenns 355
Chapter 31: Performing Streaming [/O........ccccoviiniiniininiiniiiieeieeseeseesteseeieee 363
Chapter 32: I Take EXCEPHION!........ccciviiiiiiecieeteteeeeee sttt 387
Part VII: The Part of Tens.........cccceeceeeceeeceeeceecescenee 397
Chapter 33: Ten Ways to Avoid BUZSccceeieriiiiiiieiececieeeeveeee et seeesaeenne 399
Chapter 34: Ten Features Not Covered in This BOOK..........cccccceevveecieniinienieceeieene 405

Appendix: About the CDcuuuuuueeeeeeeeeeeeeeaaaaaaees 411

JOACK «eaaeeaeeeeeeeeeeeeeaeaaaaaaaannnnnnnnneeeseeeeeeeesssssssaasacacees B 15

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

JOEEOARCEON «eaaeeeeeeeeeeeeenaeaeeeeennaaeeesennnaseseannaseeeennnne |

About Beginning Programming with C++ For Dummiesccccccceceenenee. 1
FOOlish ASSUMPUIONS.......ooiiiiiiiieieec et 2
Conventions Used in This BOOK..........cccooriiiiiiiniieeeceeeee 2
What You Don’t Have to Read..........c.ooooiiiiiiinicccceeeee e 3
How This Book Is Organizedcooeeueeeeienenieiecceeceeereeeee e 3
Part I: Let’s Get Started ... 3
Part II: Writing a Program: Decisions, Decisionscccccccceeneueee 4
Part Ill: Becoming a Functional Programmerccccccccoenininennee. 4
Part [V: Data SEruCtUrescoooeiiiiniiieeececeee e 4
Part V: Object-Oriented Programmingcccceceeveeveevevuccreneneenenee. 4
Part VI: Advanced SEroKescoooioiiiinininicceeeeeeeeeeesaeeae 4
Part VII: The Part of Tens........c.cooieioiiiiniccceeeeeeceeeeee 5
The CD-ROM APPEeNdiXcccceeueuiiiriiiiinieieiiceceeeteeeeee e 5
Icons Used in This BOOKcccocruiiieieceeeece e 5
Where to GO from Here..........coooiiiiiieee e 6

Part I: Let’s Get Started..............cccceeeeeeeeeeeeeeeeeeeeeecnnances 1

Chapter 1: WhatlsaProgram?cciiiiinin... 9
How Does My Son Differ from a Computer?............ccccooeoeenincncnncnenenne. 9
Programming a “Human Computer”ccccooiirinnnieneninenececeeeeene 11

The algOTitRMcc.oeeieeeeeeeeee e 11
The Tire Changing Language...........c..coeoeueeeeeeneeienieeeeeeeeeeeeeenennes 12
The PrOZram.....c.ccveeieeiieieeieieeeceee et se e e saesaennas 13
COMPULET PIOCESSOTS.....ueeeeneiereeiieieeeeeestesseeseeseeseessessessesseesesssensesaenns 16
Computer Languagescocouioieiriiiinceeeceeieeece et 17
High level languages.........c.coooiriiieniiineeeeceee e 18
The C++ [angUage.......cceeoeerieeeeieeeceeeee et 19

Chapter 2: Installing Code:Blocks 21
Reviewing the Compilation Process..........ccccoovevievienieecinneennecceceeeeeene 21
Installing Code:BIOCKS.........coieierieieieceeeeeeee e 23
Testing the Code::Blocks Installationcccccoeveeeeneienieniencerieieceeaenne 25

Creating the Project..........cooveoieieieneeeeeeeeeeee e 27
Testing your default project.........c..coooeeoeiieenccicincnccccceceeene 30

Chapter 3: Writing Your FirstProgram........................... 33
Creating a New Project ... 33
Entering YOUr Programi........c..cocooiirinionnecnecceesc e 35
Building the Programccccooeoiiiininieeeeceeeeeee e 38

www.it-ebooks.info

http://www.it-ebooks.info/

X

Beginning Programming with C++ For Dummies

Finding What Could GO WIONGcccccceeiiiiienieieeieeteereeee e 38
Misspelled COMMANAS.........cccceciereereenieniiereeseeee et ere e ee e e 38
MisSing SEMICOIONcccveeuiirieriiirieceeceeie e 40

Using the Enclosed CD-ROMccoceviiniiniiniiieeieeieciecieeee e 41

Running the Programcccooviriiniiniiinieniccececeeeee st 42

How the Program WOTKS..........coccevvieriiniiniiniiicecieeieeeeteee e 42
The tempPlatecc.ooevieiiieee e 42
The Conversion Program...........ccceeeeceerierierienereeieierieseeseeseeeeeeeneens 44

Part II: Writing a Program: Decisions, Decisious........... 45

Chapter 4: Integer Expressionscccvivviinnn... 47
Declaring Variablescocivviriiriienienienienteeeseeieeee ettt 47
Variable NAames..........cccoceririiiinenininceee e 48

Assigning a value to a variable..........c.cccceeviieviieieecienieieeeeee e, 49
Initializing a variable at declaration............cccoceevveeeeviincinciecienenne, 49

Integer CONSTANEScceceeieiiiieii ettt e s st resreesaeneas 50
EXPIESSIONS ...oocvviiiiiiecieeieete ettt e te et e beebeeaae e eee e s e asenseenreas 51
BINAry OPEratOrScccocieieieieieriieeieeeeetee ettt sse e eseeseeneens 51
Decomposing compound eXpreSSions.........cccueeecveeerveeeceeereeesneennnes 53

UNAry OPEIAtOrSccveiieeieiieieienie ettt ettt ettt et tetesaesbe st neeneas 54

The Special Assignment OPerators........c.cceecveeeerieerieenieerienieeie e seeseeneees 56
Chapter 5: Character Expressions.......................ccoott. 59
Defining Character Variablescccccecveiiiienieiieciieieciecieee e 59
Encoding characters........coceveeveeciiiiieeiieniesieseeeeeeie e 60

Example of character encodingc.cccecevvienieniineeninninienieneene, 63

Encoding Strings of Charactersccoccovvieviineeneniinnienieeeeieeeeeeeeen 65
Special Character CONStANtS.........cccccueeeerierieriereee et 65
Chapter 6: if | Could Make My Own Decisions.................... 69
The if Statement........cccoivieriririeirc et 69
CompAriSON OPETALOTScccevueruieeirieeieierieeeteeteeieete e ste st see st eaeeneenes 70

Say “NO” t0 “NO Draces”.......cccevieviiecieeieeierieceeseese e see s 72

What else Is There? ...t 73
Nesting if StAtEMENTSc.cceviieiiieieeesee et 75
Compound Conditional EXpressions...........cccccceecvveeeiieiciieecieeceeeeeeeveeene 78
Chapter 7: SwitchingPaths 81
Controlling Flow with the switch Statement............ccccoeceniiiniinnninnnnen. 81
Control Fell Through: Did [break It?..........ccooeeeeciiiciieiieiecieeeeceeeeeeee 84
Implementing an Example Calculator with the switch Statement........... 85

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 8: Debugging Your Programs, Partl...................... 89
Identifying Types Of EXTOrS........ccocoieieriiniieeeeceeeeeeee e 89
Avoiding Introducing EXrorsccccecveviieiieiieniiinienececieee e 90

Coding With STYIEoviieiiiiieece e 90
Establishing variable naming conventions..........cccccoccevvevvieneeneenne. 91
Finding the First Error with a Little Help......ccccoocvviniiniiniiniiieee, 92
Finding the RUn-Time Error........ccoccoevieiiiniiniiiiieeeeeeeececeeeeeeeen 93
Formulating test dataccccceeeiieciieciieiecieceeeeeeee e 93
Executing the test CaSes......coovivviriiiiiieiecicceeecece e 94
Seeing what’s going on in your programcecceeceevvercierrvencvennennes 95

Part 1I: Becoming a Functional Programmer................ 97

Chapter 9: while Running inCircles............................. 99
Creating @ Whil€ LOODccoviriieieiieiieieeecteee ettt 99
Breaking out of the Middle of @ LOOPD........ccccevveviiriiinniieienieciecieeeeeene 102
INESTEA LOOPSveeeveiiiieiieieeieieteete ettt ettt e ettt s r e se e sessesaesnens 105

Chapter 10: Looping forthe Funoflt............................ 109
The for Parts of EVEry LOODccccvvvieeiiniinienietcieeieceeteste et 109
Looking at an EXample.........coccovviriiiriieniiinienieeeieeieeieeeesee st 111
Getting More Done with the Comma Operator..........c.cccceeevevveeveneenneenne 113

Chapter 11: Functions, I Declare! 117
Breaking Your Problem Down into Functionsccccecceevenviiniininnenns 117
Understanding How Functions Are Usefulccccoccevinininiineninenene 118
Writing and Using a FUNCHON........cccccciiiiieiieieieeeececeeeee e 119

Returning things........cccovieriiiieiieiiceeeceeeee e 120
Reviewing an eXample.........ccoceviriiiniieniieniienienieneesesie e ssesnens 121
Passing Arguments to FUNCHIONScccooiiviiniiiiiniiiieiececcceceee 123
Function with arguments.............cccocoviveiiicieeceeeeeeee e 124
Functions with multiple arguments..........cccccoceveivinvinninnennenen. 125
EXposing mMain().....ccceeveerienierieerieeiecieeieeeeseeseesieesaeete e eaeenesneens 125
Defining Function Prototype Declarations...........ccccceveevieeviinciencienceenenns 127

Chapter 12: Dividing Programs into Modules.................... 129
Breaking Programs ApPartcccoceevievieiienieneeieesieeieeee et seeenee 129
Breaking Up Isn’t That Hard t0 DOccccoviiniiniiiiiiiiieciecieceeeeeeeee 130

Creating Factorial.CpP.....oocverieriiniiicececeeeeeece e 131
Creating an #include fileccccooveeievieiieiieeeecece e 133
Including #include filesccooeeiiiiineninieeeee e 134
Creating Main.CPP....cccveererieniiiieeieceece et steete et ereeaeeaae e 136
Building the resultcccooiiieiiiiiceeeeeeeeeeee e 137

www.it-ebooks.info

xi

http://www.it-ebooks.info/

xii Beginning Programming with C++ For Dummies

Using the Standard C++ Library......ccccccceevveeieeiecieiieeeeceeeeeeeeeeeeieenne 137
Variable SCOPEco.viiiieieiee et 137
Chapter 13: Debugging Your Programs, Part2................... 139
Debugging a Dys-Functional Program............cccceccvevieieeciencieniecieeeeneenne 139
Performing unit level testing........c.cccceevveeiervienieneereceeeeveceeene 141

Outfitting a function for testing.........cccccoevveveeverceeiincicieeieceee 143

Returning to unit testccceeveeviiriiiiiinieeeeeeee e 146

Part JU: Data Structurescceeeeeeeeeeeeeeeeeencancanees 149

Chapter 14: Other Numerical Variable Types 151
The Limitations of Integers in C++.....c.cceveverieeeiieierieneceeeeeeee e 151
Integer round-offcooviriiieieeeeeeee e 151

Limited Tange.......c.occveeeieieniiceeieietetesese et re e esaesreneens 152

A Type That “doubles” as a Real Numberccccoceevevvenviinviinieniennnn. 153
Solving the truncation problem...........cccccoevevieniecieieeeeeeeen, 153

When an integer is not an integer.........c.ccccoecveevieeeeneeneeneeceeienee. 154
Discovering the limits of double.............ccoccveevevieeiiniiicieececeee 155

Variable Size — the “long” and “short” of It.........cccoceevvevievincinienciennnne 158

How far do numbers range?coccevvvevienienieneeneecieniesiesnennens 159

Types of CONSTANTS.......cooiiiiiiiiiiierieeeteteeee et 160
Passing Different Types to Functionscccccceeeevieecieeccnecieeceeeeee, 161
Overloading function NAMEScccovirerieierienereneeeee e 162

Mixed mode overloadingcccccueeeeeeeriieniiesieeieecie e 162

Chapter 15: Arrayscoiiiiiiii i i aeanens 165
WHhat IS QN AITAY? ...ccveeiecieiieieecieeie ettt eesaeesaesbeetesbesaaesneans 165
Declaring AN AITAYccceveerieeriiriieeiieeientestesteseesieesteesseessessesssessesseesseenes 166
Indexing INtO @ ATTAYcoccevviirieriienieriertertee ettt st e e 167
Looking at an EXample.........coccovviriiiniiiniiniinieeeeeieceeeeeee st 168
[NitialiZiNg AN ATTAYoeociieeiiecieeeeeeee et eeee e e snreeeneeas 171
Chapter 16: Arrays with Character 173
The ASCII-Zero Character ATraycccccceceeeeereesieenieeseeieeeeeeeeceeseesseenns 173
Declaring and Initializing an ASCIZ Array.........cccoccevevereneesienenenenene 174
Looking at an EXamPIe..........cceeviieiierieniinienieseecieesieesie e eee e eeseesaeenes 175
Looking at a More Detailed Example..........ccccoevevviieiirieniieniienienienceneenne 177
FOIling haCKersc.ccooiiiiiiiiiieiicieceetetee e 181

Do [Really Have to Do All That Work?.........ccccoveeveniiniiniienienene 182

Chapter 17: Pointing the Way to C++ Pointers 187
What’s @ POINTEr?.......cccoiriiiiiiiiiicececeteceece e 187
Declaring a POINtETcooovioiiiieiieeee et 188

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Passing Arguments to a FUNCHONcccccvevieeiiiiiiiicececece e 190
Passing arguments by value.........c..cccoecveeienienienieceeeeeeeeeeeene 190
Passing arguments by reference..........c.ccccoevvevveneevencencieecieeieennn, 193
Putting it together........ccocviiiiiicieeeeeee e 195

Playing with Heaps of MEMOYYccccoeceviiniiniiniiiieeieeieceeseeseesceseenne 197
Do you really need a new keyword?.........cccccevvevervenviennieniienieeneens 197
Don'’t forget to clean up after yourself..........cccoooveeveciiecieeciecnenenn. 198
Looking at an €Xampleccceceeeiiicieecienienieseeseece e eae e 199

Chapter 18: Taking a Second Look at C++ Pointers............... 203

PoINters and AITAYScccecueeeiieeiieieeiecieeeee e esie et saeeteeeeseesaesaeesaeanes 203
Operations ON POINTEIScecvveriereerierieereere e este e ereeaesae e 203
Pointer addition versus indexing into an arrayc.cccecveeeveneen. 205
Using the pointer increment operatorc.cceeceeveeviervierrienceennen. 208
Why bother with array pointers?.........cccoccovvevvieniiniineeneeneenenne, 210

Operations on Different Pointer Types.......c.cccovecievieeiieeieniecieceeeeeieene 212

ConStant NAGScceeriiirieeeeee et 212

Differences Between Pointers and Arrays........ccccceceeveevieecieseeseesceeneenns 214

My mMain() ArGUMENTES......cccvevierieriieiierieeieeieeieetessreesreseeseesreeseesaeeseeenes 214
ATTays Of POINEETS.....ccecieeieieieieiececeeectee et 215
Arrays of arguments.........cocceveeviiiniinnieniieniece s 216

Chapter 19: Programming withClass........................... 223

Grouping Datacocueviiiiiiieieteececteecee et 223

TRE CLASS ..ttt ettt ettt sttt e 224

The ODJECT ..ottt 225

Arrays of ODJECESccuiiiiieieeteeeeece et 226

Looking at an EXamPIe.........ccccivviiriieriieniiiiienienecieesieeieete et saeesaeenes 227

Chapter 20: Debugging Your Programs, Part3................... 235

A New Approach to Debuggingcccccecevireeieciecieneneeeeeeeeere e 235
The SOIUION......c..coiiiiiicice e 236

Entomology for DUMMIESccoverieriiniiniiieiieeeceeecee et 236
Starting the debugger...........coveeieciiiiicieeeeeeeee e 239
Navigating through a program with the debugger 241
Fixing the (first) bug......cccooveieiieieeeee e 245
Finding and fixing the second bug.........cccccecvevverienenciniinieneene 246

Part U: Object-Oriented Programming........................ 251

Chapter 21: What Is Object-Oriented Programming? 253
Abstraction and Microwave OVENScocvevivveeiivieeeeieeeeeeeieeeeeeaeeeas 253
Functional Nachos.........c..ooouviiiiiiiieceee e 254
Object-oriented NAChOS.........cccveievieriieiieeeeceee e 255
Classification and MiCrowave OVENSccoovveeeeevvereeeiveeeeeinreeeeeveeeeenns 256

Why Build Objects This Way?......cccceveriirienienieienteeeesieeiesieseeseenn 256
Self-Contained CIAaSSESc..ooovieeieeeeeeeeeeeeeeeeeeeeeee et e 257

www.it-ebooks.info

XI

http://www.it-ebooks.info/

xi(/ Beginning Programming with C++ For Dummies

Chapter 22: Structured Play: Making Classes Do Things.......... 259
Activating Our ODJECLESccveiiiiiiieececeeee ettt 259
Creating a Member FUNCHION.........cccccviviiiviieiieiicieccceeeeeeeeee e 261

Defining a member functioncocceevuevvienienienienienieneeieeeeeene 261
Naming class MEMDETScccceeviirviiriiiniienienieteeee e 262
Calling a member function..........ccceeeeeievieiiieiieeccece e 263
Accessing other members from within a member function......... 264
Keeping a Member Function after Class.........ccocceevievieeciencieccieccieeieneene 266
Overloading Member FUNCtionsccoceevuivviiiiiiniennieniecieseeseeseesieene 267

Chapter 23: Pointersto Objectsccoiviinnnn. 269

POINters t0 ODJECES....ccvivieiieiiiieeieeeeeeteeeee ettt 269
ATTOW SYNEAX .eiriviriiiniiiiieniiertere ettt ete et ste st s esae e beesbaeseeaesnees 270
Calling all member functions.........ccccceecevveeniinennenienierieeeeeeene 271

Passing Objects to FUNCHONS..........ccccvveciiiiiieecceeceeee e, 271
Calling a function with an object value............ccocooveviniinnnnennnnne. 271
Calling a function with an object pointercccccceeevevcveecieceennenn. 272
Looking at an €Xamplecccceceeviiiiieniieniieniereeneeseeie e 274

Allocating Objects off the Heapcccovvevievieniiniinieicccieeieceeiee 278

Chapter 24: Do Not Disturb: Protected Members.................. 281

Protecting MemDErS.........cocevviiiiiiiienieniccetctce et 281
Why you need protected members...........ccocevvvevieneenieneeneenenne. 282
Making members protectedcocooovieiiiieciiieieeeee e 282
SO WHAL? et s 285

Who Needs Friends ANYWay?........cccecveeviieieerienienieneeseesieesieessesssessesseens 286

Chapter 25: Getting Objects Off to a Good Start.................. 289
The CONSTIUCLOToueiiiiiieieieeeeee ettt s 289

Limitations on cOnStruCtors.........cccooeverenieenienienineneneeeseneeene 291
Can [see an example?ccoccovvierienienenneeneeneeeesie e sre e sae e 292
Constructing data membEers..........cooceevuerveeniienenrieniieeie et 294

DESTIUCLOTS ...ttt ettt r e st 297
Looking at an exXampleccccoceriiiienieniienieeeeeeeeeeeeeee e 297
Destructing data memberscccceevveeieiienieneeceeeeeee e 300

Chapter 26: Making Constructive Arguments.................... 303

Constructors with Argumentsccccceeeeviiecieecieeieeieeee et 303

Looking at an €Xamplecccceceeviiiiieniieniienieseeneeseeie e 304
Overloading the COnStruCtor.........coccveviirieeiiiiiiinieeieeeeteseeseeee e 307
The Default default Constructor...........coccoevivirienenininineccccneneene 312
Constructing Data MEemMDETSccvevievieeciieciieiecieeeeee et 313
Initializing data members with the default constructor............... 314
Initializing data members with a different constructor................ 315
Looking at an €Xamplecccceccieviiiiieniienieneeneeseeseeie e 318
New With C++ 2009cooiiiiiiieieeee et 321

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 27: Coping with the Copy Constructor................... 323
Copying an ODJECTcc.eeciiiieeiecieeeceeeete ettt s sae e 323

The default cOpy CONStIUCLONc.cocvevieviiieieeeeeeeeeeeee e 324

Looking at an €Xamplecccevevevierienenineeeeienee e eeee e se s 325

Creating a Copy CONSLIUCLOYcccueeiiiriiiiiiiirienieeiee ettt 327
AVOIAING COPIES ..c.vvitiiiietietietteteete ettt reereereeveebeeaseeanans 330

Part Ul: Advanced Strokescccceeeeeeeeeeeeeeeeeeeeee 333

Chapter 28: InheritingaClasscooivininn. 335
Advantages of Inheritance...........ccoceevieriiiniiniiiniieeeee e 336
Learning the liNG0ccveviiviiiiiiniiiiiieieteeceeeeeee et 337
Implementing Inheritance in C++......ccccevieiieniecicceeeeeee e 337
Looking at an exampleccccocerviiriiinienienieeeeeeeeeeeeeeeeenn 338

Having a HAS_A RelationShip........ccecueeiiiienieniececeeecieceeeeeeeeeeeene 342
Chapter 29: Are Virtual FunctionsforReal? 343
Overriding Member FUNCHIONS.........cccooieviieciieiieiecieeeeeeceeeee e 343
Early Dindingccoceeieiieniiieeecie ettt 344
AMDIGUOUS CASEcoeiiiiiiieiieieeit ettt 346

Enter late binding.........ccoceeveeveeiiniiniiinieieeeeeeee e 348

When Is VIrtual NOt?cccoeciiiiieiieieeeeee et 351
Virtual Considerations..........c.ccecerirerieieneneeee et 352
Chapter 30: Overloading Assignment Operators 355
Overloading an OPerator.........cccceeeeierierienineneeteeiesie ettt 355
Overloading the Assignment Operator Is Criticalccccceevvereeeeennenns 356
Looking at an EXample............cccocuveieieiinininececeeeeee e 358
Writing Your Own (OF NO)....cceevievieriieniiinienieteeencesieeie e ste e s 361
Chapter 31: Performing Streaming 1/0 363
How Stream I/O WOTKS......ccovviiiiiiiiieeeeecceee et et 363
Stream INPUt/OULPULccveeiiieiiciececececeeee e 365
Creating an input ODJECtcceeviirierieieeeeeeeeee e 365

Creating an output Object........ccoceevieierinirieeeeeeeee e 366

OPEN MOAES.......cciieeiieiieieeieeeeeteeee st eeteesteesreesteesaeesaeessesssessessaesseens 367

What is binary mode?...........ccoceviviiirviieiiinieciecieseeseese e 368

Hey, file, what state are you in?ccccoevvevienieneenencenienieeeeeene 369

Other Member Functions of the fstream Classes........ccccocevviervieneenennne 373
Reading and writing streams directlyccocoveeveniinninniennenen. 375
Controlling formatcccceeerieiriiesierereeeee e 378

What’s up with endl?cccoevieiiiiiiieeeeeceeeeee e 380
Manipulating Manipulatorscccoceeviereeiieiieiecieeeeee et 380
Using the stringstream ClasSes.......cccevierierieneenieniieieeieeieeeeeeeseesieenne 382

www.it-ebooks.info

xv

http://www.it-ebooks.info/

X(/i Beginning Programming with C++ For Dummies

Chapter 32: 1 Take Exception! ...t 387
The Exception MeCchaniSmcccceecuerienieniieniesieesieeseeie e seesieenes 387
Examining the exception mechanism in detailccccueeueennenn. 390

Special considerations for throwingcceccevceevervircinvienceennen. 391

Creating a Custom Exception Classccccevveriiirnieniieniieniieneeneenceneene 392
Restrictions on exception classesccccceevieeccieenieeccieeecieeeeenne 395

Part Ull: The Part of Tens........cccceceeeeeeecceeeseesaeeeseeees 397

Chapter 33: Ten Waysto AvoidBugs 399
Enable All Warnings and Error Messages.........ccccuvvevvercienvienienieeneeneenne 399
Adopt a Clear and Consistent Coding Styleccoceeverviervierviersienieennnn. 400
Comment the Code While You Write It.......ccoceveieieniinenieieeeeeee, 401
Single-Step Every Path in the Debugger at Least Once...........ccccceeuennene 401
Limit the VISIDIIITY ..ovecverieciieiecececeeeseeeeeeee et 402
Keep Track of Heap MemoOTy........cccocvevienieeiieiiinieeieeieeee st seeseeseeenee 402
Zero Out Pointers after Deleting What They Point To.........cccccecveeuennee. 403
Use Exceptions to Handle Errors...........cccocveeeiieiiieciiieie e, 403
Declare Destructors Virtualccceceevienienienennienninenieneeseeeeeseesieee 403
Provide a Copy Constructor and Overloaded Assignment Operator ... 404

Chapter 34: Ten Features Not Covered in This Book.............. 405
The goto CommMANd.........cccecveieriiririeieieereeeet ettt 405
The Ternary OPEerator........cccicceecieerieniienienieseesieesieesreeaeesaeseesraeseesseenes 406
BINAry LOZIC ..coovieiiiiieeeeceeeeteeteetest ettt st 407
Enumerated TYPESccceeveerieriiiiiiiieniestesitestesieesieesteesteetesteseeseesaeesaeenes 407
NAMESPACESevieeerieeiieeiieeereecte e et e eteeetee e tee e reesseessseesssaeesseessseessseesnsens 407
Pure Virtual FUNCIONSccc.ooiiiiiiiiiiiiieeeeeeteeeeeeee 408
The String Classccceceeirieieierieeeee ettt sttt s 408
Multiple INheritancCe.........ccoeieeieiiieiieieeeeee e 409
Templates and the Standard Template Library.........cccccceevveecvenvienceenennns 409
The 2009 C++ Standardcccceeeereeeeienienenineneeieeneeseeeeeee e seesiene 410

Appendix: About the CD..............uuuuuueeeeeeeeeeeeeeaeaaaees 11

JOACK c.neenneneeeeeeeeeaeaeaeeeeeeeeaaaeeeasannssesessaaaassnnnnseeeeeaees 515

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Welcome to Beginning Programming with C++ For Dummies. This book is
intended for the reader who wants to learn to program.

Somehow over the years, programming has become associated with math-
ematics and logic calculus and other complicated things. I never quite
understood that. Programming is a skill like writing advertising or drawing
or photography. It does require the ability to think a problem through, but
I've known some really good programmers who had zero math skills. Some
people are naturally good at it and pick it up quickly, others not so good
and not so quick. Nevertheless, anyone with enough patience and “stick-to-
itiveness” can learn to program a computer. Even me.

About Beginning Programming
with C++ For Dummies

Learning to program necessarily means learning a programming language.
This book is based upon the C++ programming language. A Windows ver-
sion of the suggested compiler is included on the CD-ROM accompanying
this book. Macintosh and Linux versions are available for download at www .
codeblocks.org. (Don’t worry: I include step-by-step instructions for how
to install the package and build your first program in the book.)

The goal of this book is to teach you the basics of programming in C++, not to
inundate you with every detail of the C++ programming language. At the end
of this book, you will be able to write a reasonably sophisticated program in
C++. You will also be in a position to quickly grasp a number of other similar
languages, such as Java and C#.NET.

In this book, you will discover what a program is, how it works, plus how to
do the following:

v+~ Install the CodeBlocks C++ compiler and use it to build a program
1 Create and evaluate expressions

v Direct the flow of control through your program

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Programming with C++ For Dummies

v Create data structures that better model the real world
v Define and use C++ pointers

v Manipulate character strings to generate the output the way you want to
see it

»* Write to and read from files

Foolish Assumptions

[try to make very few assumptions in this book about the reader, but I do
assume the following:

+* You have a computer. Most readers will have computers that run
Windows; however, the programs in this book run equally well on
Windows, Macintosh, Linux, and Unix. In fact, since C++ is a standard-
ized language, these programs should run on any computer that has a
C++ compiler.

+* You know the basics of how to use your computer. For example, |
assume that you know how to run a program, copy a file, create a folder,
and so on.

+* You know how to navigate through menus. I include lots of instructions
like “Click on File and then Open.” If you can follow that instruction, then
you’re good to go.

+* You are new to programming. | don’t assume that you know anything
about programming. Heck, I don’t even assume that you know what pro-
gramming is.

Conventions Used in This Book

To help you navigate this book as efficiently as possible, I use a few
conventions:

v C++ terms are in monofont typeface, 1ike this.

1 New terms are emphasized with italics (and defined).

v Numbered steps that you need to follow and characters you need to
type are set in bold.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 3

What Vou Don’t Have to Read

[encourage you to read one part of the book; then put the book away and
play for a while before moving to the next part. The book is organized so that
by the end of each part, you have mastered enough new material to go out
and write programs.

I'd like to add the following advice:

v If you already know what programming is but nothing about C++, you
can skip Chapter 1.

v [recommend that you use the CodeBlocks compiler that comes with the
book, even if you want to use a different C++ compiler after you finish
the book. However, if you insist and don’t want to use CodeBlocks, you
can skip Chapter 2.

v Skim through Chapter 3 if you've already done a little computer
programming.

v~ Start concentrating at Chapter 4, even if you have experience with other
languages such as BASIC.

v You can stop reading after Chapter 20 if you're starting to feel saturated.
Chapter 21 opens up the new topic of object-oriented programming —
you don’t want to take that on until you feel really comfortable with
what you’ve learned so far.

»* You can skip any of the TechnicalStuff icons.

How This Book Is Organized

Beginning Programming with C++ For Dummies is split into seven parts. You
don’t have to read it sequentially, and you don’t even have to read all the
sections in any particular chapter. You can use the Table of Contents and the
Index to find the information you need and quickly get your answer. In this
section, I briefly describe what you'’ll find in each part.

Part I: Let’s Get Started

This part describes what programs are and how they work. Using a fictitious
tire-changing computer, I take you through several algorithms for removing
a tire from a car to give you a feel for how programs work. You'll also get
CodeBlocks up and running on your computer before leaving this part.

www.it-ebooks.info

http://www.it-ebooks.info/

4

Beginning Programming with C++ For Dummies

Part II: Writing a Program:
Decisions, Decisions

This part introduces you to the basics of programming with C++. You will find
out how to declare integer variables and how to write simple expressions.
You'll even discover how to make decisions within a program, but you won'’t
be much of an expert by the time you finish this part.

Part 11I: Becoming a Functional
Programmer

Here you learn how to direct the flow of control within your programs.
You'll find out how to loop, how to break your code into modules (and why),
and how to build these separate modules back into a single program. At the
end of this part, you'll be able to write real programs that actually solve
problems.

Part [V: Data Structures

This part expands your knowledge of data types. Earlier sections of the book
are limited to integers; in this part, you work with characters, decimals, and
arrays; and you even get to define your own types. Finally, this is the part
where you master the most dreaded topic, the C++ pointer.

Part U: Object-Oriented Programming

This is where you expand your knowledge into object-oriented techniques,
the stuff that differentiates C++ from its predecessors, most notably C. (Don’t
worry if you don’t know what object-oriented programming is — you aren’t
supposed to yet.) You'll want to be comfortable with the material in Parts I
through IV before jumping into this part, but you’ll be a much stronger pro-
grammer by the time you finish it.

Part VI: Advanced Strokes

This is a collection of topics that are important but that didn’t fit in the ear-
lier parts. For example, here’s where I discuss how to create, read to, and
write from files.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Part VII: The Part of Tens

This part includes lists of what to do (and what not to do) when program-
ming to avoid creating bugs needlessly. In addition, this part includes some
advice about what topics to study next, should you decide to expand your
knowledge of C++.

The CD-ROM Appendix

This part describes what'’s on the enclosed CD-ROM and how to install it.

Icons Used in This Book

M

What's a Dummies book without icons pointing you in the direction of really
great information that’s sure to help you along your way? In this section, |
briefly describe each icon I use in this book.

The Tip icon points out helpful information that is likely to make your job
easier.

This icon marks a generally interesting and useful fact — something that you
might want to remember for later use. [also use this icon to remind you of
some fact that you may have skipped over in an earlier chapter.

The Warning icon highlights lurking danger. With this icon, I'm telling you to
pay attention and proceed with caution.

When you see this icon, you know that there’s techie stuff nearby. If you're not
feeling very techie, you can skip this info.

This icon denotes the programs that are included on this book’s CD-ROM.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Beginning Programming with C++ For Dummies

Where to Go from Here

You can find a set of errata and Frequently Asked Questions for this and all
my books at www. stephendavis.com. You will also find a link to my e-mail
address there. Feel free to send me your questions and comments (that’s
how I learn). It’s through reader input that these books can improve.

Now you've stalled long enough, it’s time to turn to Chapter 1 and start dis-
covering how to program!

www.it-ebooks.info

http://www.it-ebooks.info/

Part|
Let's Get Started

The 5th Wave By Rich Tennant
- ERCENNANT

“We’re outsourcing everything but our core
competency. Once we {ind out what that is,
we’ll begin the outsourcing process.”

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

ou will learn what it means to program a computer.

You will also get your first taste of programming — I
take you through the steps to enter, build, and execute
your first program. It will all be a bit mysterious in this
part, but things will clear up soon, | promise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1
What Is a Program?

In This Chapter
Understanding programs
Writing your first “program”
Looking at computer languages

n this chapter, you will learn what a program is and what it means to write

a program. You'll practice on a Human Computer. You'll then see some
program snippets written for a real computer. Finally, you'll see your first
code snippet written in C++.

Up until now all of the programs running on your computer were written by
someone else. Very soon now, that won't be true anymore. You will be join-
ing the ranks of the few, the proud: the programmers.

How Does My Son Differ

from a Computer?

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s told —
nothing more and nothing less.

In this respect, a computer is almost the exact opposite of a human: humans
respond intuitively. When [was learning a second language, I learned that it
wasn’t enough to understand what was being said — it’s just as important
and considerably more difficult to understand what was left unsaid. This is
information that the speaker shares with the listener through common expe-
rience or education — things that don’t need to be said.

www.it-ebooks.info

http://www.it-ebooks.info/

10

Part I: Let's Get Started

For example, [say things to my son like, “Wash the dishes” (for all the good it
does me). This seems like clear enough instructions, but the vast majority of
the information contained in that sentence is implied and unspoken.

Let’s assume that my son knows what dishes are and that dirty dishes are nor-
mally in the sink. But what about knives and forks? After all, I only said dishes,
I didn’t say anything about eating utensils, and don’t even get me started on
glassware. And did I mean wash them manually, or is it okay to load them up
into the dishwasher to be washed, rinsed, and dried automatically?

But the fact is, “Wash the dishes” is sufficient instruction for my son. He

can decompose that sentence and combine it with information that we both
share, including an extensive working knowledge of dirty dishes, to come up
with a meaningful understanding of what I want him to do — whether he does
it or not is a different story. I would guess that he can perform all the mental
gymnastics necessary to understand that sentence in about the same amount
of time that it takes me to say it — about 1 to 2 seconds.

A computer can’t make heads or tails out of something as vague as “wash the
dishes.” You have to tell the computer exactly what to do with each different
type of dish, how to wash a fork, versus a spoon, versus a cup. When does
the program stop washing a dish (that is, how does it know when a dish is
clean)? When does it stop washing (that is, how does it know when it’s
finished)?

My son has gobs of memory — it isn’t clear exactly how much memory a
normal human has, but it’s boat loads. Unfortunately, human memory is
fuzzy. For example, witnesses to crimes are notoriously bad at recalling
details even a short time after the event. Two witnesses to the same event
often disagree radically on what transpired.

Computers also have gobs of memory, and that’s very good. Once stored, a
computer can retrieve a fact as often as you like without change. As expen-
sive as memory was back in the early 1980s, the original IBM PC had only
16K (that’s 16 thousand bytes). This could be expanded to a whopping 64K.
Compare this with the 1GB to 3GB of main storage available in most comput-
ers today (1GB is one billion bytes).

As expensive as memory was, however, the IBM PC included extra memory
chips and decoding hardware to detect a memory failure. If a memory chip
went bad, this circuitry was sure to find it and report it before the program
went haywire. This so-called Parity Memory was no longer offered after only
a few years, and as far as | know, it is unavailable today except in specific
applications where extreme reliability is required — because the memory
boards almost never fail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: What Is a Program?

On the other hand, humans are very good at certain types of processing that
computers do poorly, if at all. For example, humans are very good at pulling
the meaning out of a sentence garbled by large amounts of background noise.
By contrast, digital cell phones have the infuriating habit of just going silent
whenever the noise level gets above a built-in threshold.

Programming a “Human Computer”

Before [dive into showing you how to write programs for computer con-
sumption, I start by showing you a program to guide human behavior so

that you can better see what you're up against. Writing a program to guide a
human is much easier than writing programs for computer hardware because
we have a lot of familiarity with and understanding of humans and how they
work (I assume). We also share a common human language to start with. But
to make things fair, assume that the human computer has been instructed

to be particularly literal — so the program will have to be very specific. Our
guinea pig computer intends to take each instruction quite literally.

The problem I have chosen is to instruct our human computer in the chang-
ing of a flat tire.

The algorithm

The instructions for changing a flat tire are straightforward and go something
like the following:

. Raise the car.

. Remove the lug nuts that affix the faulty tire to the car.

. Remove the tire.

Mount the new tire.

. Install the lug nuts.

o U A W N~

. Lower the car.
(I know that technically the lug nuts hold the wheel onto the car and not the

tire, but that distinction isn’t important here. [use the terms “wheel” and
“tire” synonymously in this discussion.)

www.it-ebooks.info

11

http://www.it-ebooks.info/

12

Part I: Let's Get Started

As detailed as these instructions might seem to be, this is not a program.
This is called an algorithm. An algorithm is a description of the steps to be
performed, usually at a high level of abstraction. An algorithm is detailed but
general. [could use this algorithm to repair any of the flat tires that [have
experienced or ever will experience. But an algorithm does not contain suf-
ficient detail for even our intentionally obtuse human computer to perform
the task.

The Tire Changing Language

Before we can write a program, we need a language that we can all agree on.
For the remainder of this book, that language will be C++, but I use the newly
invented TCL (Tire Changing Language) for this example. I have specifically
adapted TCL to the problem of changing tires.

TCL includes a few nouns common in the tire-changing world:

V¥ car

V tire

» nut

V¥ jack

v toolbox
V¥ spare tire

» wrench
TCL also includes the following verbs:

v grab
¥ move
” release
V¥ turn

Finally, the TCL-executing processor will need the ability to count and to
make simple decisions.

This is all that the tire-changing robot understands. Any other command

that’s not part of Tire Changing Language generates a blank stare of incom-
prehension from the human tire-changing processor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: What Is a Program? ’3

The program

Now it’s time to convert the algorithm, written in everyday English, into a
program written in Tire Changing Language. Take the phrase, “Remove the
lug nuts.” Actually, quite a bit is left unstated in that sentence. The word
“remove” is not in the processor’s vocabulary. In addition, no mention is
made of the wrench at all.

The following steps implement the phrase “Remove a lug nut” using only the
verbs and nouns contained in Tire Changing Language:

1. Grab wrench.

2. Move wrench to lug nut.

3. Turn wrench counterclockwise five times.
4. Move wrench to toolbox.

5. Release wrench.

[didn’t explain the syntax of Tire Changing Language. For example, the

fact that every command starts with a single verb or that the verb “grab”
requires a single noun as its object and that “turn” requires a noun, a direction,
and a count of the number of turns to make. Even so, the program snippet
should be easy enough to read (remember that this is not a book about Tire
Changing Language).

You can skate by on Tire Changing Language, but you will have to learn the
grammar of each C++ command.

The program begins at Step 1 and continues through each step in turn until
reaching Step 5. In programming terminology, we say that the program flows
from Step 1 through Step 5. Of course, the program’s not going anywhere —
the processor is doing all the work, but the term “program flow” is a common
convention.

Even a cursory examination of this program reveals a problem: What if there
is no lug nut? I suppose it’s harmless to spin the wrench around a bolt with
no nut on it, but doing so wastes time and isn’'t my idea of a good solution.
The Tire Changing Language needs a branching capability that allows the
program to take one path or another depending upon external conditions. We
need an IF statement like the following:

1. Grab wrench.

2. If lug nut is present

www.it-ebooks.info

http://www.it-ebooks.info/

14

Part I: Let's Get Started

3

£3

Move wrench to lug nut.

-}

3
4
5. Turn wrench counterclockwise five times.
6
7. Move wrench to toolbox.

8

. Release wrench.

The program starts with Step 1 just as before and grabs a wrench. In the
second step, however, before the program waves the wrench uselessly
around an empty bolt, it checks to see if a lug nut is present. If so, flow con-
tinues on with Steps 3, 4, and 5 as before. If not, however, program flow skips
these unnecessary steps and goes straight on to Step 7 to return the wrench
to the toolbox.

In computerese, you say that the program executes the logical expression
“is lug nut present?” This expression returns either a true (yes, the lug nut is
present) or a false (no, there is no lug nut there).

What I call steps, a programming language would normally call a statement.
An expression is a type of statement that returns a value, such as 1 + 2 is an
expression. A logical expression is an expression that returns a true or false
value, such as “is the author of this book handsome?” is true.

The braces in Tire Changing Language are necessary to tell the program which
steps are to be skipped if the condition is not true. Steps 4 and 5 are executed
only if the condition is true.

I realize that there’s no need to grab a wrench if there’s no lug to remove, but
work with me here.

This improved program still has a problem: How do you know that 5 turns
of the wrench will be sufficient to remove the lug nut? It most certainly will
not be for most of the tires with which I am familiar. You could increase the
number of turns to something that seems likely to be more than enough, say
25 turns. If the lug nut comes loose after the twentieth turn, for example, the
wrench will turn an extra 5 times. This is a harmless but wasteful solution.

A better approach is to add some type of “loop and test” statement to the
Tire Changing Language:

1. Grab wrench.

2. If lug nut is present

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: What Is a Program?

3. {

4. Move wrench to lug nut.

5. While (lug nut attached to car)

6. {

7. Turn wrench counterclockwise one turn.
8.]

9.}

10. Move wrench to toolbox.

11. Release wrench.

Here the program flows from Step 1 through Step 4 just as before. In Step 5,
however, the processor must make a decision: Is the lug nut attached? On
the first pass, we will assume that the answer is yes so that the processor
will execute Step 7 and turn the wrench counterclockwise one turn. At this
point, the program returns to Step 5 and repeats the test. If the lug nut is
still attached, the processor repeats Step 7 before returning to Step 5 again.
Eventually, the lug nut will come loose and the condition in Step 5 will return
a false. At this point, control within the program will pass on to Step 9, and
the program will continue as before.

This solution is superior to its predecessor: It makes no assumptions about
the number of turns required to remove a lug nut. It is not wasteful by requir-
ing the processor to turn a lug nut that is no longer attached, nor does it fail
because the lug nut is only half removed.

As nice as this solution is, however, it still has a problem: It removes only
a single lug nut. Most medium-sized cars have five nuts on each wheel. We
could repeat Steps 2 through 9 five times, once for each lug nut. However,
this doesn’t work very well either. Most compact cars have only four lug
nuts, and large pickups have up to eight.

The following program expands our grammar to include the ability to loop
across lug nuts. This program works irrespective of the number of lug nuts
on the wheel:

1. Grab wrench.

2. For each lug bolt on wheel

3. {
4. If lug nut is present
5

www.it-ebooks.info

15

http://www.it-ebooks.info/

10

Part I: Let's Get Started

6. Move wrench to lug nut.

7. While (lug nut attached to car)

8. {

9. Turn wrench counterclockwise one turn.
10. }
1. }
12.}

13. Move wrench to toolbox.

14. Release wrench.

This program begins just as before with the grabbing of a wrench from the
toolbox. Beginning with Step 2, however, the program loops through Step 12
for each lug nut bolt on the wheel.

Notice how Steps 7 through 10 are still repeated for each wheel. This is
known as a nested loop. Steps 7 through 10 are called the inner loop, while
Steps 2 through 12 are the outer loop.

The complete program consists of the addition of similar implementations of
each of the steps in the algorithm.

Computer processors

Removing the wheel from a car seems like such a simple task, and yet it takes
11 instructions in a language designed specifically for tire changing just to
get the lug nuts off. Once completed, this program is likely to include over 60
or 70 steps with numerous loops. Even more if you add in logic to check for
error conditions like stripped or missing lug nuts.

Think of how many instructions have to be executed just to do something as
mundane as move a window about on the display screen (remember that a
typical screen may have 1280 x 1024 or a little over a million pixels or more
displayed). Fortunately, though stupid, a computer processor is very fast.
For example, the processor that’s in your PC can likely execute several billion
instructions per second. The instructions in your generic processor don’t do
very much — it takes several instructions just to move one pixel — but when
you can rip through a billion or so at a time, scrolling a mere million pixels
becomes child’s play.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: What Is a Program? ’ 7

The computer will not do anything that it hasn’t already been programmed
for. The creation of a Tire Changing Language was not enough to replace

my flat tire — someone had to write the program instructions to map out
step by step what the computer will do. And writing a real-world program
designed to handle all of the special conditions that can arise is not an easy
task. Writing an industrial-strength program is probably the most challenging
enterprise you can undertake.

So the question becomes: “Why bother?” Because once the computer is prop-
erly programmed, it can perform the required function repeatedly, tirelessly,
and usually at a greater rate than is possible under human control.

Computer Languages

The Tire Changing Language isn’t a real computer language, of course. Real
computers don’t have machine instructions like “grab” or “turn.” Worse yet,
computers “think” using a series of ones and zeros. Each internal command
is nothing more than a sequence of binary numbers. Real computers have
instructions like 01011101, which might add 1 to a number contained in a spe-
cial purpose register. As difficult as programming in TCL might be, program-
ming by writing long strings of numbers is even harder.

The native language of the computer is known as machine language and is usu-
ally represented as a sequence of numbers written either in binary (base 2)

or hexadecimal (base 16). The following represents the first 64 bytes from the
Conversion program in Chapter 3.

<main+0>: 01010101 10001001 11100101 10000011 11100100 11110000 10000011 11101100
<main+8>: 00100000 11101000 00011010 01000000 00000000 00000000 11000111 01000100
<main+16>:00100100 00000100 00100100 01110000 01000111 00000000 11000111 00000100
<main+24>:00100100 10000000 01011111 01000111 00000000 11101000 10100110 10001100
<main+32>:00000110 00000000 10001101 01000100 00100100 00010100 10001001 01000100

Fortunately, no one writes programs in machine language anymore. Very
early on, someone figured out that it is much easier for a human to under-
stand ADD 1,REGI as “add 1 to the value contained in register 1,” rather than
01011101. In the “post-machine language era,” the programmer wrote her
programs in this so-called assembly language and then submitted it to a pro-
gram called an assembler that converted each of these instructions into their
machine-language equivalent.

www.it-ebooks.info

http://www.it-ebooks.info/

18

Part I: Let's Get Started

é’ﬁﬂ“ﬁ

The programs that people write are known as source code because they are
the source of all evil. The ones and zeros that the computer actually executes
are called object code because they are the object of so much frustration.

The following represents the first few assembler instructions from the
Conversion program when compiled to run on an Intel processor executing
Windows. This is the same information previously shown in binary form.

<main>: push %ebp

<main+l>: mov %esp, ¥ebp

<main+3>: and SOXfEffffff0, %esp
<main+6>: sub $0x20, $esp

<main+9>: call 0x40530c <__main>
<main+14>: movl $0x477024, 0x4 (%esp)
<main+22>: movl $0x475£80, (%esp)
<main+29>: call 0x469fac <operator<<>
<main+34>: lea 0x14 (%esp) , %eax
<main+38>: mov %eax, 0x4 (%esp)

This is still not very intelligible, but it’s clearly a lot better than just a bunch
of ones and zeros. Don’t worry — you won't have to write any assembly lan-
guage code in this book either.

The computer does not actually ever execute the assembly language instruc-
tions. It executes the machine instructions that result from converting the
assembly instructions.

High level languages

Assembly language might be easier to remember, but there’s still a lot of dis-
tance between an algorithm like the tire-changing algorithm and a sequence
of MOVEs and ADDs. In the 1950s, people started devising progressively more
expressive languages that could be automatically converted into machine
language by a program called a compiler. These were called high level lan-
guages because they were written at a higher level of abstraction than assem-
bly language.

One of the first of these languages was COBOL (Common Business Oriented
Language). The idea behind COBOL was to allow the programmer to write
commands that were as much like English sentences as possible. Suddenly
programmers were writing sentences like the following to convert tempera-
ture from Celsius to Fahrenheit (believe it or not, this is exactly what the
machine and assembly language snippets shown earlier do):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: What Is a Program? ’ 9

INPUT CELSIUS_TEMP
SET FAHRENHEIT TEMP TO CELSIUS_TEMP * 9/5 + 32
WRITE FAHRENHEIT TEMP

The first line of this program reads a number from the keyboard or a file
and stores it into the variable CELSTUS_TEMP. The next line multiplies this
number by % and adds 32 to the result to calculate the equivalent tempera-
ture in Fahrenheit. The program stores this result into a variable called
FAHRENHEIT_ TEMP. The last line of the program writes this converted value
to the display.

People continued to create different programming languages, each with its
own strengths and weaknesses. Some languages, like COBOL, were very
wordy but easy to read. Other languages were designed for very specific
areas like database languages or the languages used to create interactive
Web pages. These languages include powerful constructs designed for one
specific problem area.

The C++ language

C++ (pronounced “C plus plus,” by the way) is a symbolically oriented high
level language. C++ started out life as simply C in the 1970s at Bell Labs. A
couple of guys were working on a new idea for an operating system known
as Unix (the predecessor to Linux and Mac OS and still used across industry
and academia today). The original C language created at Bell Labs was modi-
fied slightly and adopted as a worldwide ISO standard in early 1980. C++ was
created as an extension to the basic C language mostly by adding the features
that I discuss in Parts V and VI of this book.When I say that C++ is symbolic,
I mean that it isn’t very wordy, preferring to use symbols rather than long
words like in COBOL. However, C++ is easy to read once you are accustomed
to what all the symbols mean. The same Celsius to Fahrenheit conversion
code shown in COBOL earlier appears as follows in C++:

cin >> celsiusTemp;
fahrenheitTemp = celsiusTemp * 9 / 5 + 32;
cout << fahrenheitTemp;

The first line reads a value into the variable celsiusTemp. The subsequent
calculation converts this Celsius temperature to Fahrenheit like before, and
the third line outputs the result.

C++ has several other advantages compared with other high level languages.

For one, C++ is universal. There is a C++ compiler for almost every computer
in existence.

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 Part I: Let's Get Started

In addition, C++ is efficient. The more things a high level language tries to

do automatically to make your programming job easier, the less efficient the
machine code generated tends to be. That doesn’t make much of a difference
for a small program like most of those in this book, but it can make a big dif-
ference when manipulating large amounts of data, like moving pixels around
on the screen, or when you want blazing real-time performance. It’s not an
accident that Unix and Windows are written in C++ and the Macintosh O/S is
written in a language very similar to C++.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2
Installing Code::Blocks

In This Chapter
Reviewing the compilation process
Installing the Code::Blocks development environment
Testing your installation with a default program
Reviewing the common installation errors

n this chapter, you will review what it takes to create executable pro-
grams from C++ source code that you can run on the Windows, Linux, or
Macintosh computer. You will then install the Code::Blocks integrated devel-
opment environment used in the remainder of the book, and you will build
a default test program to check out your installation. If all is working, by the
time you reach the end of this chapter, you will be ready to start writing and
building C++ programs of your own — with a little help, of course!

Reviewing the Compilation Process

You need two programs to create your own C++ programs. First, you need a
text editor that you can use to enter your C++ instructions. Any editor capa-
ble of generating straight ASCII text letters will work. I have written programs
using the Notepad editor that comes with Windows. However, an editor that
knows something about the syntax of C++ is preferable since it can save you
a lot of typing and sometimes highlight mistakes that you might be making as
you type, in much the same way that a spelling checker highlights misspelled
words in a word processor.

The second program you will need is a compiler that converts your C++
source statements into machine language that the computer can understand
and interpret. This process of converting from source C++ statements to
object machine code is called building. Graphically, the process looks some-
thing like that shown in Figure 2-1.

www.it-ebooks.info

http://www.it-ebooks.info/

22

Part I: Let's Get Started

]
Figure 2-1:
The C++
program
develop-
ment
process.
]

The process of building a program actually has two steps: The C++ compiler
first converts your C++ source code statements into a machine executable
format in a step known as compiling. It then combines the machine instruc-
tions from your program with instructions from a set of libraries that come
standard with C++ in a second step known as linking to create a complete
executable program.

C++ Source
Code Statements
Machine Code

Version

Complete Machine
Executable Program

Most C++ compilers these days come in what is known as an Integrated
Development Environment or IDE. These IDEs include the editor, the com-
piler, and several other useful development programs together in a common
package. Not only does this save you from the need to purchase these pro-
grams separately, but combining them into a single package produces sev-
eral productivity benefits. First, the editor can invoke the compiler quickly
without the need for you to switch back and forth manually. In addition, the
editors in most IDEs provide quick and efficient means for finding and fixing
coding errors.

Some IDEs include visual programming tools that allow the programmer to
draw common windows such as dialog boxes on the display — the IDE gener-
ates the C++ code necessary to display these boxes automatically.

As nice as that sounds, the automatically generated code only displays the
windows. A programmer still has to generate the real code that gets executed
whenever the operator selects buttons within those windows.

Invariably, these visual IDEs are tightly coupled into one or the other operat-
ing system. For example, the popular Visual Studio is strongly tied into the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Installing Code::Blocks 23

.NET environment in Windows. It is not possible to use Visual Studio without
learning the .NET environment and something about Windows along with C++
(or one of the other .NET languages). In addition, the resulting programs only
run in a .NET environment.

In this book, you will use a public domain C++ IDE known as Code::Blocks.
Versions of Code::Blocks exist for Windows, Linux, and MacOS — a version
for Windows is included on the CD-ROM accompanying this book. Versions of
Code::Blocks for Macintosh and Linux are available for free download at www .
codeblocks.org.

You will use Code::Blocks to generate the programs in this book. These
programs are known as Console Applications since they take input from and
display text back to a console window. While this isn’t as sexy as windowed
development, staying with Console Applications will allow you to focus on
C++ and not be distracted by the requirements of a windowed environment.
In addition, using Console Applications will allow the programs in the book to
run the same on all environments that are supported by Code::Blocks.

Installing Code::Blocks

<MECD

Beginning Programming with C++ For Dummies includes a version of Code::Blocks
for Windows on the CD-ROM. This section provides detailed installation
instructions for this version. The steps necessary to download and install
versions of Code::Blocks from www.codeblocks. org will be similar.

1. Insert the enclosed CD-ROM into your computer.
That'’s straightforward enough.

2. Read the End User License Agreement (EULA) and select Accept.

3. Select the Software tab and then select Code::Blocks to install the
Code::Blocks environment.

On some versions of Windows, you may see a message appear that “An
unidentified program wants access to your computer.” Of course, that
unidentified program is the Code::Blocks Setup program.

4. Select Allow.

Setup now unpacks the files it needs to start and run the Code::Blocks
Setup Wizard. This may take about a minute. Once it finishes, the
startup window shown in Figure 2-2 appears.

5. Close any other programs that you may be executing and select Next.

The Setup Wizard displays the generic End User License Agreement
(EULA). There’s nothing much here to get excited about.

www.it-ebooks.info

http://www.it-ebooks.info/

24

Part I: Let’s Get Started
(7 CodeBlocks Setup =TEs
Welcome to the CodeBlocks Setup
Wizard
I This wizard will guie yuu Urough U instalation of
Codellocks.
Figure 2'2: It is recommerded that you close all other applications
bsfore ¢karting Setup. Thic will maks it possible to update
The rebavant cystem Flas withouk having to reboot your
Code:Blocks e
Setup Chek Nexet to conbrae.
Wizard
guides you
through the
installation
process. E@ T
I
6. Select I Agree.
The Setup Wizard then displays a list of the components that you may
choose to install. The defaults are okay, but you may want to also check
the Desktop Shortcut option as shown in Figure 2-3. Doing this provides
an icon on the desktop that you can use to start Code::Blocks without
going through the Program Files menu.
[(57 CodeBlocks Setup (=Sl
Choosge Components
] Clwse which fedures of CudeBlucks you want Luinstall
Figure 2-3:
Checking gﬁ%ﬁtu‘:‘:‘;‘m:‘r&‘ 1w sl and o ieds Uhe components you dont wand W
DGSktop Sefect the Lype of instal: | Custom -
ShOI’tCUt Qr, select the optional = B Default install -
cr e ates an :’;ﬁstwm ents you wish to j |S ::’:(P‘:tl:t (required) - }
icon that [Program Shortuut
[[] Program Shortcut Al Users
you can 'ré DesM?p Sho.ltcut -
use to start Descrition =
Code:Blocks Space raquireds 164.5M8 :
more —
quickly.) el e
|

7. Select Next.

The next window asks you to choose the install location. This window
also tells you how much hard disk space Code::Blocks requires (about
150MB, depending upon the options you've selected) and how much
space is available on your hard drive. If you don’t have enough free disk
space, you'll have to delete some of those YouTube videos you've cap-
tured to make room before you continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Installing Code::Blocks 2 5

Figure 2-4:
The
Installation
Complete
window
signals that
Code:Blocks
hasbeen
successfully
installed.
|

8. The default install location is fine, so once you have enough disk
space, select Install.

At this point, the Code::Blocks Setup Wizard really goes to work. It
extracts umpteen dozen files that it installs in a myriad of subdirectories
too complicated for mere mortals. This process may take several
minutes.

9. When the installation is complete, a dialog box appears asking you
whether you want to run Code::Blocks now. Select No.

If all has gone well so far, the Installation Complete window shown in
Figure 24 appears.

(7 CodeBlocks Setup =8 2
Installation Complete
Sedup was completed sucessully,

Completed
L -

Extract: gpl.7

Outpu folder: CiFrogram riestoodesiocks\inGw ishare

Outpet Folder: C:\Program FilesiCodeBlocks\MnGW

Outpet folder: C:\Program FllesyZodeBiocks

Created unirctaler: C:\Program Files\CodeBlockslurinstal axe

Outpet folder: C:\Users\RandylAppDatalRoamingiMicrosoftiwindows\Start MenulPr..
Create shortout: C\UscrsiRand/\AppDatalRoamingiMicrosoft\Windows\Start Menul. ..
Running Codz::Blocks.

Execute: "C:\Program Files\CodeBlocks\codeblocks. exe”

Completed -

10. Click Next.

Finally, the Completing the Code::Blocks Setup Wizard window appears.
This final step creates the icons necessary to start the application.

11. Click Finish.

You've done it! You've installed Code::Blocks. All that remains now is to test
whether it works, and then you'll be ready to start programming.

Testing the Code::Blocks Installation

In this section, you will build a default program that comes with Code::Blocks.
This program does nothing more than display “Hello, world!” on the display,
but building and running this program successfully will verify that you've
installed Code::Blocks properly.

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 Part I: Let's Get Started

]
Figure 2-5:
The opening
screen of the
Code::Blocks
environ-
ment.
|

1. Start Code::Blocks by double-clicking on the Code::Blocks icon created
on the Desktop or selecting Programs=>Code::Blocks=>Code::Blocks.

This should open a window like the one shown in Figure 2-5.

Across the top of the window are the usual menu options starting with File,
Edit, View, and so on. The window at the upper right, the one that says
“Start here,” is where the source code will go when you get that far. The
window at the lower right is where Code::Blocks displays messages to the
user. Compiler error messages appear in this space. The window on the left
labeled Management is where Code::Blocks keeps track of the files that make
up the programs. It should be empty now since you have yet to create a pro-
gram. The first thing you will need to do is create a project.

H Start here - Code=Blocks svn bulld (E=SlEc =]
EBile fdr View Sexch fProject Build Qebug weSmith Yools Pluging Settings Help

QP e Tl LRy B P ST Q rarae lHme B D
3| =]

[T————————————————
Menagernect x Slart here X v

Projects | Symboks | Resources | ¥ X
ﬁ Code::Blocks ’

O Detault workspace
The open source, cross-platfonn [DE
Metp:/www.codeblocksiorg

LRrep—

A Code:iblocks | (4 Search rosits| Gy muild log | suld nessages |) Gebugger | \) Debugger (Sobaxg) -
f

‘Welkcome 1 Cods.Blocks! defaul

What's a project?

You want Code::Blocks to create only Console Applications, but it can create

a lot of different types of programs. For Windows programmers, Code::Blocks
can create Dynamic Link Libraries (also known simply as DLLs). It can create

Windows applications. It can create both static and dynamically linked librar-
ies for Linux and MacOS.

In addition, Code::Blocks allows the programmer to set different options on
the ways each of these targets is built. I will show you how to adjust a few

of these settings in later chapters. And finally, Code::Blocks remembers how
you have your windows configured for each project. When you return to the
project, Code::Blocks restores the windows to their last configuration to save
you time.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-6:
Select the
Console
Application
from the
many types
of targets
offered.
|

Chapter 2: Installing Code::Blocks

27

Code::Blocks stores the information it needs about the type of program that
you are building, the optional settings, and the window layout in two project
files. The settings are stored in a file with the same name as the program but
carrying the extension . cbp. The window configuration is stored in a file with
the same name but with the extension .1layout.

Creating the project

1. Select File>New=>Projects to open the window shown in Figure 2-6.
This is a list of all of the types of applications that Code::Blocks knows

how to build.

"New from template Ex=)
Projects Cotegory: (<Al categories> ¥ s]
Buid targete — -

Fles V‘) ° @ = ol |
Custom < 2
User tenales || ARMPrOECt AVRProfec Lm:h‘?:?ds m]

4 © ®m [

D applicaion OirectX project Dynamic Link Empty project

ot]

FLTK project GLFWproject GLUT project GTE+ project

a g W

TIP: Try right-clicking an item

GLEW GLUT

&

1. Selact awizard type first onthe left
2, Select & spacitic wizard trom the main window (fiker by cabegories i nesdsd)
3. Press Go

.

View as
© Lage urs
O L

Fortunately, you will be concentrating on just one, the Console

Application.

2. Select Console Application and select Go.

Code::Blocks responds with the display shown in Figure 2-7. Here
Code::Blocks is offering you the option to create either a C or a C++

program.
3. Select C++ and click Next.

Code::Blocks opens a dialog box where you will enter the name and
optional subfolder for your project. First, click on the little ... button to
create a folder to hold your Projects, navigate to the root of your work-
ing disk (on a Windows machine, it'll be either C or D, most likely C).
Select the Make New Folder button at the bottom left of the window.
Name the new folder Beginning_Programming-CPP.

www.it-ebooks.info

http://www.it-ebooks.info/

28

Part I: Let's Get Started

]
Figure 2-7:
Select C++

as your
language of
choice.

]

\NG/
&

Figure 2-8:
Create

the folder
Begin
ning_
Program
ming-
CPP into
which you
will collect
your C++
projects.
]

Cunsule application

E (:onsole Pleast sebel U lanyuoe you wanl Lo use,

Plase make a selechon

[¢

|

4. Click OK when your display looks like the one shown in Figure 2-8.

The folder that you create to hold your project must not contain any spaces
in the name. In addition, none of the folders in the path should contain
spaces. That automatically eliminates placing your projects on the Desktop
since the path to the Desktop contains spaces. You should also avoid
spaces in the name of the Project. You can use underscores to separate
words instead. The Code::Blocks compiler gets confused with spaces in the
filenames and generates obscure and largely meaningless errors.

Drowse For Folder

Flease select the folder Lo weale your projeclin

>

4% Computer
« &, 5Qo0as13v03 ()
L. UnneIDIemp
Ji TPSON
|, GPX_Editor10154
gsak
.. MagellanDrivers

|| teginring_Progranming-CPP -

Tolder: Neww Folder

L |

[ke N Pl : oK][Canced]

Now enter the name of the Project as HelloWorld. Notice that Code::Blocks
automatically creates a subfolder of the same name to contain the files
that make up the project.

5. Click Next when your display looks like Figure 2-9.

www.it-ebooks.info

http://www.it-ebooks.info/

—
Figure 2-9:
Call your
first project
HelloWorld.

A\

Figure 2-10:
Select

Finish on the
final page

to complete
the cre-
ation of the
HelloWorld
Project.
|

Chapter 2: Installing Code::Blocks 29

Cunsule application

Please sedet U fulder wiwre you wart Ui new prujecd
ﬂ Console [Einhsmpshpdiniy

Project titie:
HeloWord

Folder tn reate project in:
Ci\Beginning_Programming CFP

Project filename:
HeloWord.bp

Resuking flename:
C:\Beginning_Programming-CFP\Hellword\-elloword.c

<Back]l el > J Canel

6. When Code::Blocks asks how you want your subfolders set up, you
can accept the default configuration, as shown in Figure 2-10. Select
Finish.

You can select the Back button to back up to a previous menu in the preced-
ing steps if you screw something up. However, you may have to reenter any
data you entered when you go forward again. Once you select Finish, you can
no longer return and change your selections. If you screw up and want to redo
the project, you will first need to remove the Project: Right-click on HelloWorld
in the Management window and select Close Project. Now you can delete the
folder Beginning Programming-CPP\HelloWorld and start over again.

Cunsule application
Pleeast sedecl U compiler L use and which confligur ations
g Console yuu wank enabled i your project,
Conpiler:
G GCC Compiler L.
V| Create “Debug” configuration: Debasy
“Debug” options

Output dir.; biniOebug}
Objects output dir.: obj\Lebug)

"] Create "Reloase” configuration: Releass
“Release” options
Output dir.: hinigslasce]

Ohjerts cutpuor dir.: obf\Release}

<geck [Fwsh | [Camel

www.it-ebooks.info

http://www.it-ebooks.info/

30 Part I: Let’s Get Started

Testing your default project

Code::Blocks creates a Console Application project and even populates it
with a working program when you select Finish on the Project Wizard. To see
that program, click on the plus (+) sign next to Sources in the Management
window on the left side of the display. The drop-down list reveals one file,
main.cpp. Double-click on main. cpp to display the following simple pro-
gram in the source code entry window on the right:

#include <iostream>
using namespace std;

int main()

{
cout << "Hello world!" << endl;
return 0;

}

I'll skip over what some of this stuff means for now, but the crux of the pro-
gram starts after the open brace following main (). This is where execution
begins. The line

cout << "Hello world!" << endl;

says output the line “Hello, world!” to the cout, which by default is the com-
mand line. The next line

return 0;

causes control to return to the operating system, which effectively termi-
nates the program.

1. Select Build=>Build to build the C++ source statements into an execut-
able machine language program.

(You can press Ctrl+F9 or click the Build icon if you prefer.) Inmediately,
you should see the Build Log tab appear in the lower-right screen fol-
lowed by a series of lengthy commands, as shown in Figure 2-11. This

is Code::Blocks telling the C++ compiler how to build the test program
using the settings stored in the project file. The details aren’t important.
What is important, however, is that the final two lines of the Build Log
window should be

Process terminated with status 0 (0 minutes, 1 seconds)
0 errors, 0 warnings

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Installing Code::Blocks 3 ’

The terminated status of 0 means that the build process worked prop-
erly. The “0 errors, 0 warnings” means that the program compiled with-
out errors or warnings. (The build time of 1 second is not important.)

M5 main.cpp [HelloWord] - Code::Blocks svn bulld =xicn -
Eile Edr View Seych Project Buld Detug wxSmith Tools Pugins Settngs Help
RPNl R QP QL@ aurmm (e B
i -
Managereet | [wain.cop x v
Projects | Symbok | Recourcss | v 1 o1y ress
20 Detault workspace 2
= By HelloWord 3 wsing namespice stid;
I 288 Seurces .
. mainzpp €
Flg.ur.e 2_11: ; ;:::“ Malle world!® (¢ endl;
Building the 3
default pro-
gram should
resultina
working)« — ! “
program B coitocss |) Sowen s | € owdiog | & Oukimessages| € oubuppor - |
wrth no gh. exe -stdec 0z -H:;Ic:‘lrxf-p!lun:' ~g ~Waain -"";::T.;;,;:.:,;vg;: f;.-u .
errors AR a0 B AL OO e A NCOARIARTS
and no Bovnses Loadriotat wlth séabisso ch aiuiias; 1 ovsaied -
warnings.
CAgegmning_Pragramming WINDOWS-1252 Line 1, Column 1 Ingen Readwe defaul
—
@\NG! s . .
N S If you don’t get a status of 0 with 0 errors and 0 warnings, then some-

thing is wrong with your installation or with the project. The most
common sources of error are

¢ You already had a gcc compiler installed on your computer before
you installed Code::Blocks. Code::Blocks uses a special version of
the GNU gcc compiler, but it will use any other gcc compiler that
you may already have installed on your computer. Your safest bet
is to uninstall Code::Blocks, uninstall your other gcc compiler, and
reinstall Code::Blocks from scratch.

¢ You built your project in a directory that contains a space in the
name; for example, you built your project on the Desktop. Be sure
to build your project in the folder Beginning Programming-CPP in
the root of your user disk (most likely C on a Windows machine).

¢ You built a project directly from the enclosed CD-ROM that came
with the book. (This doesn’t apply to the steps here, but it is a
common source of error anyway. You can’t build your program on
a read-only storage medium like a CD-ROM. You will have to copy
the files from the CD-ROM to the hard drive first.)

www.it-ebooks.info

http://www.it-ebooks.info/

32

Part I: Let’s Get Started

|
Figure 2-12:
The default
program
displays
“Hello,
world!” and
waits for
you to press
a key.
|

2. Select Build=>Run (Ctrl+F10) to execute the program.

Immediately a window should pop open with the message “Hello, world!”
followed by the return code of zero and the message “Press any key to
continue,” as shown in Figure 2-12.

3. Press Enter.

The window will disappear and control returns to the Code::Blocks text
editor.

= C:\Beginning_Programming-CPP\HelloWord\bin\Debug'HelloWord.exe
Hello world?

Process returned @ (Bx8)> execution tine * 0.870 <
Press any key Lo continue.

If you were able to see the “Hello, world!” message by executing the program,
then congratulations! You've installed your development environment and
built and executed your first C++ program successfully. If you did not, then
delete the Beginning_Programming_CPP folder, uninstall Code::Blocks,
and try again, carefully comparing your display to the figures shown in this
chapter. If you are still having problems, refer to www. stephendavis. com
for pointers as to what might be wrong, as well as a link to my e-mail where
you can send me questions and comments. I cannot do your programming
homework for you, but I can answer questions to get you started.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3
Writing Your First Program

In This Chapter
Entering your first C++ program
Compiling and executing your program
Examining some things that could go wrong
Executing your program
Reviewing how the program works

Tlis chapter will guide you through the creation of your first program in
C++. You will be using the Code::Blocks C++ environment. It will all be a
bit “cookbookish” since this is your first time. I explain all of the parts that

make up this program in subsequent chapters beginning with Part II, but for
now you'll be asked to accept a few things on faith. Soon all will be revealed,
and everything you do in this chapter will make perfect sense.

Creating a New Project

As always, you must create a new project to house your program. Follow the
abbreviated steps here (or you can use the detailed steps from Chapter 2):

1. With Code::Blocks open, select File>"New= Project.

2. Select Console Applications and select Go (or double-click on the
Console Applications icon).

3. Select C++ as your language of choice and select Next.
4. Enter Conversion as the Project Title.

If you followed the steps in Chapter 2, the “Folder to create project in”
should already be set to Beginning_Programming-CPP. If not, it’s not
too late to click the ... button and create the folder in the root of your
working disk. (This is described in detail in Chapter 2.) The Code::Blocks
Wizard fills in the name of the Project and the name of the resulting pro-
gram for you.

www.it-ebooks.info

http://www.it-ebooks.info/

34 Part I: Let's Get Started

When you're done, your window should look like that shown in Figure 3-1.

r Cunsule application
4’ Console [Blyshediicpbisdatibalind
PrOjeCt titie:
Conversicn|
Folder tn reate project in:
Ci\Boginning_Programming CPP [:
Project filename:
Conversivn.by
Rezuking fiename:
I C:\Beginning_Programming-CFP\ConversioriConversior
Figure 3-1:
The Project
window
for the
Conversion
program. [<geh J[Wem> | [camel
|

5. Select Next.

The next window allows you to change the target folders. The defaults
are fine.

6. Select Finish.
Code::Blocks creates a new Project and adds it to the earlier Helloworld

project. (See the “Organizing projects” sidebar for an explanation of why this
happens.) The resulting display should look like Figure 3-2.

| M [Conversion] - Code::Blocks svn bulld [SIEES
Eile Edit View Seych Project Buili Detug wiSmith Tools Pugins Settngs Help

ERP AN A8 O PRI mms =) 4B
i -

Mogereet x|

Projects | Synbok | Rescurces | v
20 Detault workipace
= By HetloWord
% B8 Scurces
= By Conversion
83 Scurces

Figure 3-2: o .

The initial b s NP | @ meen [R R S
display after
creating the
Conversion
project.

default
I

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Writing Your First Program

Organizing projects

You may be curious as to why Code::Blocks
added the new Conversion project to the exist-
ing HelloWorld project rather than replacing it.
A large effort involving multiple developers may
be broken up into a number of different pro-
grams that are all designed to work together.
To support this, Code::Blocks allows you to
have any number of different projects loaded
at once.

The collection of all projects is called a work-
space. Since you didn't specify a workspace
when you started Code::Blocks, the projects
you've created so far have been going into
the default workspace. Only one project in the
workspace can be active at a time. This is the
project that appears in bold (refer to Figure 3-2
again, and you'll notice that Conversion
is bolded while Helloworld is not). Any
Code::Blocks commands you perform are
directed at the active project. By default, the
last project you created is the active project,

but you can change the active project by right-
clicking on it in the Management window and
selecting Activate Project (the first option in the
list).

If you were to take a peek inthe Beginning_
Programming-CPP folder right now, you
would notice two subfolders: Helloworld
and Conversion. Both of these subfolders
include a project file with the extension .cbp
that contains the compiler settings, a layout
file with the extension layout that describes
the way you want your windows set up when
working on this project, and the filemain . cpp
that contains the C++ program created by the
application wizard. He11owWor1d contains a
further subfolder named Debug.

C++ programs can have any name that you like,
but it should end in .cpp. You will see how to
create multiple C++ source files with different
names in Chapter 12.

Entering Vour Program

It is now time to enter your first program using the following steps:

1. Make sure that Conversion is bolded in the Management window

(refer to Figure 3-2).

This indicates that it's the active project. If it is not, right-click on
Conversion and select Activate Project from the drop-down menu.

2. Close any source file windows that may be open by selecting File~>

Close all files.

Alternatively, you can close just the source files you want by clicking on
the small X next to the name of the file in the editor tab. You don’t want

to inadvertently edit the wrong source file.

3. Open the Sources folder by clicking on the small plus sign next to
Sources underneath Conversion in the Management window.

The drop-down menu should reveal the single file main. cpp.

www.it-ebooks.info

35

http://www.it-ebooks.info/

36

Part I: Let’s Get Started

Filename extensions

Windows has a bad habit of hiding the filename
extensions when displaying filenames. For
some applications this may be a good idea, but
this is almost never a good idea for a program-
mer. With extensions hidden, Windows may
display three or four files with the same name
Helloworld. This confusing state of affairs
is easily cleared up when you display file exten-
sions and realize that they are all different.

You should disable the Windows Hide Extensions
feature. Exactly how you do this depends upon
what version of Windows you are using:

v Windows 2000: Select Start=>Settings=>
Control Panel=>Folder Options.

v Windows XP with Default View: Select
Starte>Control Panel=>Performance and
Maintenance=>File Types.

»* Windows XP with Classic view: Select
Start=>Control Panel=>Folder options.

»* Windows Vista with Default view: Select
Start=>Control Panel=>Appearance and
Personalization=>Show hidden files and
folders.

v Windows Vista with Classic view: Select
Start=>Settings= Control Panel=>Folder
options.

Now navigate to the View tab of the Folder
Options dialog box that appears. Scroll down
until you find “Hide extensions for known file
types.” Make sure that this box is unchecked.
Select OK to close the dialog box.

4. Double-click main.cpp to open the file in the editor.

5. Edit the contents of main.cpp by entering the following program

exactly as it appears here.

The result is shown in Figure 3-3.

This is definitely the hard part, so take your time and be patient:

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

/1

// Conversion - Program to convert temperature from

/! Celsius degrees into Fahrenheit:

/1 Fahrenheit = Celsius * (212 - 32)/100 + 32
Il

int main(int nNumberofArgs, char* pszArgs([])

{

// enter the temperature in Celsius

int celsius;

cout << "Enter the temperature in Celsius:";

cin >> celsius;

// convert Celsius into Fahrenheit values

int fahrenheit;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Writing Your First Program

—
Figure 3-3:
The edited

main.
cpp file

of the
Conversion
program.

—

fahrenheit = celsius * 9/5 + 32;

// output the results (followed by a NewLine)
cout << "Fahrenheit value is:";
cout << fahrenheit << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;

return 0;

M "mair.cpp [Conversion] - Code::Blocks svn bulld
Eile Ede View Search Project Buid Dl wxSmth Tools Plugins Sewings Help
Q@ e |d il QR © P Q5@ o =] BB B 2
i I]
[Maragemeat . | [E—— vil
Projects | Symboks | Resources | ¥ 1 // Al
:'QD"'“"W““"" 2 // cCenversion - Pregram te convert témperature fron F
’a:;:::;; 3N/ / Celsius degrees into Fahrenheits:
283 Sources 4 /7 rahrenheit = Celsius * (212 - 32)/100 + 32
! mainepp SS//
6 #in =
2
8 #in e <i @ an>
9 using namespace =td: =
10
11 int main (int nNumbersfArgs, char’' pezirgs())
12
13 // enter the temperature in Celsius
14 int celsius:
135 cout "Enter the temperature in Celsius:”;
16 cin celsius;
17
18 // convert Celsius into Fahrenheit values
19 int fahrenheit;
20 fahrenheit celsiua * 9/5 4 32;
21
22 // output the results (followed by a NowLine)
_ 23 | eant 22 "Fohvrenhoit 1 "
«|] N A
|Logs & others %
A Code:Blods | (| Searthrests | € Buildlog | §* Bukd messeges | € Debugges | \() Debugger (detun) vJ
| J
C: f PPAC WINDOWS-1252 Une 4,Column 1 Insent Modified Readiwe default

What do I mean by “exactly as you see here™? C++ is very picky about
syntax. It frowns on missing semicolons or misspelled words. It doesn’t
care about extra spaces as long as they don’t appear in the middle of
aword. For example int fahren heit; is not the same as int
fahrenheit; butint fahrenheit; is okay. C++ treats tabs, spaces,
and newlines all the same, referring to them all as simply whitespace.

Maybe it was just me, but it took me a long time to get used to the fact
that C++ differentiates between uppercase and lowercase. Thus, int
Fahrenheit; is not the same thing as int fahrenheit;. One final
hint: C++ ignores anything that appears after a //, so you don’t have to
worry about getting that stuff right.

6. Save the file by selecting File=>Save all files.

www.it-ebooks.info

37

http://www.it-ebooks.info/

38

Part I: Let's Get Started

Building the Program

Now comes the most nerve-racking part of the entire software development
process: building your program. It’s during this step that C++ reviews your
handiwork to see if it can make any sense out of what you've written.

Programmers are eternal optimists. Somewhere, deep in our hearts, we truly
believe that every time we hit the Build button, everything is going to work, but
it almost never does. Invariably, a missing semicolon or a misspelled word will
disappoint C++ and bring a hail of error messages, like so much criticism from
our elementary school teachers, crashing down around our ears.

Actually building the program takes just one step: You select Build=>Build or
press Ctrl+F9 or click the little Build icon.

Finding What Could Go Wrong

£

No offense, but the Build step almost certainly did not come off without
error. A Gold Star program is one that works the first time you build and
execute it. You will almost never write a Gold Star program in your entire
programming career.

Fortunately, the Code::Blocks editor is so well integrated with the compiler
that it can automatically direct you very close to your errors. Most times, it
can place the cursor in the exact row that contains the error. To prove the

point, let me take you through a couple of example errors.

These are just two of the myriad ways to screw up in C++. [can’t possibly
show you all of them. Learning how to interpret what the compiler is trying
to tell you with its error and warning messages is an important part of learn-
ing the language. It can come only from many months of practice and gaining
experience with the language. Hopefully, these two examples will get you
jump-started.

Misspelled commands

Misspelled commands are the easiest errors to identify and correct. To dem-
onstrate the point, [added an extra t to line 14 in the preceding code so that
it now reads

intt celsius;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Writing Your First Program 39

Unlike int, the word intt has no meaning to C++. Building the resulting pro-
gram generated the display shown in Figure 34.

M5 main.cpp [Conversion] - Code::Blecks svm bulld [SlEES
e Edt View Sexch Propct Budd Detug weSmith Iools fuging Setngs Help
P Q@ e Il AR O P Q6 mdrmon oo o] P am
i = | main(int nhumberofArgs, char® pszargd]) : int
™ T 1
| Mansgemeet X incep X v
Projects | Symboks | Resourons | v 3 [eetng namsepsce 550 |
2 @ Defaultwarkspace 10
=1 Hetloword 11 ARG MA1N(ANU ANUMEEXOTArgS, CRAE® PSEACYS
) B Scurces 13 I enter the temperature in Celsius
“ F
. i conn i g |
& & Seurces 15 cout << “Erter the temperstuce in Celsius®,
mainspp 16 «an celsius.
17
I 18 i/ comvers Celsius irmo Fehrenbeit values
19 | ime tanrenraie;

Figure 3-4 — .
1gure . [tocs & othwes x|
The error A Codsistlods | O Seerchresuks | €3 bukdky | § Dulldmesseges | € Debugoer -

File Line Message

messag-es wss Conversion, Debug sss

resumng € \Neginning » In function iRk maInONE. chare) et

. C:\Beginning P... 14 error: 'imct' was not declared in this scope
from mis- e 5. 14 ercor: expected 0 b

. | ing_ P € axor: ‘e cope

spelling
int <« m »
CiEeginnihg_Pragrammint WINDOWS-1252 Line 14, Column 1 Insent Rzadiite default
]

Notice first the small, red block on Line 14 indicating that there is a problem
somewhere on this line. You can read all about it down in the Build Messages
tab in the lower-right window. Here you can see the following messages:

In function 'int main(int, char**)':
14 error: 'intt' was not declared in this scope
14 error: expected ';' before 'celsius'
16 error: 'celsius' was not declared in this scope

The first line indicates the name of the function containing the error. I don’t
present functions until Chapter 12, but it's easy to believe that all of the
code in this program is in a function called main. The next line is the key.
This says essentially that C++ didn’t understand what intt is on line 14 of
the program. The error message is a bit cryptic, but suffice it to say you'll
get this same error message almost every time you misspell something. The
remaining error messages are just by-products of the original error.

&\\NGI One C++ error can generate a cascade of error messages. It is possible to iden-
& tify and fix multiple errors in a single build attempt, but it takes experience to
figure out which errors stem from which others. For now, focus on the first
error message. Fix it and rebuild the program.

www.it-ebooks.info

http://www.it-ebooks.info/

40

Part I: Let’s Get Started

Why is C++ so picky?

You will quickly come to appreciate that C++
is about as picky as a judge at a spelling bee.
Everything has to be just so, or the compiler
won't accept it. Interestingly enough, it doesn’t
have to be that way: Some languages choose
to try to make sense out of whatever you
give it. The most extreme version of this was
a language promulgated by IBM for its main-
frames in the 1970s known as PL/1 (this stood
for “Programming Language 1”). One version
of this compiler would try to make sense out
of whatever you threw at it. We nerds used to
get immense fun during late nights at the com-
puter center by torturing the compiler with a
program consisting of nothing but the word
“IF" or “WHILE.” Through some tortured logic,
PL/1 would construct an entire program out of
this one command.

The other camp in programming languages, the
camp to which C++ belongs, holds the opposite
view: These languages compel the programmer

Missing semicolon

to state exactly what she intends. Everything
must be spelled out. Each declaration is checked
against each and every usage to make sure that
everything matches. No missing semicolon or
incorrectly declared label goes unpunished.

It turns out that the tough love approach
adopted by C++ is actually more efficient. The
problem with the PL/1 “free love” approach is
that it was almost always wrong in its under-
standing of what | intended. PL/1 ended up cre-
ating a program that compiled but did something
other than what | intended when it executed.
C++ generates a compiler error if something
doesn’t check out to force me to express my
intentions clearly and unambiguously.

Itturns outthatit's a lot easier to find and fix the
compile time errors generated by C++ than the
so-called runtime errors created by a compiler
that assumes it understands what | want but
gets it wrong.

Another common error is to leave off a semicolon. The message that this
error generates can be a little confusing. To demonstrate, [removed the
semicolon from the declaration on line 14 so that it reads

int celsius

cout << "Enter the temperature in Celsius:";

The error reported by C++ for this offense points not to line 14 but to the fol-

lowing line 15:

15 error: expected initialization before 'cout’
16 error: 'celsius' was not declared in this scope

This is easier to understand when you consider that C++ considers newlines
as just a different form of space. Without the semicolon, C++ runs the two lines
together. There is no separate line 14 anymore. C++ can interpret the first part,
but it doesn’t understand the run-on sentence that starts with cout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Writing Your First Program

A\

Missing semicolons often generate error messages that bear little resemblance
to the actual error message, and they are almost always on the next line after
the actual error. If you suspect a missing semicolon, start on the line with the
reported error and scan backwards.

Using the Enclosed CD-ROM

3

If you just can’t get the program entered correctly, you can always copy the
program from the enclosed CD-ROM. (If you have questions regarding using
the CD-ROM, see the Appendix; it details what you'll find on the CD-ROM, as
well as troubleshooting tips, should you need them.)

You should really try to enter the program by hand first before you give up
and resort to the CD-ROM. It’s only through working through your mistakes
that you develop a feel for how the language works.

You have several ways to use the enclosed CD-ROM. The most straightfor-
ward is to copy and paste the contents of the file on the CD into your own as
follows:

1. Insert the enclosed CD-ROM into your computer.

2. Select File=>Open from within Code::Blocks. Navigate to the x:\
Beginning Programming-CPP\Conversion where X is the letter of
your CD-ROM drive.

3. Select the file main.cpp.

Code::Blocks will open the file (in ReadOnly mode) in a new tab in the
editor window.

4. Select Edit=>Select All or press Cirl+A.

This will select the entire contents of the source file.
5. Select Edit=>Copy or press Ctrl+C.

This will copy the entire file to the clipboard.
6. Select the main tab corresponding to your program.
7. Select Edit=>Select All or press Ctrl+A again.
8. Select Edit=>Paste or press Ctrl+V.

This will overwrite the entire contents of the main. cpp that you've
been working on with the contents of the corresponding file on the
CD-ROM.

9. Close the tab containing the CD-ROM version of the file by clicking on
the small X next to the filename.

www.it-ebooks.info

41

http://www.it-ebooks.info/

42 Part I: Let's Get Started

Running the Program

You can execute the program once you get a clean compile (that is, 0 errors
and 0 warnings) by following these steps:
1. Select Build=>Run or press Ctrl+F10.

This will execute the program without the debugger. (Don’t worry if you
don’t know what a debugger is; I teach you how to use it in Chapter 20.)

The program opens an 80 column by 25 row window and prompts you to
enter a temperature in degrees Celsius.

2. Enter a known temperature like 100 degrees. Press Enter.

The program immediately responds with the equivalent temperature in
Fahrenheit of 212:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press any key to continue .

3. Press Enter twice to exit the program and return to the editor.

How the Program Works

Even though this is your first program, I didn’t want to leave this chapter
without giving you some idea of how this program works.

The template

The first part of the program I call the “Beginning Programming Template.”
This will be the same magic incantation used for all programs in this book. It
goes like this:

//

// ProgramName - short explanation of what the
// program does

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Writing Your First Program

// program goes here

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

Comments

The first few lines in this template appear to be free-form text. Either this
“code” was meant for human consumption or the computer is a lot smarter
than anyone’s ever given it credit for. These first four lines are known as
comments. A comment is a line or portion of a line that is ignored by the C++
compiler. Comments enable the programmer to explain what she was doing
or thinking while writing a particular segment of code.

A C++ comment begins with double forward slashes and ends with a newline.
You can put any character you want in a comment, and comments can be as
long as you like, though it is customary to limit them to 80 characters or so
because that’s what fits within a normal screen width.

Note: You may think it odd to have a command in C++, or any other
programming language, that is specifically ignored by the compiler; yet,

all programming languages have some form of comment. It is critical that
the programmer be able to explain what was going through her mind when

a piece of code was written. It may not be obvious to the next person who
picks up the program and uses it or modifies it. In fact, it may not be obvious
to the programmer herself after only a few days working on something else.

Include files

The next few lines are called include statements because they cause the con-
tents of the named file to be included at that point in the program. Include
files always start with the statement #include in column 1 followed by the
name of the file to include. I'll explain further in Chapter 12. Just consider
them magic for now.

main

Every program must have amain () somewhere in it. Program execution
begins at the open brace immediately following main () and terminates at
the return statement immediately prior to the closed brace. An explanation
of the exact format of the declaration for main () will have to wait.

www.it-ebooks.info

43

http://www.it-ebooks.info/

44

Part I: Let's Get Started

Notice that the standard template ends with the statement system (" PAUSE")
prior to the return 0. This command causes the program to wait for the user
to enter a key before the program terminates.

The call to system ("PAUSE") isn’t necessary as long as you're running your
programs from the Code::Blocks environment. Code::Blocks waits for the
user to enter a key before closing the console application window anyway.
However, not all environments are so understanding. Leave this off and very
often C++ will close the application window before you have a chance to read
the output from the program. I get lots of hate mail when that happens.

The Conversion program

The remainder of the Conversion program sans the template appears as
follows:

// enter the temperature in Celsius

int celsius;

cout << "Enter the temperature in Celsius:";
cin >> celsius;

// convert Celsius into Fahrenheit values
int fahrenheit;
fahrenheit = celsius * 9/5 + 32;

// output the results (followed by a NewLine)
cout << "Fahrenheit value is:";
cout << fahrenheit << endl;

Skipping over the comment lines, which C++ ignores anyway, this program
starts by declaring a variable called celsius. A variable is a place you can
use to store a number or character.

The next line displays the prompt to the user to "Enter the temperature
in Celsius:". The object cout points to the console window by default.

The next line reads whatever number the operator enters and stores it into
the variable celsius declared earlier.

The next two lines declare a second variable fahrenheit, which it then sets
equal to the value of the variable celsius * 9 / 5 + 32, whichis the
conversion formula from Celsius to Fahrenheit temperature.

The final two lines output the string "Fahrenheit value is:" and the

value calculated and stored into the variable fahrenheit immediately
above.

www.it-ebooks.info

http://www.it-ebooks.info/

Partll
Writing a Program:
Decisions,
Decisions

Th€_5th Wave By Rich Tennant

Maintenance is chagrived to find out
the squeak inClark's disk drive is
really a whistle in Clark's nose.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

Now that you're familiar with how to write and build
a program, you can start learning about C++ itself.
This part introduces you to the basic elements of C++: the
variable declaration and the expression. You'll even find
out how to make a decision in your program i you can
stand it. Finally, you'll see some beginning techniques for
finding errors in your programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4
Integer Expressions

In This Chapter
Declaring variables
Creating expressions
Decomposing compound expressions
Analyzing the assignment operator
Incrementing variables with the unary operator

n this chapter, you will be studying integer declarations and expressions.
Algebra class introduced you to the concepts of variables and expres-
sions. The teacher would write something on the board like
x =1
This defines a variable x and sets it equal to the value 1 until some subse-
quent statement changes it for some reason. The term x becomes a replace-
ment for 1. The teacher would then write the following expression:
y = 2X
Because | know that x is 1, I now know that y is equal to 2. This was a real

breakthrough in the seventh grade. All conventional computer languages
follow this same pattern of creating and manipulating variables.

Declaring Variables

An integer variable declaration starts with the keyword int followed by the
name of a variable and a semicolon, as in the following example:

int ni; // declare a variable nl

www.it-ebooks.info

http://www.it-ebooks.info/

48 Part Il: Writing a Program: Decisions, Decisions

f)ﬂfﬂ

\NG/
.é}“

All variables in C++ must be declared before they can be used. A variable dec-
laration reserves a small amount of space in memory, just enough for a single
integer, and assigns it a name. You can declare more than one variable in the

same declaration, as in the following example, but it’s not a good idea for rea-
sons that will become clear as you work through subsequent chapters:

int n2, n3; // declare two variables n2 and n3

A keyword is a word that has meaning to C++. You cannot name a variable the
same as a keyword. Thus, you cannot create a variable with the name int.
However, since keywords are case-sensitive, you could create a variable Int
or INT. You will be introduced to further keywords throughout the chapters.

The fact that the keyword int is used instead of integer is just a reflection
of the overall terseness of the C++ language. The creators of the language
must have been poor typists and wanted to minimize the amount of typing
they had to do.

Unlike in algebra class, the range of an integer in C++ is not unlimited.
However, it is very large indeed. If you exceed the range of an int, you will
get the wrong answer. [will discuss variable size and range in Chapter 14.

Variable names

You can name a variable anything you like with the following restrictions:
v The first letter of the variable must be a character in the sequence a
through z, A through Z, or underscore (*_").

v Every letter after the first must be a character in the sequence a through
z, A through Z, underscore (‘_"), or the digits 0 through 9.

v Avariable name can be of any length. All characters are significant.
The following are legal variable names:

int myVariable;
int MyVariable;
int myNumber2Variable;
int _myVariable;
int my Variable;

The following are not legal variable names:

int myPercentage$; // contains illegal character
int 2ndvariable; // starts with a digit
int my Variable; // contains a space

Variable names should be descriptive. Variable names like x are discouraged.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Integer Expressions 4 9

|
Figure 4-1:
The effect
of executing
the expres-
sionn = n
+ 1 when

n starts out
asl.
|

Assigning a value to a variable

Every variable has a value from the moment it's declared. However, until you
assign it a value, a variable will just assume whatever garbage value happens to
be in that memory location when it’s allocated. That means that you don’t know
what the value is, and it’s likely to change every time you run the program.

You can assign a variable a value using the equals sign as in the following
example:

int n; // declare a variable n
= alp // set it to 1

This looks remarkably similar to the assignment statement in algebra class,
but the effect is not quite the same. In C++, the assignment statement says
“take the value on the right-hand side of the equals sign” (in this case 1) “and
store it into the location on the left-hand side, overwriting whatever was
there before” (in this case n).

You can see the difference in the following expression:
n=n+1; // increment the variable n

This statement would make absolutely no sense in algebra class. How could
n be both equal tonand n + 1 at the same time? However, this statement
makes perfect sense in C++ if you follow the definition for assignment given
above: “Take the value stored in the variable n” (1) “add 1 and store the
result” (2) “into the variable n.” This is shown graphically in Figure 4-1.

/[say n starts outa 1

n=n+1; Steps to
n=1+1: evaluate

the expression
n=2,

Initializing a variable at declaration

You can initialize your variable at the time that it's declared by following it
with an equals sign and a value:

int n = 1; // declare and initialize variable

www.it-ebooks.info

http://www.it-ebooks.info/

5 0 Part Il: Writing a Program: Decisions, Decisions

Forgetting to initialize a variable

Forgetting to initialize a variable before using it is a very common error in C++. So much so that
the compiler actually goes to great pains to detect this case and warn you about it. Consider the
following statements:

int nl1, n2 = 0;
n2 =nl + 1;
cout << "nl
cout << "n2

= " << nl << endl;

= " << n2 << endl;

CodeBlocks generates the following warning when building the program containing this snippet:
warning: "nl" is used uninitialized in this function

Though it's a really bad idea, you are free to ignore warnings. Executing the program generates

the output:
nl = 54
n2 = 55

It's easy to see why n2 is equal to 55 given that n1 is 54, but why is n1 equal to 54 in the first
place? | could turn the question around and ask, “Why not?” This is an expression of the old adage,
“Everyone has to be somewhere.” The C++ equivalent is, “Every variable must have a value.” If you
don'tinitialize a variable to something, it'll get a random value from memory. In this case, the value
54 was left over from some previous usage.

\NG/
s
& This initializes only the one variable, so if you write the following compound
declaration
int nl, n2 = 0;

you've initialized n2 but not n1. This is one reason it’s not a good idea to
declare multiple variables in a single declaration. (See the sidebar “Forgetting
to initialize a variable™.)

Integer Constants

C++ understands any symbol that begins with a digit and contains only digits
to be an integer constant. The following are legal constants:

123
1
256

A constant cannot contain any funny characters. The following is not legal:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Integer Expressions 5 ’

1237456

The following is legal but doesn’t mean what you think:

123+456
This actually defines the sum of two constants 123 and 456, or the value 479.

Normally C++ assumes that constants are decimal (base 10). However, for
historical reasons, a number that begins with a 0 is assumed to be octal (base
8). By the same token, a number that starts with 0x or 0X is assumed to be
hexadecimal. Hexadecimal uses the letters A through F or a through £ for the
digits beyond 9. Thus, 0XFF, 0377, and 255 are all equivalent. Don’t worry if
you don’t know what octal or hexadecimal are — we won't be using them in
this book.

Don't start a constant with 0 unless you mean it to be in octal.

An integer constant can have certain symbols appended to the end to change
its type. You will see the different types of integer constants in Chapter 14.

Expressions

Variables and constants are useful only if you can use them to perform cal-
culations. The term expression is C++ jargon for a calculation. You've already
seen the simplest expression:

int n; // declaration
m = ilg // expression

Expressions always involve variables, constants, and operators. An operator
performs some arithmetic operation on its arguments. Most operators take
two arguments — these are called binary operators. A few operators take a
single argument — these are the unary operators.

All expressions return a value and a type. (Note that int is the type of all the
expressions described in this chapter.)

Binary operators

A binary operator is an operator that takes two arguments. If you can say
varl op var2, then op must be a binary operator. The most common
binary operators are the same simple operations that you learned in grade
school. The common binary operators appear in Table 4-1. (This table also
includes the unary operators that are described a little later in this chapter.)

www.it-ebooks.info

http://www.it-ebooks.info/

5 2 Part Il: Writing a Program: Decisions, Decisions

Table 4-1 Mathematical Operators in Order of Precedence

Precedence Operator Meaning

1 - (unary) Returns the negative of its
argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

The simplest binary is the assignment operator noted by the equals sign. The
assignment operator says “take the value on the right-hand side and store

at the location on the left-hand side of the operator.” (I describe the special
assignment operators at the end of this chapter.)

Multiplication, division, addition, subtraction, and modulo are the operators
used to perform arithmetic. They work just like the arithmetic operators you
learned in grammar school with the following special considerations:

v Multiplication must always be expressly stated and is never implied as
it is in algebra. Consider the following example:

2k // declare a variable
2n; // this generates an error

int n
int m

The expression above does not assign m the value of 2 times n. Instead,
C++ tries to interpret 2n as a variable name. Since variable names can’t
start with a digit, it generates an error during the build step.

What the programmer meant was:

Z5
2 * n; // this is OK

int n
int m

+ Integer division throws away the remainder. Thus, the following:
int n = 13 / 7; // assigns the value 1 to n

Fourteen divided by 7 is 2. Thirteen divided by seven is 1. (You will see
decimal variable types that can handle fractions in Chapter 14.)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Integer Expressions 53

+ The modulo operator returns the remainder after division (you might
not remember modulo):

int n = 13 & 7; // sets n to 6
Fourteen modulo seven is zero. Thirteen modulo seven is six.

Decomposing compound expressions

A single expression can include multiple operators:
int n =5 + 100 + 32;

When all the operators are the same, C++ evaluates the expression from left
to right:

5 + 100 + 32
105 + 32
137

When different operators are combined in a single expression, C++ uses a
property called precedence. Precedence is the order that operators are evalu-
ated in a compound expression. Consider the following example:

int n =5 * 100 + 32;

What comes first, multiplication or addition? Or is this expression simply
evaluated from left to right? Refer back to Table 4-1, which tells you that
multiplication has a precedence of 3, which is higher than the precedence of
addition which is 4 (smaller values have higher precedence). Thus, multipli-
cation occurs first:

5 * 100 + 32

500 + 32
5317

The order of the operations is overruled by the precedence of the operators.
As you can see

int n = 32 + 5 * 100;
generates the same result:
32 + 5 * 100

32 + 500
532

www.it-ebooks.info

http://www.it-ebooks.info/

54

Part Il: Writing a Program: Decisions, Decisions

\\J

But what if you really want 5 times the sum of 100 plus 32? You can override
the precedence of the operators by wrapping expressions that you want per-
formed first in parentheses as follows:

int n = 5 * (100 + 32);
Now the addition is performed before the multiplication:

5 * (100 + 32)
5 = L3
660

You can combine parentheses to make expressions as complicated as you
like. C++ always starts with the deepest nested parentheses it can find and
works its way out.

(3 + 2) * ((100 / 20) + (50 / 5))
(3 +2) * (5 + 10)

S = s

75

You can always divide complicated expressions using intermediate variables.
The following is safer:

int factor = 3 + 2;
int principal = (100 / 20) + (50 / 5);
int total = factor * principal;

Assigning a name to intermediate values also allows the programmer to
explain the parts of a complex equation, making it easier for the next guy to
understand.

Unary Operators

The unary operators are those operators that take a single argument. The
unary mathematical operators are -, ++, and —.

The minus operator changes the sign of its argument. A positive number
becomes negative, and a negative number becomes positive:

int n
int m

10;
-n; // m is now -10

The ++ and the -- operators increment and decrement their arguments by one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Integer Expressions

Why a separate increment operator?

Why did the authors of C++ think that an incre-
ment operator was called for? After all, this
operator does nothing more than add 1, which
can be done with an assignment expression.
The authors of C++ (and its predecessor C)
were obsessed with efficiency. They wanted
to generate the fastest machine code they pos-
sibly could. They knew that most processors
have an increment and decrement instruction,

and they wanted the C++ compiler to use that
instruction if at all possible. They reasoned that
n++ would get converted into an increment
instructionwhilen = n + 1; mightnot. This
type of thing makes very little difference today,
but the increment and decrement operators are
here to stay. As you will see in Chapters 9 and
10, they get a lot more use than you might think.

The increment and decrement operators are unique in that they come in two
versions: a prefix and a postfix version.

The prefix version of increment is written ++n, while the postfix is written n++.

Both the prefix and postfix increment operators increment their argument by
one. The difference is in the value returned. The prefix version returns the
value after the increment operation, while the postfix returns the value before
the increment. (The same is true of the decrement operator.) This is demon-
strated in the following IncrementOperator program:

// IncrementOperator - demonstrate the increment operator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
// demonstrate the increment operator
int n;

// first the prefix

n-=1;

cout << "The value of n is " o<< n << endl;

cout << "The value of ++n is " << ++n << endl;

cout << "The value of n afterwards is " << n << endl;
cout << endl;

// now the postfix

n-=1;

cout << "The value of n is " o<< n << endl;
cout << "The value of n++ is " << n++ << endl;

www.it-ebooks.info

55

http://www.it-ebooks.info/

56 Part Il: Writing a Program: Decisions, Decisions

}

cout << "The value of n afterwards is " << n << endl;
cout << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;

return 0;

The output from this program appears as follows:

The
The
The

The
The
The

value
value
value

value
value
value

Press any

of
of
of

of
of
of

n is 1
++n is 2
n afterwards is 2

n is 1
n++ is 1
n afterwards is 2

key to continue .

This example demonstrates both the prefix and postfix increment. In both
cases, the variable n is initialized to 1. Notice that the value of n after execut-
ing both ++n and n++ is 2. However, the value of ++n was 2 (the value after the
increment), while the value of n++ was 1 (the value before the increment).

The Special Assignment Operators

The assignment operator is absolutely critical to any computer language.
How else can | store a computed value? However, C++ provides a complete
set of extra versions of the assignment operator that seems less critical.

The authors of C++ must have noticed that expressions of the following form
were very common:

R =

X # value;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Integer Expressions 5 7

Here # stands for some binary operator. In their perhaps overzealous pur-
suit of terseness, the authors created a separate assignment for each of the
binary operators of the form:

X #= value; // where # is any one of the binary operators
Thus, for example

n=n=+ 2;
can be written as

n += 2;

Note: You don'’t see this all that often, and I present it here primarily for
completeness.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
Character Expressions

In This Chapter
Defining character variables and constants
Encoding characters
Declaring a string
Outputting characters to the console

‘ hapter 4 introduces the concept of the integer variable. This chapter

introduces the integer’s smaller sibling, the character or char (pro-
nounced variously as care, chair, or as in the first syllable of charcoal) to us
insiders. I have used characters in programs appearing in earlier chapters —
now it's time to introduce them formally.

Defining Character Variables

Character variables are declared just like integers except with the keyword
char in place of int:

char inputCharacter;

Character constants are defined as a single character enclosed in single
quotes, as in the following:

char letterA = 'A’';

This may seem like a silly question, but what exactly is “A”? To answer that, I
need to explain what it means to encode characters.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Part Il: Writing a Program: Decisions, Decisions

Encoding characters

As I mentioned in Chapter 1, everything in the computer is represented by

a pattern of ones and zeros that can be interpreted as numbers. Thus, the
bit pattern 0000 0001 is the number 1 when interpreted as an integer.
However, this same bit pattern means something completely different when
interpreted as an instruction by the processor. So it should come as no sur-
prise that the computer encodes the characters of the alphabet by assigning
each a number.

Consider the character ‘A’. You could assign it any value you want as long as
we all agree. For example, you could assign a value of 1 to ‘A’, if you wanted
to. Logically, you might then assign the value 2 to ‘B’, 3 to ‘C’, and so on. In
this scheme, ‘Z’ would get the value 26. You might then start over by assign-
ing the value 27 to ‘a’, 28 to ‘b’, right down to 52 for ‘z’. That still leaves the
digits ‘0’ through ‘9’ plus all the special symbols like space, period, comma,
slash, semicolon, and the funny characters you see when you press the
number keys while holding Shift down. Add to that the unprintable charac-
ters like tab and newline. When all is said and done, you could encode the
entire English keyboard using numbers between 1 and 127.

I say “you could” assign a value for ‘A’ ‘B’, and the remaining characters;
however, that wouldn’t be a very good idea because it has already been
done. Sometime around 1963, there was a general agreement on how charac-
ters should be encoded in English. The ASCII (American Standard Coding for
Information Interchange) character encoding shown in Table 5-1 was adopted
pretty much universally except for one company. IBM published its own stan-
dard in 1963 as well. The two encoding standards duked it out for about ten
years, but by the early 1970s when C and C++ were being created, ASCII had
just about won the battle. The char type was created with ASCII character
encoding in mind.

Table 5-1 The ASCII Character Set
Value Char Value Char
0 NULL 64 @
1 Start of Heading 65 A
2 Start of Text 66 B
3 End of Text 67 C
4 End of Transmission 68 D
5 Enquiry 69 E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Character Expressions 6 ’

Value Char Value Char
6 Acknowledge 70 F
i Bell Al G
8 Backspace 72 H
9 Tab 73 I
10 Newline 74 J
" Vertical Tab 75 K
12 New Page; Form Feed 76 L
13 Carriage Return 77 M
14 Shift Out 78 N
15 Shift In 79 0
16 Data Link Escape 80 P
17 Device Control 1 81 Q
18 Device Control 2 82 R
19 Device Control 3 83 S
20 Device Control 4 84 T
21 Negative Acknowledge 85 U
22 Synchronous Idle 86 v
23 End of Transmission 87 w
24 Cancel 88 X
25 End of Medium 89 Y
26 Substitute 90 YA
21 Escape 91 [
28 File Separator 92 \
29 Group Separator 93]
30 Record Separator 94 A
31 Unit Separator 95 _
32 Space 96

33 ! 97 a
34 " 98 b
35 # 99 c
36 $ 100 d
37 % 101 e

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

62 Part Il: Writing a Program: Decisions, Decisions

Table 5-1 (continued)

Value Char Value Char
38 & 102 f
39 ! 103 g
40 (104 h
4) 105 i
42 * 106]
43 + 107 k
44 , 108 I
45 = 109 m
46 . 110 n
47 / m 0
48 0 112 p
49 1 113 q
50 2 114 r
51 3 115 s
52 4 116 t
53 5 117 u
54 6 118 v
55 7 119 w
56 8 120 X
57 9 121 y
58 : 122 z
59 ; 123 {
60 < 124 |
61 = 125 }
62 > 126 ~
63 ? 127 DEL

The first thing that you’ll notice is that the first 32 characters are the
“unprintable” characters. That doesn’t mean that these characters are so
naughty that the censor won’t allow them to be printed — it means that they
don’t display as a symbol when printed on the printer (or on the console

for that matter). Many of these characters are no longer used or only used

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Character Expressions 63

in obscure ways. For example, character 25 “End of Medium” was probably
printed as the last character before the end of a reel of magnetic tape. That
was a big deal in 1963, but today it has limited use. My favorite is character
7, the Bell — this used to ring the bell on the old teletype machines. (The
Code::Blocks C++ generates a beep when you display the bell character.)

The characters starting with 32 are all printable with the exception of the last
one, 127, which is the Delete character.

Example of character encoding
The following simple program allows you to play with the ASCII character set:

// CharacterEncoding - allow the user to enter a
// numeric value then print that value
// out as a character

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])

{
// Prompt the user for a value
int nvalue;
cout << "Enter decimal value of char to print:";
cin >> nvalue;
// Now print that wvalue back out as a character
char cvValue = (char)nvalue;
cout << "The char you entered was [" << cValue

<< "]" << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program begins by prompting the user to "Enter decimal value of
a char to print".The program then reads the value entered by the user
into the int variable nvalue.

The program then assigns this value to a char variable cvalue.

www.it-ebooks.info

http://www.it-ebooks.info/

64 Part Il: Writing a Program: Decisions, Decisions

\\3

The (char) appearing in front of nvalue is called a cast. In this case, it
casts the value of nvalue from an int to a char. I could have performed the
assignment without the cast as in

cValue = nvValue;

However, the type of the variables wouldn’t match: The value on the right of
the assignment is an int, while the value on the left is a char. C++ will per-
form the assignment anyway, but it will generally complain about such con-
versions by generating a warning during the build step. The cast converts the
value in nvalue to a char before performing the assignment:

cValue = (char)nvalue; // cast nvValue to a char before
// assigning the value to cValue

The final line outputs the character cvalue within a set of square brackets.

The following shows a few sample runs of the program. In the first run, I
entered the value 65, which Table 5-1 shows as the character ‘A’

Enter decimal value of char to print:65
The char you entered was [A]
Press any key to continue .

The second time I entered the value 97, which corresponds to the character ‘a’:

Enter decimal value of char to print:97
The char you entered was [a]
Press any key to continue .

On subsequent runs, I tried special characters:
Enter decimal value of char to print:36
The char you entered was [$]

Press any key to continue .

The value 7 didn’t print anything, but did cause my PC to issue a loud beep
that scared the heck out of me.

The value 10 generated the following odd output:

Enter decimal value of char to print:10
The char you entered was [

1
Press any key to continue .

Referring to Table 5-1, you can see that 10 is the newline character. This char-
acter doesn’t actually print anything but causes subsequent output to start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Character Expressions 6 5

f)ﬂﬂ?

at the beginning of the next line, which is exactly what happened in this case:
The closed brace appears by itself at the beginning of the next line when fol-
lowing a newline character.

The endl that appears at the end of many of the output commands that
you've seen so far generates a newline. It also does a few other things, which
you'll see in Chapter 31.

Encoding Strings of Characters

Theoretically, you could print anything you want using individual charac-
ters. However, that could get really tedious as the following code snippet
demonstrates:

cout << 'E' << 'n' << 't' << 'e' << 'r' << ' '
<< 'd' << 'e' << '¢c' << 'i' << 'm' << 'a'
<< ']l'" << ' ' << 'V' << '@a' << '1'" << 'u’
<< 'e' << ' ' << '0' << '"f' << ' ' << 'c'
<< 'h' << 'a' << 'r' << ' ' << 't' << 'o'
22 1 U @k Tt g Tt =x Y =k TmY =k @Y
<< ':';

C++ allows you to encode a sequence of characters by enclosing the string in
double quotes:

cout << "Enter decimal value of char to print:";

I'll have a lot more to say about character strings in Chapter 16.

Special Character Constants

égﬁﬂmEn

You can code a normal, printable character by placing it in single quotes:
char cSpace = ' ';

You can code any character you want, whether printable or not, by placing
its octal value after a backslash:

char cSpace = '\040';

A constant appearing with a leading zero is assumed to be octal, also known
as base 8.

www.it-ebooks.info

http://www.it-ebooks.info/

66 Part Il: Writing a Program: Decisions, Decisions

f’l“ﬂ

<MBER
&

‘g‘“\ucz

You can code characters in base 16, hexadecimal, by preceding the number
with a backslash followed by a small x as in the following example:

char cSpace = '\x20';

The decimal value 32 is equal to 40 in base 8 and 20 in base 16. Don’t worry if
you don'’t feel comfortable with octal or hexadecimal. C++ provides shortcuts
for the most common characters.

C++ provides a name for some of the unprintable characters that are particu-
larly useful. Some of the more common ones are shown in Table 5-2.

Table 5-2 Some of the Special C++ Characters

Char Special Symbol Char Special Symbol
’ \ Newline \n

“ \" Carriage Return \r

\ \\ Tab \t

NULL \0 Bell \a

The most common is the newline character, which is nicknamed ‘\n’. In addi-
tion, you must use the backslash if you want to print the single quote character:

char cQuote = '\'';
Since C++ normally interprets a single quote mark as enclosing a character,
you have to precede a single quote mark with a backslash character to tell it,
“Hey, this single quote is not enclosing a character, this is the character.”

In addition, the character ‘\\' is a single backslash.

This leads to one of the more unfortunate coincidences in C++. In Windows,
the backslash is used in filenames as in the following:

C:\\Base Directory\Subdirectory\File Name

This is encoded in C++ with each backslash replaced by a pair of backslashes
as follows:

"C:\\\\Base Directory\\Subdirectory\\File Name"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Character Expressions

Wide load ahead

By the early 1970s when C and C++ were
invented, the 128-character ASCII character
set had pretty much beat out all rivals. So it
was logical that the char type was defined
to accommodate the ASCIl character set.
This character set was fine for English but
became overly restrictive when programmers
tried to write applications for other European
languages.

Fortunately, C and C++ had provided enough
room in the char for 256 different characters.
Standards committees got busy and used the
characters between 128 and 255 for charac-
ters that occur in European languages but not
English, such as umlauts and accented charac-
ters. You can see the results of their handy work
using the example CharacterEncoding
program from this chapter: Enter 142 and the
program prints out an A.

No matter what you do, the char variable is
just not large enough to handle all of the many
different alphabets, such as Cyrillic, Hebrew,
Arabic, and Korean — not to mention the many

thousands of Chinese kanji symbols. Something
had to give.

C++ responded first by introducing the “wide
character” of type wchar_t. This was
intended to implement whatever wide char-
acter set that is native to the host operating
system. On Windows, that would be the vari-
ant of Unicode known as UTF-2 or UTF-16.
(Here the 2 stands for two bytes, the size of
each wide character, whereas the 16 stands
for 16 bits.) However, Macintosh’s 0S X uses
a different variant of Unicode known as UTF-8.
Unicode can display not only every alphabet on
the planet but also the kanjis used in Chinese
and Japanese. The 2009 update to the C++
standard added two further types, char16_t
and char32_t, which implement specifically
UTF-16 and UTF-32.

For almost every feature that | describe in this
book for handling character variables, there
is an equivalent feature for the wide charac-
ter types; programming Unicode, however, is
beyond the scope of a beginning text.

www.it-ebooks.info

67

http://www.it-ebooks.info/

Chapter 6
if | Could Make My Own Decisions

In This Chapter
Defining character variables and constants
Encoding characters
Declaring a string
Outputting characters to the console

M aking decisions is a part of the everyday world. Should I get a drink
now or wait for the commercial? Should I take this highway exit to go

to the bathroom or else wait for the next? Should I take another step or stop
and smell the roses? If | am hungry or I need gas, then [should stop at the
convenience store. If it is a weekend and I feel like it, then I can sleep in. See
what [mean?

An assistant, even a stupid one, has to be able to make at least rudimentary
decisions. Consider the Tire Changing Language in Chapter 1. Even there, the
program had to be able to test for the presence of a lug nut to avoid waving a
wrench around uselessly in space over an empty bolt, thereby wasting every-
one’s time.

All computer languages provide some type of decision-making capability. In
C++, this is handled primarily by the i f statement.

The if Statement

The format of the if statement is straightforward:

if (m > n) // if m is greater than n...

{
// ...then do this stuff

}

www.it-ebooks.info

http://www.it-ebooks.info/

70 Part Il: Writing a Program: Decisions, Decisions

When encountering if, C++ first executes the logical expression contained
within the parentheses. In this case, the program evaluates the conditional
expression “is m greater than n.” If the expression is true, that is, if m truly is
greater than n, then control passes to the first statement after the { and con-
tinues from there. If the logical expression is not true, control passes to the
first statement after the }.

Comparison operators

Table 6-1 shows the different operators that can be used to compare values
fﬂfﬂ in logical expressions.

Binary operators have the format exprl operator expr2.

Table 6-1 The Comparison Operators

Operator Meaning

== equality; true if the left-hand argument has the same value as the
expression on the right

1= inequality; opposite of equality

> greater than; true if the left-hand argument is greater than the right

< less than; true if the left-hand argument is less than the right

>= greater than or equal to; true if the left argument is greater than or
equal to the right

<= less than or equal to; true if the left argument is less than or equal to
the right

Don’t confuse the equality operator (==) with the assignment operator (=).
This is a common mistake for beginners.

The following BranchDemo program shows how the operators shown in
Table 6-1 are used:

// BranchDemo - demonstrate the if statement

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: if | Could Make My Own Decisions 7 ’

}

// enter operandl and operand2
int nOperandl;

int nOperand2;

cout << "Enter argument 1:";
cin >> nOperandl;

cout << "Enter argument 2:";
cin >> nOperand2;

// now print the results
if (nOperandl > nOperand2)

{
cout << "Argument 1 is greater than argument 2"
<< endl;
}
if (nOperandl < nOperand2)
{
cout << "Argument 1 is less than argument 2"
<< endl;
}
if (nOperandl == nOperand2)
{
cout << "Argument 1 is equal to argument 2"
<< endl;
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;

return 0;

Program execution begins with main () as always. The program first declares
two int variables cleverly named noperandl and nOperand?2. It then
prompts the user to "Enter argument 1", which it reads into noperand1l.
The process is repeated for noperand2.

The program then executes a sequence of three comparisons. It first checks
whether noperandl is less than noperand2. If so, the program outputs the
notification "Argument 1 is less than argument 2".Thesecond if
statement displays a message if the two operands are equal in value. The
final comparison is true if noperandl is greater than noperand2.

The following shows a sample run of the BranchDemo program:

Enter argument 1:5

Enter argument 2:10

Argument 1 is less than argument 2
Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

72 Part Il: Writing a Program: Decisions, Decisions

|
Figure 6-1:
The path
taken by the
BranchDemo
program
when the
user enters
5 for the first
argument
and 10 for
the second.
|

Figure 6-1 shows the flow of control graphically for this particular run.

// enter operandl and operand2
int nOperandl;

int nOperand2;

cout << "Enter argument 1:";

cin >> nOperandl; Entered 5
cout << "Enter argument 2:";
cin >> nOperand2; Entered 10

// now print the results
if (nOperandl > nOperand?2) 5> 10is false
{
cout << "Argument 1 is greater than argument 2"
<< endl;
}
if (nOperandl < nOperand?2) 5<10is true

{
cout << "Argument 1 is less than argument 2"
<< endl;
}
if (nOperandl nOperand?2) 5==10is false

{
cout << "Argument 1 is equal to argument 2"
<< endl;

i = (=

The way the BranchDemo program is written, all three comparisons are per-
formed every time. This is slightly wasteful since the three conditions are
mutually exclusive. For example, noperandl > noOperand?2 can’t possibly
be true if nOoperandl < nOperand2 has already been found to be true.
Later in this chapter, [show you how to avoid this waste.

Say “No” to “No braces”

Actually the braces are optional. Without braces, only the first expression
after the if statement is conditional. However, it is much too easy to make a
mistake this way, as demonstrated in the following snippet:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
cout << "Age can't be negative; using 0" << endl;
nAge = 0;

// program continues

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: if | Could Make My Own Decisions 73

You may think that if nage is less than 0, this program snippet outputs a mes-
sage and resets nAge to zero. In fact, the program sets naAge to zero no matter
what its original value. The preceding snippet is equivalent to the following:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
{
cout << "Age can't be negative; using 0" << endl;
}
nAge = 0;

// program continues

It’s clear from the comments and the indent that the programmer really
meant the following:

// Can't have a negative age. If age is less than zero...
if (nAge < 0)
{
cout << "Age can't be negative; using 0" << endl;
nAge = 0;
}

// program continues

The C++ compiler can’t catch this type of mistake. It’s safer just to always
gys—‘“f" supply the braces.

C++ treats all white space the same. It ignores the alighment of expressions on
the page.
NING/
g‘s‘ Always use braces to enclose the statements after an if statement, even if
there is only one. You'll generate a lot fewer errors that way.

What else Is There?

C++ allows the program to specify a clause after the keyword else that is
executed if the conditional expression is false, as in the following example:

if (m > n) // if m is greater than n...
{

// ...then do this stuff;...
}
else // ...otherwise, ...
{

// ...do this stuff

www.it-ebooks.info

http://www.it-ebooks.info/

74 Part Il: Writing a Program: Decisions, Decisions

The else clause must appear immediately after the close brace of the i f
clause. In use, the else appears as shown in the following snippet:

if (nAge < 0)

{
cout << "Age can't be negative; using 0." << endl;
nAge = 0;

}

else

{
cout << "Age of " << nAge << " entered" << endl;

}

In this case, if nAge is less than zero, the program outputs the message "Age
can't be negative; using 0." and then sets nAge to 0. This corre-
sponds to the flow of control shown in the first image in Figure 6-2. If nage is
not less than zero, the program outputs the message "Age of x entered",
where x is the value of nAge. This is shown in the second image in Figure 6-2.

gif (nAge < 0) For nAge =-1
{
cout << "Age can’t be negative; using 0."
<< endl;
nAge 0;
}
else
{
cout << "Age of " << nAge
<< " entered" << endl;
}
if (nAge < 0) For nAge =26
{
cout << "Age can’t be negative; using 0."
I << endl;
Figure 6-2: nAge O0;
Flow of con- }
trol through else
anif and {
cout << "Age of " << nAge
elssafor Jl << " entered" << endl;
two differ-)
ent values
of nAge. ﬂ
]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: if | Could Make My Own Decisions 75

Logical expressions: Do they have any value?

At the beginning of this chapter, | called the comparison symbols < and > operators, and | described
statements containing these operators as expressions. But expressions have a value and a type.
What is the value and type of an expression likem > n? In C++, the type of this expressionis bool
(named in honor of George Boole, the inventor of Logic Calculus). Expressions of type boo1l can
have only one of two values: true or else false. Thus, you can write the following:

bool bComparison = m > n;

For historical reasons, there is a conversion between the numerical types like int and char and
bool:Avalue of 0is considered the same as £alse. Any non-zero value is considered the same
as true.

Thus, the i f statement
if (cCharacter)

{
// execute this code if cCharacter is not NULL
}
is the same as
if (cCharacter != '\0')
{
// execute this code if cCharacter is not NULL
}

Assigning a true/false value to a character may seem a bit obtuse, but you'll see in Chapter 16 that
it has a very useful application.

Nesting if Statements
<MECLD _ . .

The braces of an if or an else clause can contain another if statement.
These are known as nested if statements. The following NestedlIf program
shows an example of a nested if statement in use.

// NestedIf - demonstrate a nested if statement
//

#include <cstdio>

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{

www.it-ebooks.info

http://www.it-ebooks.info/

76 Part Il: Writing a Program: Decisions, Decisions

// enter your birth year

int nYear;

cout << "Enter your birth year: ";
cin >> nYear;

// Make determination of century
if (nYear > 2000)

{
cout << "You were born in the 21st century"
<< endl;
}
else
{

cout << "You were born in ";
if (nYear < 1950)
{

cout << "the first half";

}
else
{
cout << "the second half";
}
cout << " of the 20th century"

<< endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program starts by asking the user for his birth year. If the birth year is
greater than 2000, then the program outputs the string "You were born in

f)ﬂfﬂ the 21st century".

The year 2000 belongs to the 20th century, not the 21st.

If the birth year is not greater than 2000, then the program enters the else
clause of the outer if statement. This clause starts by outputting the string
"You were born in" before comparing the birth year to 1950. If the birth
year is less than 1950, then the program adds the first "the first half".
If the birth year is not less than 1950, then the else clause of the inner i f
statement is executed, which tacks on the phrase "the second half".
Finally, the program adds the concluding phrase "of the 20th century"
to whatever has been output so far.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: if | Could Make My Own Decisions 77

In practice, the output of the program appears as follows for three possible
values for birth year. First, 2002 produces the following:

Enter your birth year: 2002

You were born in the 21st century

Press any key to continue .
My own birth year of 1956 generates the following:

Enter your birth year: 1956

You were born in the second half of the 20th century
Press any key to continue .
Finally, my father’s birth year of 1932 generates the third possibility:
Enter your birth year: 1932

You were born in the first half of the 20th century

Press any key to continue .

I could use a nested if to avoid the unnecessary comparisons in the
NestedBranchDemo program:

if (nOperandl > nOperand2)

{
cout << "Argument 1 is greater than argument 2"
<< endl;
}
else
{
if (nOperandl < nOperand2)
{
cout << "Argument 1 is less than argument 2"
<< endl;
}
else
{
cout << "Argument 1 is equal to argument 2"
<< endl;
}
}

This version performs the first comparison just as before. If noperand1 is

greater than noperand?, this snippet outputs the string "Argument 1 is
greater than argument 2".From here, however, control jumps to the
final closed brace, thereby skipping the remaining comparisons.

www.it-ebooks.info

http://www.it-ebooks.info/

78 Part Il: Writing a Program: Decisions, Decisions

If noperandl is not greater than noperand2, then the snippet performs a
second test to differentiate the case that noperandi is less than noperand2
from the case that they are equal in value.

Figure 6-3 shows graphically the flow of control for the NestedBranchDemo
program for the same input of 5 and 10 described earlier in the chapter.

// enter operandl and operand2

int nOperandl;

int nOperand2;

cout << "Enter argument 1:";

cin >> nOperandl; Entered 5
cout << "Enter argument 2:";

cin >> nOperand2; Entered 10

// now print the results
if (nOperandl > nOperand2) 5> 10is false
{

cout << "Argument 1 is greater than argument 2"

<< endl;
]
}
Figure 6-3: else
The path { :
taken by the if a(nOperandl < nOperand?2) 5<10is true
Nested- éout << "Argument 1 is less than argument 2"
BrgnCh' << endl;
emo }
program else
when the {
user enters cout << "Argument 1 is equal to argument 2"
5and 10 << endl;
as before.))
]

£3

Performing the test for equality is unnecessary: If noperand1 is neither
greater than nor less than noperand?2, then it must be equal.

Compound Conditional Expressions

The three logical operators that can be used to create what are known as
compound conditional expressions are shown in Table 6-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: if | Could Make My Own Decisions

Figure 6-4:
The evalu-
ation of the
compound
expression
0 <n

&& NI <

5 for three
different
values of n.
|

Table 6-2 The Logical Operators
Operator Meaning
&& AND; true if the left- and right-hand arguments are true; otherwise, false

Il OR; true if either the left- or right-hand arguments is true; otherwise, false

| NOT; true if the argument on the right is false; otherwise, false

The programmer is asking two or more questions in a conditional compound
expression, as in the following code snippet:

// make sure that nArgument is between 0 and 5
if (0 < nArgument && nArgument < 5)

Figure 64 shows how three different values of nArgument are evaluated by
this expression.

0 < nArgument && nArgument <5
where nArgument = -1
0<-18&&-1<5
false && true
false
where nArgument =7
0<7&&7<5
true&&false
false
where nArgument = 2
0<28&&2<5
true && true
true

By the way, the snippet

if (m < nArgument && nArgument < n)
is the normal way of coding the expression "if nArgument is between
m and n, exclusive". This type of test does not include the end points —

that is, this test will fail if nArgument is equal to m or n. Use the <= compari-
son operator if you want to include the end points.

www.it-ebooks.info

79

http://www.it-ebooks.info/

80

Part Il: Writing a Program: Decisions, Decisions

Short circuit evaluation

Look carefully at a compound expression involving a logical AND like
if (exprl && expr2)

If expr1l is false, then the overall result of the compound expression is false, irrespective of
the value of expr2. In fact, C++ doesn't even evaluate expr2 ifexprlis false— false &&
anything is false. This is known as short circuit evaluation because it short circuits around
executing unnecessary code in order to save time.

The situation is exactly the opposite for the logical OR:
if (exprl || expr2)
If expr1l is true, then the overall expression is true, irrespective of the value of expr2.

Short circuit evaluation is a good thing since the resulting programs execute more quickly;
however, it can lead to unexpected results in a few cases. Consider the following admittedly con-
trived case:

if (m <= nArgument && nArgument++ <= n)

The intent is to test whether nArgument falls into the range [m, n] and to increment
nArgument as part of the test. However, short circuit evaluation means that the second test
doesn't get executed ifm <= nArgument is not true. If the second test is never evaluated,
then nArgument doesn't get incremented.

Remember: If you didnt follow that, just remember the following: Don‘t put an expression that has
a side effect like incrementing a variable in a conditional.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7
Switching Paths

In This Chapter
Using the switch keyword to choose between multiple paths
Taking a default path
Falling through from one case to another

0ften programs have to decide between a very limited number of
options: Either m is greater than n or it’s not; either the lug nut is pres-
ent or it's not. Sometimes, however, a program has to decide between a large
number of possible legal inputs. This could be handled by a series of i £
statements, each of which tests for one of the legal inputs. However, C++ pro-
vides a more convenient control mechanism for selecting among a number of
options known as the switch statement.

Controlling Flow with
the switch Statement

The switch statement has the following format:

switch (expression)
{
case constl:
// go here if expression == constl
break;

case const2:

// go here if expression == const2
break;
case const3: // repeat as often as you like
// go here if expression == const3
break;
default:

// go here if none of the other cases match

www.it-ebooks.info

http://www.it-ebooks.info/

8 2 Part Il: Writing a Program: Decisions, Decisions

Upon encountering the switch statement, C++ evaluates expression. It
then passes control to the case with the same value as expression. Control
continues from there to the break statement. The break transfers control to
the } at the end of the switch statement. If none of the cases match, control
passes to the default case.

The default case is optional. If the expression doesn’t match any case and no
default case is provided, control passes immediately to the }.

Consider the following example code snippet:

int nMonth;
cout << "Enter the number of the month: ";
cin >> nMonth;

switch (nMonth)
{

case 1:
cout << "It's January" << endl;
break;

case 2:
cout << "It's February" << endl;;
break;

case 3:
cout << "It's March" << endl;;
break;

case 4:
cout << "It's April" << endl;;
break;

case b5:
cout << "It's May" << endl;;
break;

case 6:
cout << "It's June" << endl;;
break;

case 7:
cout << "It's July" << endl;;
break;

case 8:
cout << "It's August" << endl;;
break;

case 9:
cout << "It's September"<< endl;;
break;

case 10:
cout << "It's October" << endl;;
break;

case 11:
cout << "It's November" << endl;;
break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Switching Paths 83

case 12:
cout << "It's December" << endl;;
break;
default:
cout << "That's not a valid month" << endl;;

}
I got the following output from the program when inputting a value of 3:

Enter the number of the month: 3
It's March
Press any key to continue

Figure 7-1 shows how control flowed through the switch statement to gener-
ate the earlier result of “March.”

int nMonth;
cout << “Enter the number of the month: ”;
cin >> nMonth; For nMonth =3

switch (nMonth)

{

case 1:
cout << “It’s January” << endl;;
break;

case 2:
cout << “It’s February” << endl;;
break;

case 3:
cout << “It’s March” << endl;;
break;

case 4:

cout << “It’s April”

break;

|
Figure 7-1:
Flow
through a
switch
statement
listing the
months of
the year
where the
operator
enters
month 3.
]

dl;;

ecember” << endl;;

default:
cout << “That’s not a valid month” << endl;;

www.it-ebooks.info

http://www.it-ebooks.info/

8 4 Part Il: Writing a Program: Decisions, Decisions

\NG/
R

A switch statement is not like a series of i f statements. For example, only
constants are allowed after the case keyword (or expressions that can be
completely evaluated at build time). You cannot supply an expression after a
case. Thus, the following is not legal:

// cases cannot be expressions; in general, the
// following is not legal
switch(n)
{
case m:
cout << "n is equal to m" << endl;
break;
case 2 * m:
cout << "n is equal to 2m" << endl;
break;
case 3 * m:
cout << "n is equal to 3m" << endl;
}

Each of the cases must have a value at build time. The value of m is not
known until the program executes.

Control Fell Through: Did 1 break It?

Just as the default case is optional, the break at the end of each case is also
optional. Without the break statement, however, control simply continues
on from one case to the next. Programmers say that control falls through.
This is most useful when two or more cases are handled in the same way.

For example, C++ may differentiate between upper- and lowercase, but most
humans do not. The following code snippet prompts the user to enter a C to
create a checking account and an S to create a savings account. However, by
providing extra case statements, the snippet handles lowercase ¢ and s the
same way:

cout << "Enter C to create checking account, "
<< "S to create a saving account, "
<< "and X to exit: ";

cin >> cAccountType;

switch (cAccountType)

{
case 'S': // upper case S
case 's': // lower case s
// creating savings account
break;
case 'C': // upper case C
case 'c': // lower case c

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Switching Paths 8 5

// create checking account

break;
case 'X': // upper case X
case 'x': // lower case X
// exit code goes here
break;
default:

cout << "I didn't understand that" << endl;

Implementing an Example Calculator
with the switch Statement

WE CD
Qﬁ

The following SwitchCalculator program uses the switch statement to imple-
ment a simple calculator:

// SwitchCalculator - use the switch statement to
// implement a calculator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
// enter operandl op operand2
int nOperandl;
int nOperand2;
char cOperator;
cout << "Enter 'valuel op value2'\n"
<< "where op is +, -, *, / or %:" << endl;
cin >> nOperandl >> cOperator >> nOperand2;

// echo what the operator entered
cout << nOperandl << " "

<< cOperator << " "

<< nOperand2 << " = ";

// now calculate the result; remember that the
// user might enter something unexpected
switch (cOperator)

{

www.it-ebooks.info

http://www.it-ebooks.info/

8 6 Part Il: Writing a Program: Decisions, Decisions

A\

case '+':
cout << nOperandl + nOperand2;
break;

case '-':
cout << nOperandl - nOperand2;
break;

case '*':

case 'X':

case 'X':
cout << nOperandl * nOperand2;
break;

case '/':
cout << nOperandl / nOperand2;
break;

case '%':
cout << nOperandl % nOperand2;
break;

default:
// didn't understand the operator
cout << " is not understood";

}
cout << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program begins by prompting the user to enter "valuel op value2"
where op is one of the common arithmetic operators +, -, *, / or %. The pro-
gram then reads the variables noperandil, cOperator, and nOperand?2.

The program starts by echoing back to the user what it read from the key-
board. It follows this with the result of the calculation.

Echoing the input back to the user is always a good programming practice. It
gives the user confirmation that the program read his input correctly.

The switch on cOoperator differentiates between the operations that this
calculator implements. For example, in the case that coperatoris '+', the
program reports the sum of noperandl and nOperand?2.

Because 'X' is another common symbol for multiply, the program accepts
'+ 'x' and 'x' all as synonyms for multiply using the case “fall through”
feature. The program outputs an error message if coperator doesn’t match
any of the known operators.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Switching Paths

The output from a few sample runs appears as follows:

Enter 'valuel op value2'
where op is +, -, *, / or %:
22 X 6

22 X 6 = 132

Press any key to continue .

Enter 'valuel op value2'

where op is +, -, *, / or %:
22 / 6
22 / 6 = 3

Press any key to continue .

Enter 'valuel op value2'

where op is +, -, *, / or %:
22 % 6
22 % 6 = 4

Press any key to continue .

Enter 'valuel op value2'

where op is +, -, *, / or %:
22 $ 6
22 $ 6 = 1is not understood

Press any key to continue .

Notice that the final run executes the default case of the switch statement
since the character '$' did not match any of the cases.

www.it-ebooks.info

87

http://www.it-ebooks.info/

Chapter 8
Debugging Your Programs, Part |

In This Chapter
Avoiding introducing errors needlessly
Creating test cases
Peeking into the inner workings of your program
Fixing and retesting your programs

ou may have noticed that your programs often don’t work the first time
you run them. In fact, [have seldom, if ever, written a nontrivial C++ pro-
gram that didn’t have some type of error the first time I tried to execute it.

This leaves you with two alternatives: You can abandon a program that has
an error, or you can find and fix the error. | assume that you want to take the
latter approach. In this chapter, I first help you distinguish between types

of errors and how to avoid errors in the first place. Then you get to find

and eradicate two bugs that originally plagued the Conversion program in
Chapter 3.

Identifying Types of Errors

Two types of errors exist — those that C++ can catch on its own and those
that the compiler can’t catch. Errors that C++ can catch are known as
compile-time or build-time errors. Build-time errors are generally easier to

fix because the compiler points you to the problem, if you can understand
what the compiler’s telling you. Sometimes the description of the problem
isn’t quite right (it's easy to confuse a compiler), but you start to understand
better how the compiler thinks as you gain experience.

Errors that C++ can’t catch don’t show up until you try to execute the pro-
gram during the process known as unit testing. During unit testing, you exe-
cute your program with a series of different inputs, trying to find inputs that
make it crash. (You don’t want your program to crash, of course, but better
that you — rather than your user — find and correct these cases.)

www.it-ebooks.info

http://www.it-ebooks.info/

90 Part Il: Writing a Program: Decisions, Decisions

A\

The errors that you find by executing the program are known as run-time
errors. Run-time errors are harder to find than build-time errors because you
have no hint of what’s gone wrong except for whatever errant output the pro-
gram might generate.

The output isn’t always so straightforward. For example, suppose that the
program lost its way and began executing instructions that aren’t even part
of the program you wrote. (That happens a lot more often than you might
think.) An errant program is like a train that’s jumped the track — the pro-
gram doesn’t stop executing until it hits something really big. For example,
the CPU may just happen to execute a divide by zero — this generates an
alarm that the operating system intercepts and uses as an excuse to termi-
nate your program.

An errant program is like a derailed train in another way — once the program
starts heading down the wrong path, it never jumps back onto the track.

Not all run-time errors are quite so dramatic. Some errant programs stay on
the tracks but generate the wrong output (almost universally known as “gar-
bage output”). These are even harder to catch since the output may seem
reasonable until you examine it closely.

In this chapter, you will debug a program that has both a compile time and a
run-time error — not the “jump off the track and start executing randomly”
variety but more of the generate garbage kind.

Avoiding Introducing Errors

The easiest and best way to fix errors is to avoid introducing them into your
programs in the first place. Part of this is just a matter of experience, but
adopting a clear and consistent programming style helps.

Coding with style

We humans have a limited amount of CPU power between our ears. We need
to direct what CPU cycles we do have toward the act of creating a working
program. We shouldn’t get distracted by things like indentation.

This makes it important that you be consistent in how you name your vari-
ables, where you place open and close braces, how much you indent, and
so on. This is called your coding style. Develop a style and stick to it. After a
while your coding style will become second nature. You'll find that you can
code your programs in less time and you can read the resulting programs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Debugging Your Programs, Part |

3

3

£3

with less effort if your coding style is clear and consistent. This translates
into fewer coding errors.

I recommend that as a beginner you mimic the style you see in this book. You
can change it later when you've gained some experience of your own.

When working on a program with several programmers, it’s just as important
that you all use the same style to avoid a Tower of Babel effect with conflict-
ing and confusing styles. Every project that I've ever worked on had a coding
manual that articulated sometimes in excruciating detail exactly how an i f
statement was to be laid out, how far to indent for case, and whether to put
a blank line after the break statements, to name just a few examples.

Fortunately, Code::Blocks can help. The Code::Blocks editor understands
C++. It will automatically indent the proper number of spaces for you after
an open brace, and it will outdent when you type in the closed brace to align
statements properly.

You can run the ‘Source code formatter’ plug-in that comes with Code::Blocks.
With the file you are working on open and the project active, select Plugins=>
Source Code Formatter (AStyle). This will reformat the current file using the
standard indention rules.

C++ doesn’t care about indention. All whitespace is the same to it. Indention is
there to make the resulting program easier to read and understand.

Establishing variable naming conventions

There is more debate about the naming of variables than about how many
angels would fit on the head of a pin. I use the following rules when naming
variables:

1~ The first letter is lowercase and indicates the type of the variable. n for
int, c for char, b for bool. You'll see others in later chapters. This is very
helpful when using the variable because you immediately know its type.

1+ Names of variables are descriptive. No variables names like x or y. I'm
too old — I need something that I can recognize when I try to read my
own program tomorrow or next week or next year.

1+ Multiple word names use uppercase at the beginning of each word
with no underscores between words. | save underscores for a particu-
lar application, which I describe in Chapter 12.

I expand on these rules in chapters involving other types of C++ objects
(such as functions in Chapter 11 and classes in Chapter 19).

www.it-ebooks.info

91

http://www.it-ebooks.info/

92 Part Il: Writing a Program: Decisions, Decisions

Finding the First Ervor with a Little Help

WE CD
N

My first version of the Conversion program appeared as follows (it appears on
the enclosed CD-ROM as ConversionErrorl):

//

// Conversion - Program to convert temperature from

// Celsius degrees into Fahrenheit:

// Fahrenheit = Celsius * (212 - 32)/100 + 32
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])

{
// enter the temperature in Celsius

int nCelsius;
cout << "Enter the temperature in Celsius: ";

// convert Celsius into Fahrenheit values
int nFahrenheit;
nFahrenheit = 9/5 * nCelsius + 32;

// output the results (followed by a NewLine)
cout << "Fahrenheit value is: ";
cout << nFahrenheit << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

During the build step, I get my first indication that there's a problem —
Code::Blocks generates the following warning message:

In function 'int main(int char**)':
warning: 'nCelsius' is used uninitialized in this function
=== Build finished: 0 errors, 1 warnings ===

How bad can this be? After all, it’s just a warning, right? So I decide to push
forward and execute the program anyway.

Sure enough, I get the following meaningless output without giving me a
chance to enter the Celsius temperature:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Debugging Your Programs, Part |

\\J

Enter the temperature in Celsius:
Fahrenheit value is:110
Press any key to continue .

Referring to the prompt, I can see that I have forgotten to input a value for
nCelsius. The program proceeded forward calculating a Fahrenheit tem-
perature based upon whatever garbage happened to be in nCelsius when it
was declared.

Adding the following line immediately after the prompt gets rid of the warn-
ing and solves the first problem:

cin >> nCelsius;

The moral to this story is “Pay attention to warnings!” A warning almost
always indicates a problem in your program. You shouldn’t even start to test
your programs until you get a clean build: no errors and no warnings. If that’s
not possible, at least convince yourself that you understand the reason for
every warning generated.

Finding the Run-Time Error

A\

Once all the warnings are gone, it’s time to start testing. Good testing
requires an organized approach. First, you decide the test data that you're
going to use. Next, you determine what output you expect for each of the
given test inputs. Then you run the program and compare the actual results
with the expected results. What could be so hard?

Formulating test data

Determining what test data to use is part engineering and part black art. The
engineering part is that you want to select data such that every statement in
your program gets executed at least once. That means every branch of every
if statement and every case of every switch statement gets executed at
least once.

Having every statement execute at least once is called full statement coverage
and is considered the minimum acceptable testing criteria. The chance of pro-
gramming mistakes making it into the field is just too high without executing
every statement at least once under test conditions.

www.it-ebooks.info

93

http://www.it-ebooks.info/

94 Part Il: Writing a Program: Decisions, Decisions

A\

This simple program has only one path and contains no branches.

The black art is looking at the program and determining where errors might
lie in the calculation. For some reason, I just assume that every test should
include the key values of 0 and 100 degrees Celsius. To that, | will add one
negative value and one value in the middle between 0 and 100. Before I start,
I use a handy-dandy conversion program to look up the equivalent tempera-
ture in Fahrenheit, as shown in Table 8-1.

Table 8-1 Test Data for the Conversion Program
Input Celsius Resulting Fahrenheit
0 32
100 212
-40 -40
50 122

Executing the test cases

Running the tests is simply a matter of executing the program and supplying
the input values from Table 8-1. The first case generates the following results:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press any key to continue .

So far, so good. The second data case generates the following output:

Enter the temperature in Celsius: 100
Fahrenheit value is: 132
Press any key to continue .

This doesn’t match the expected value. Houston, we have a problem.
The value of 132 degrees is not completely unreasonable. That's why it’s

important to decide what the expected results are before you start. Otherwise,
reasonable but incorrect results can slip by undetected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8: Debugging Your Programs, Part | 9 5

Seeing what's going on in your program

What could be wrong? I check over the calculations and everything looks
fine. I need to get a peek at what's going on in the calculation. A way to get
at the internals of your program is to add output statements. I want to print
the values going into each of the calculations. I also need to see the interme-
diate results. To do so, I break the calculation into its parts that I can print.
Keep the original expression as a comment so you don’t forget where you
came from.

This version of the program is included on the enclosed CD-ROM as
ConversionError2.

This version of the program includes the following changes:

// nFahrenheit = 9/5 * nCelsius + 32;

cout << "nCelsius = " << nCelsius << endl;
int nFactor = 9 / 5;

cout << "nFactor = " << nFactor << endl;
int nIntermediate = nFactor * nCelsius;

cout << "nIntermediate = " << nIntermediate << endl;
nFahrenheit = nIntermediate + 32;
cout << "nFahrenheit = " << nFahrenheit << endl;

I display the value of ncelsius to make sure that it got read properly from
the user input. Next, [try to display the intermediate results of the conver-
sion calculation in the same order that C++ will. First to go is the calculation
9 / 5, whichIsave into a variable I name nFactor (the name isn’t impor-
tant). This value is multiplied by ncelsius, the results of which I save into
nIntermediate. Finally, this value will get added to 32 to generate the
result, which is stored into nFahrenheit.

By displaying each of these intermediate values, I can see what’s going on in
my calculation. Repeating the error case, I get the following results:

Enter the temperature in Celsius: 100
nCelsius = 100

nFactor = 1

nIntermediate = 100

nFahrenheit = 132

Fahrenheit value is: 132

Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

96 Part Il: Writing a Program: Decisions, Decisions

A\

\NG/
&

Right away I see a problem: nFactor is equal to 1 and not 9 / 5. Then the
problem occurs to me; integer division rounds down to the nearest integer
value. Integer 9 divided by integer 5 is 1.

I can avoid this problem by performing the multiply before the divide. There
will still be a small amount of integer round-off, but it will only amount to a
single degree.

Another solution would be to use decimal variables that can retain fractional
values. You'll see that solution in Chapter 14.

The resulting formula appears as follows:
nFahrenheit = nCelsius * 9/5 + 32;

This is the version of the calculation that appears on the CD-ROM in the origi-
nal Conversion program.

Now rerunning the tests, I get the following:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press any key to continue .

Enter the temperature in Celsius: 100
Fahrenheit value is: 212
Press any key to continue .

Enter the temperature in Celsius: -40
Fahrenheit value is: -40
Press any key to continue .

Enter the temperature in Celsius: 50

Fahrenheit value is: 122

Press any key to continue .
This matches the expected values from Table 8-1.

Notice that, after making the change, I started over from the beginning, sup-

plying all four test cases — not just the values that didn’t work properly the
first time. Any changes to the calculation invalidate all previous tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Part Il

Becoming a
Functional
Programmer

The Sth Wave By Rich Tennant
[erRarErNanT,

&2 3

S - - ot - T = =. -
“We’re vesearching molecular/digital technology
that moves massive amounts of information
across binary pathways that interact with
free-agent programs capable of making

decisions and performing logical tasks. We
see applications in veally high-end doorbells.”

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

N ow that you've mastered the basics of simple

expressions, it's time for you to learn about loops,
how to get into them, and, even more importantly, how to
get out of them. You'll also see how to break a large pro-
gram into smaller components that are easier to program.
In the last chapter of this part, you'll see some more tech-
niques for debugging your programs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9
while Running in Circles

In This Chapter
Looping using the while statement
Breaking out of the middle of a loop
Avoiding the deadly infinite loop
Nesting loops within loops

Decision making is a fundamental part of almost every program you
write, which I initially emphasize in Chapter 1. However, another funda-
mental feature that is clear — even in the simple Lug Nut Removal algorithm —
is the ability to loop. That program turned the wrench in a loop until the lug
nut fell off, and it looped from one lug nut to the other until the entire wheel
came off. This chapter introduces you to two of the three looping constructs
in C++.

Creating a while Loop

The while loop has the following format:

while (expression)
{

// stuff to do in a loop
}

// continue here once expression is false

When a program comes upon a while loop, it first evaluates the expression
in the parentheses. If this expression is true, then control passes to the first
line inside the {. When control reaches the }, the program returns back to
the expression and starts over. Control continues to cycle through the code
in the braces until expression evaluates to false (or until something else
breaks the loop — more on that a little later in this chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

’ 00 Part lll: Becoming a Functional Programmer

s@ﬂﬂf The following Factorial program demonstrates the while loop:

Factorial(N) = N * (N-1) * (N-2) * ... * 1

//

// Factorial - calculate factorial using the while
// construct.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
// enter the number to calculate the factorial of
int nTarget;
cout << "This program calculates factorial.\n"
<< "Enter a number to take factorial of: ";
cin >> nTarget;

// start with an accumulator that's initialized to 1
int nAccumulator = 1;

int nvalue = 1;

while (nvValue <= nTarget)

{
cout << nAccumulator << " * "
<< nvValue << " equals ";
nAccumulator = nAccumulator * nvalue;
cout << nAccumulator << endl;
nvalue++;
}

// display the result
cout << nTarget << " factorial is "
<< nAccumulator << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The program starts by prompting the user for a target value. The program reads
this value into nTarget. The program then initializes both nAccumulator
and nvalue to 1 before entering the loop.

(Pay attention — this is the interesting part.) The program compares nvalue

to nTarget. Assume that the user had entered a target value of 5. On the
first loop, the question becomes, “Is 1 less than or equal to 5?” The answer is

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: while Running in Circles ’ 0 ’

|
Figure 9-1:
Control
continues

to cycle
through

the body of
awhile
loop until
the con-
ditional
expression
evaluates to
false.
|

obviously true, so control flows into the loop. The program outputs
the value of nAccumulator (1) and nvalue (also 1) before multiplying
nAccumulator by nvalue and storing the result back into naccumulator.

The last statement in the loop increments nvalue from 1 to 2.

That done, control passes back up to the while statement where nvalue
(now 2) is compared to nTarget (still 5). “Is 2 less than or equal to 5?”
Clearly, yes; so control flows back into the loop. nAccumulator is now set to
the result of nAccumulator (1) times nvalue (2). The last statement incre-
ments nvalue to 3.

This cycle of fun continues until nvalue reaches the value 6, which is no
longer less than or equal to 5. At that point, control passes to the first state-
ment beyond the closed brace }. This is shown graphically in Figure 9-1.

while (nValue < nTarget)
{ - FornValue <=nTarget is true

cout << nAccumulator << "™ * "

<< nValue << " equals ";

nAccumulator nAccumulator * nValue;
cout << nAccumulator << endl;
nValue++;
}

{ FornValue <=nTarget is false
cout << nAccumulator << " * "
<< nValue << " equals ";
nAccumulator nAccumulator * nValue;
cout << nAccumulator << endl;
nValue++;
}

zwhlle (nValue < nTarget)

The actual output from the program appears as follows for an input value of 5:

This program calculates factorial.
Enter a number to take factorial of: 5
1 * 1 equals 1

1 * 2 equals 2

2 * 3 equals 6

6 * 4 equals 24

24 * 5 equals 120

5 factorial is 120

Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

’ 02 Part lll: Becoming a Functional Programmer

BER You are not guaranteed that the code within the braces of awhile loop is
f’“ executed at all: If the conditional expression is false the first time it’s evalu-
ated, control passes around the braces without ever diving in. Consider, for
example, the output from the Factorial program when the user enters a target
value of 0:

This program calculates factorial.
Enter a number to take factorial of: 0
0 factorial is 1

Press any key to continue .

No lines of output are generated from within the loop because the condition
“Is nvalue less than or equal to 0" was false even for the initial value of 1.
The body of the while loop was never executed.

Breaking out of the Middle of a Loop

Sometimes the condition that causes you to terminate a loop doesn’t occur
until somewhere in the middle of the loop. This is especially true when test-
ing user input for some termination character. C++ provides these two con-
trol commands to handle this case:

»” break exits the inner most loop immediately.
v continue passes control back to the top of the loop.
The following Product program demonstrates both break and continue.

This program multiplies positive values entered by the user until the user
enters a negative number. The program ignores zero.

//

// Product - demonstrate the use of break and continue.
//

#include <cstdio>

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
// enter the number to calculate the factorial of
cout << "This program multiplies the numbers\n"
<< "entered by the user. Enter a negative\n"
<< "number to exit. Zeroes are ignored.\n"
<< endl;

int nProduct = 1;

while (true)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: while Running in Circles ’ 03

A\

int nvalue;
cout << "Enter a number to multiply: ";
cin >> nvalue;
if (nvalue < 0)
{
cout << "Exiting." << endl;

break;

}

if (nvalue == 0)

{
cout << "Ignoring zero." << endl;
continue;

}

// multiply accumulator by this value and
// output the result

cout << nProduct << " * " << nValue;
nProduct *= nvalue;

cout << " is " << nProduct << endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The program starts out with an initial value of nProduct of 1. The program
then evaluates the logical expression true to see if it’s true. It is.

There aren’t too many rules that hold in C++ without exception, but here’s
one: true is always true.

The program then enters the loop to prompt the user for another value to
multiply times nProduct, the accumulated product of all numbers entered
so far. If the value entered is negative, then the program outputs the phrase
"Exiting." before executing the break, which passes control out of the loop.

If the value entered is not negative, control passes to the second if statement.
If nvalue is equal to zero, then the program outputs the messages "Ignoring
zero. " before executing the cont inue statement which passes control back
to the top of the loop to allow the user to enter another value.

If nvalue is neither less than zero nor zero, then control flows down to
where nvalue is multiplied by nProduct using the special assignment oper-
ator (see Chapter 4 if you don’t remember this one):

nProduct *= nvalue;

www.it-ebooks.info

http://www.it-ebooks.info/

’ 04 Part lll: Becoming a Functional Programmer

Why is “break” necessary?

You might be tempted to wonder why break is really necessary. What if | had coded the loop in
the Product example program as

int nProduct = 1;
int nvalue = 1;
while (nvalue > 0)

{
cout << "Enter a number to multiply: ";
cin >> nvalue;
cout << nProduct << " * " << nvValue;
nProduct *= nvValue;
cout << " is " << nProduct << endl;

}

You might think that as soon as the user enters a negative value for nvalue, the expression
nvalue > 0 isno longer true and control immediately exits the loop — unfortunately, this is
not the case.

The problem is that the logical expression is only evaluated at the beginning of each pass through
the loop. Control doesn’timmediately fly out of the body of the loop as soon as the condition ceases
to be true. An if statement followed by a break allows me to move the conditional expression
into the body of the loop where the value of nvalue is assigned.

This expression is the same as:
nProduct = nProduct * nvalue;
The output from a sample run from this program appears as follows:

This program multiplies the numbers
entered by the user. Enter a negative
number to exit. Zeroes are ignored.

Enter a number to multiply: 2
1 *2 is 2

Enter a number to multiply: 5
2 * 5 is 10

Enter a number to multiply: 0
Ignoring zero.

Enter a number to multiply: 3
10 * 3 is 30

Enter a number to multiply: -1
Exiting.

Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: while Running in Circles ’ 05

Nested Loops

The body of a loop can itself contain a loop in what is known as nested loops. The
inner loop must execute to completion during each time through the outer loop.

I have created a program that uses nested loops to create a multiplication
table of the form:

0 1 2 3 4 5 6 7 8 9
0 0*0 0*1 0*2 0*3 0*4 O0*5 0*6 0*7 0*8 0*9
1l o) s Bl R L7 e [(S A e L)
20 25 Z2Wil 297 2R 2Tl 25 Z2BE 277 245 250
//... and so on...

You can see that for row 0, the program will need to iterate from column 0
through column 9. The program will repeat the process for row 1 and again for
row 2 and so on right down to row 9. This implies the need for two loops: an inner
loop to iterate over the columns and a second outer loop to iterate over the rows.
Each position in the table is simply the row number times the column number.

This is exactly how the following NestedLoops program works:

//

// NestedLoops - this program uses a nested loop to
// calculate the multiplication table.
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{

// display the column headings

int nColumn = 0;

cout << " Og
while (nColumn < 10)
{

// set the display width to two characters
// (even for one digit numbers)
cout.width(2) ;

// now display the column number
cout << nColumn << " ";

// increment to the next column
nColumn++;
}

cout << endl;
// now go loop through the rows
int nRow = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

’ 06 Part lll: Becoming a Functional Programmer

while (nRow < 10)

{
// start with the row value

cout << nRow << " - ";

// now for each row, start with column 0 and
// go through column 9
ncolumn = 0;
while (nColumn < 10)
{
// display the product of the column*row
// (use 2 characters even when product is
// a single digit)
cout.width(2);
cout << nRow * nColumn << " ";

// go to next column
ncColumn++;
}

// go to next row
NnRow++;
cout << endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The first section creates the column headings. This section initializes nColumn
to 0. It then iterates through ncolumn printing out its value separated by

a space until ncolumn reaches 10. At this point, the program exits the first
loop and then tacks a new line on the end to finish the row. This is shown
graphically in Figure 9-2.

Executing just this section alone generates the following output:
0 1 2 3 4 5 6 7 8 9

This program demonstrates an unfair advantage that [have. The expression
cout.width(2) sets the display width to two columns — C++ will pad a
space on the left for single-digit numbers. | know it’s cheating to make use of
a feature that I don’t present to the reader until Chapter 31, but it’s very dif-
ficult to get the columns to line up without resorting to fixed-width output.

The second set of loops, the nested loops, starts at nRow equal to 0. The pro-
gram prints out the row number followed by a dash before launching into a

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9: while Running in Circles ’ 0 7

second loop that starts ncolumn at 0 again and iterates it back up to 9. For
each pass through this inner loop, the program sets the output width to two
spaces and then displays nRow * ncolumn followed by a space.

// display the column headings

int nColumn 0;

while (nColumn < 10)

{
// now display the column number
cout << nColumn << " ";

// increment to the next column

nColumn++;

] }

Figure 9-2: //go to the next row

The first cout << endl;

loop outputs

the column

headings. Qutput: TN NN XN XN NN D
— put o 1 2 3 4 5 6 7 8 9
A\

The display width resets itself each time you output something, so it’s neces-
sary to set it back to two each time before outputting a number.

The program outputs a newline to move output to the next row each time it
increments nRow. This is shown graphically in Figure 9-3.

The output from this program appears as follows:

2 3 4 5 6 7 8 9
- 0O 0 0 0 0 0 O O
- 2 3 4 5 6 7 8 9
= 4 6 8 10 12 14 16 18

6 9

8

|
(=) (=) (=) (=) (=) (=) (=) (=) =) (=) (=)
Lok WNRE O

0
1
2
3
4
5 -
6
7
8
9 18 27 36 45 54 63 72 81

Press any key to continue .
There is nothing magic about 0 through 9 in this table. I could just have easily
created a 12 x 12 multiplication table (or any other combination) by changing
the comparison expression in the three while loops. However, for anything
larger than 10 x 10, you will need to increase the minimum width to accom-
modate the three-digit products. Use cout.width(3).

www.it-ebooks.info

http://www.it-ebooks.info/

’ 08 Part lll: Becoming a Functional Programmer

]
Figure 9-3:
The inner
loop iterates
from left to
right across
the col-
umns, while
the outer
loop iterates
from top

to bottom
down the
rows.
|

// now go loop through the rows
int nRow 0;
while (nRow < 10)

// start with the row wvalue
cout << nRow << " we

// now for each row, start with column 0 and

// go through column 9
nColumn 0;

(J;L
while (nColumn < 10)
{
cout << nRow * nColumn << " ";
// go to next column
nColumn++;

}

// go to next row
nRow++;
cout << endl;

}

Inner loop
A T a T T TR A T VA T
0*0 0*1 0*2 0*3 0*4 0*5 0*6 0*7 0*8 0*9
Outer
loop 10 11 1%2 1*3 1*4 1*5 1*6 1*7 1*8 1*9
2%0 2*1 2%2 2%3 2%4 2%5 2%6 2*7 2*8 2*9

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10
Looping for the Fun of It

In This Chapter
Introducing the for loop
Reviewing an example ForFactorial program
Using the comma operator to get more done in a single for loop

T]e most basic of all control structures is the while loop, which is the
topic of Chapter 9. This chapter introduces you its sibling, the for loop.
Though not quite as flexible, the for loop is actually the more popular of the
two — it has a certain elegance that is hard to ignore.

The for Parts of Every Loop

If you look again at the examples in Chapter 9, you'll notice that most loops
have four essential parts. (This feels like breaking down a golf swing into its
constituent parts.)

1+ The setup: Usually the setup involves declaring and initializing an
increment variable. This generally occurs immediately before the
while.

1+~ The test expression: The expression within the while loop that will
cause the program to either execute the loop or exit and continue
on. This always occurs within the parentheses following the keyword
while.

v The body: This is the code within the braces.

+* The increment: This is where the increment variable is incremented.
This usually occurs at the end of the body.

In the case of the Factorial program, the four parts looked like this:

int nvalue = 1; // the setup
while (nValue <= nTarget) // the test expression
{ // the body

cout << nAccumulator << " * "

www.it-ebooks.info

http://www.it-ebooks.info/

’ ’ 0 Part lll: Becoming a Functional Programmer

<< nvalue << " equals ";
nAccumulator = nAccumulator * nvalue;
cout << nAccumulator << endl;

nvalue++; // the increment
}
The for loop incorporates these four parts into a single structure using the
keyword for:
for (setup; test expression; increment)
{
body;
}

The flow is shown graphically in Figure 10-1.

1. As the CPU comes innocently upon the for keyword, control is diverted
to the setup clause.

2. Once the setup has been performed, control moves over to the test
expression.

3. (a) If the test expressionis true, control passes to the body of the
for loop.

(b) lf the test expression is false, control passes to the next state-
ment after the closed brace.

4. Once control has passed through the body of the loop, the CPU is forced
to perform a U-turn back up to the increment section of the loop.

That done, control returns to the test expression and back to Step 3.

1 2 5
for (setup; test expression; increment)
{ 3a - if test expressionis true
3b - if test expressionis false
| body;
Figure 10-1:
The flowin }[
and around
the for
loop.
|

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Looping for the Fun of It ’ ’ ’

3
This for loop is completely equivalent to the following while loop:
setup;
while(test expression)
{ body;

increment;

Looking at an Example

<NECD

The following example program is the Factorial program written as a for loop
(this program appears on the enclosed CD-ROM as ForFactorial):

//

// ForFactorial - calculate factorial using the for
// construct.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
// enter the number to calculate the factorial of
int nTarget;
cout << "This program calculates factorial.\n"
<< "Enter a number to take factorial of: ";
cin >> nTarget;

// start with an accumulator that's initialized to 1
int nAccumulator = 1;
for (int nvalue = 1; nvValue <= nTarget; nvalue++)
{

cout << nAccumulator << " * "

<< nvValue << " equals ";

nAccumulator = nAccumulator * nvValue;

cout << nAccumulator << endl;
}

// display the result
cout << nTarget << " factorial is "

www.it-ebooks.info

http://www.it-ebooks.info/

’ ’ 2 Part lll: Becoming a Functional Programmer

<< nAccumulator << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The logic of this ForFactorial program is virtually identical to its older
Factorial twin: The program prompts the user to enter a number to take the
factorial of. It then initializes naccumulator to 1 before entering the loop
that calculates the factorial.

ForFactorial creates an increment variable, nvalue, that it initializes to 1

in the setup clause of the for statement. That done, the program compares
nvalue to nTarget, the value entered by the user in the test expression
section of the for. If nvalue is less than or equal to nTarget, control enters
the body of the loop where nAccumulator is multiplied by nvalue.

That done, control flows back up to the increment section of the for loop.
This expression, nvalue++, increments nvalue by 1. Flow then moves to
the test expression, where nvalue is compared with nTarget and the
process repeated until eventually nvalue exceeds the value of nTarget. At
that point, control passes to the next statement after the closed brace.

The output from this program appears as follows:

This program calculates factorials of user input.
Enter a negative number to exit

Enter number: 5

5 factorial is 120

Enter number: 6

6 factorial is 720

Enter number: -1

Press any key to continue .

All four sections of the for loop are optional. An empty setup, body, or
increment section has no effect; that is, it does nothing. (That makes sense.)
An empty test expression is the same as true. (This is the only thing that
would make sense — if it evaluated to false, then the body of the for loop
would never get executed, and the result would be useless.)

A variable defined within the setup section of a for loop is only defined within
the for loop. It is no longer defined once control exits the loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Looping for the Fun of It ’ ’3

Getting More Done with
the Comma Operator

There is a seemingly useless operator that [haven’t mentioned (up until now,
that is) known as the comma operator. It appears as follows:

expressionl, expression2;

This says execute expressionl and then execute expression2. The resulting
value and type of the overall expression is the same as that of expressiona2.
Thus, I could say something like the following:

int i;
int j;
i=1,3=2;

Why would [ever want to do such a thing, you ask? Answer: You wouldn’t
except when writing for loops.

The following CommaOperator program demonstrates the comma operator in
combat. This program calculates the products of pairs of numbers. If the oper-
ator enters N, the program outputs 1 * N, 2 * N-1, 3 * N-2, and so on, all the
way up to N * 1. (This program doesn’t do anything particularly useful. You'll
see the comma operator used to effect when discussing arrays in Chapter 15.)

//

// CommaOperator - demonstrate how the comma operator
// is used within a for loop.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{

// enter a target number

int nTarget;

cout << "Enter maximum value: ";

cin >> nTarget;

www.it-ebooks.info

http://www.it-ebooks.info/

’ ’ 4 Part lll: Becoming a Functional Programmer

}

for (int nLower = 1, nUpper = nTarget;
nLower <= nTarget; nLower++, nupper--)

cout << nLower << " * "
<< nUpper << " equals "
<< nLower * nUpper << endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;

return 0;

The program first prompts the operator for a target value, which is read into
nTarget. It then moves to the for loop. However, this time not only do you

want to increment a variable from 1 to nTarget, you also want to decrement
a second variable from nTarget down to 1.

Here the setup clause of the for loop declares a variable nLower that it ini-
tializes to 1 and a second variable nTarget that gets initialized to nTarget.
The body of the loop displays nLower, nUpper, and the product nLower

* nTarget. The increment section increments nL.ower and decrements
nupper.

The output from the program appears as follows:

E
1
2
3
4
5
6
7
8

o]

10
11
12
13
14
15

*

* % % % % * X %

* % X * %k

=N W U o

*

nter maximum value: 15

15 equals 15
14 equals 28
13 equals 39
12 equals 48
11 equals 55
10 equals 60
9 equals 63

8 equals 64

7 equals 63

equals 60
equals 55
equals 48
equals 39
equals 28
equals 15

Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10: Looping for the Fun of It ’ ’ 5

In this example run, I entered 15 as the target value. You can see how nLower
increments in a straight line from 1 to 15, while nUpper makes its way from
15 down to 1.

Actually, the output from this program is mildly interesting: No matter what
you enter, the value of the product increases rapidly at first as nLower incre-
ments from 1. Fairly quickly, however, the curve flattens out and asymp-
totically approaches the maximum value in the middle of the range before
heading back down. The maximum value for the product always occurs when
nLower and nUpper are equal.

Could I have made the earlier for loop work without using the comma opera-
tor? Absolutely. I could have taken either variable, nL.ower or nUpper, out of
the for loop and handled them as separate variables. Consider the following
code snippet:

nupper = nTarget;
for (int nLower = 1; nLower <= nTarget; nLower++)

{
cout << nLower << " * "
<< nUpper << " equals "
<< nLower * nUpper << endl;
nupper--;
}

This version would have worked just as well.

The for loop can’t do anything that a while loop cannot do. In fact, any for
loop can be converted into an equivalent while loop. However, because of its
compactness, you will see the for loop a lot more often.

Up to and including this chapter, all of the programs have been one mono-
lithic whole stretching from the opening brace after main () to the cor-
responding closing brace. This is okay for small programs, but it would be
really cool if you could divide your program into smaller bites that could be
digested separately. That is the goal of the next chapter on functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11
Functions, | Declare!

In This Chapter
Breaking programs down into functions
Writing and using functions
Returning values from a function
Passing values to a function
Providing a function prototype declaration

T]e programs you see prior to this chapter are small enough and simple
enough to write in one sequence of instructions. Sure, there have been
branches using if statements and looping with while and for loops, but
the entire program was in one place for all to see.

Real-world programs aren’t usually that way. Programs that are big enough
to deal with the complexities of the real world are generally too large to write
in one single block of C++ instructions. Real-world programs are broken into
modules called functions in C++. This chapter introduces you to the wonder-
ful world of functions.

Breaking Your Problem
Down into Functions

Even the Tire Changing Program from Chapter 1 was too big to write in a
single block. I only tackled the problem of removing the lug nuts. I didn’t
even touch the problem of jacking up the car, removing the wheel, getting the
spare out, and so on.

In fact, suppose that I were to take the lug nut removing code and put it into
a module that I call something fiendishly clever, like RemoveLugNuts(). (I add
the parentheses to follow C++ grammar.) I could bundle up similar modules
for the other functions.

www.it-ebooks.info

http://www.it-ebooks.info/

’ ’ 8 Part lll: Becoming a Functional Programmer

The resulting top-level module for changing a tire might look like the following:

. Grab spare tire;

. RaiseCar();

. RemoveLugNuts(); // we know what this does

. ReplaceWwheel () ;

. AttachLugNuts(); // inverse of RemoveLugNuts ()
. LowercCar() ;

AU W

Only the first statement is actually an instruction written in Tire Changing
Language. Each of the remaining statements is a reference to a module
somewhere. These modules consist of sequences of statements written in
Tire Changing Language (including possible references to other, simpler
modules).

Imagine how this program is executed: The tire changing processor starts
at statement 1. First it sees the simple instruction Grab spare tire, which it
executes without complaint (it always does exactly what you tell it to do). It
then continues on to statement 2.

Statement 2, however, says, “Remember where you're at and go find the set
of instructions called RaiseCar(). Once you've finished there, come back
here for further instructions.” In similar fashion, Statements 3 through 6 also
direct the friendly mechanically inclined processor off to separate sets of
instructions.

Understanding How Functions
Are Useful

There are several reasons for breaking complex problems up into simpler
functions. The original reason that a function mechanism was added to early
programming languages was the Holy Grail of reuse. The idea was to create
functions that could be reused in multiple programs. For example, factorial

is a common mathematical procedure. If I rewrote the Factorial program as a
function, I could invoke it from any program in the future that needs to calcu-
late a factorial. This form of reuse allows code to be easily reused from differ-
ent programs as well as from different areas within the same program.

Once a function mechanism was introduced, however, people discovered
that breaking up large problems into simpler, smaller problems brought with
it further advantages. The biggest advantage has to do with the number of
things that a person can think about at one time. This is often referred to

as the “Seven Plus or Minus Two” Rule. That’s the number of things that a
person can keep active in his mind at one time. Almost everyone can keep at

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Functions, | Declare! ’ ’9

TE(,‘/,

»

least five objects in their active memory, but very few can keep more than
nine objects active in their consciousness at one time.

You will have no doubt noticed that there are a lot of details to worry about
when writing C++ code. A C++ module quickly exceeds the nine-object upper
limit as it increases in size. Such functions are hard to understand and there-
fore to write and to get working properly.

It turns out to be much easier to think of the top-level program in terms of
high-level functionality, much as I did in the tire changing example at the
beginning of this chapter. This example divided the act of changing a tire into
six steps, implemented in five functions.

Of course, I still have to implement each of these functions, but these are much
smaller problems than the entire problem of changing a tire. For example, when
implementing RaisecCar (), [don’t have to worry about tires or spares, and I cer-
tainly don’t have to deal with the intricacies of loosening and tightening lug nuts.
All T have to think about in that function is how to get the car off the ground.

In computer nerd-speak, we say that these different functions are written at
different levels of abstraction. The Tire Changing program is written at a very
high level of abstraction; the RemoveLugNuts () function in Chapter 1 is writ-
ten at a low level of abstraction.

Writing and Using a Function

Like so many things, functions are best understood by example. The follow-
ing code snippet shows the simplest possible example of creating and invok-
ing a function:

void someFunction ()

{
// do stuff
return;
}
int main(int nNumberofArgs, char* pszArgs|[])
{
// do something
// now invoke someFunction/()
someFunction() ;
// keep going here once control returns
}

www.it-ebooks.info

http://www.it-ebooks.info/

120

Part lll: Becoming a Functional Programmer

This example contains all the critical elements necessary to create and
invoke a function:

1. The declaration: The first thing is the declaration of the function. This
appears as the name of the function with a type in front followed by a
set of open and closed parentheses. In this case, the name of the func-
tion is someFunction (), and its return type is void. (I'll explain what
that last part means in the “Returning things” section of this chapter.)

2. The definition: The declaration of the function is followed by the defi-
nition of what it does. This is also called the body of the function. The
body of a function always starts with an open brace and ends with a
closed brace. The statements inside the body are just like those within a
loop or an if statement.

3. The return: The body of the function contains zero or more return
statements. A return returns control to immediately after the point
where the function was invoked. Control returns automatically if it ever
reaches the final closed brace of the function body.

4. The call: A function is called by invoking the name of the function fol-
lowed by open and closed parentheses.

The flow of control is shown in Figure 11-1.

void someFunction ()

{ 2
—— // do uff
Figure 11-1: returny 1
Invoking
a function o
passes nt main(int naArgs, ch pArgs[])
control to .
the module // do something
Control 3
returns to / mow invoke unction ()
immediately omeFunction () ;
after .
the call // keep going where once control returns
| }

Returning things

Functions often return a value to the caller. Sometimes this is a calculated
value — a function like factorial () might return the factorial of a number.
Sometimes this value is an indication of how things went — this is usually known
as an error return. So the function might return a zero if everything went OK, and
a non-zero if something went wrong during the execution of the function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Functions, | Declare!

&

TEC,

To return a value from a function, you need to make two changes:

1. Replace void with the type of value you intend to return.

2. Place the value to return after the keyword return. C++ does not allow
you to return from a function by running into the final closed brace if the
return type is other than void.

The keyword void is C++-ese for “nothing.” Thus a function declared with a
return type of int returns an integer. A function declared with a return type
of void returns nothing.

Reviewing an example

The following FunctionDemo program uses the function sumsequence () to
sum a series of numbers entered by the user at the keyboard. This function is
invoked repeatedly until the user enters a zero length sequence.

//

// FunctionDemo - demonstrate how to use a function

// to simplify the logic of the program.
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//

// sumSequence() - return the sum of a series of numbers
// entered by the user. Exit the loop

// when the user enters a negative

// number.

int sumSequence ()

{

// create a variable into which we will add the
// numbers entered by the user
int nAccumulator = 0;

for(;;)
{
// read another value from the user
int nvalue;
cout << "Next: ";
cin >> nvalue;

// exit if nvValue is negative
if (nvalue < 0)
{
break;
}

www.it-ebooks.info

121

http://www.it-ebooks.info/

’ 2 2 Part lll: Becoming a Functional Programmer

// add the value entered to the accumulated value
nAccumulator += nvalue;
}

// return the accumulated value to the caller
return nAccumulator;

}
int main(int nNumberofArgs, char* pszArgs[])
{
cout << "This program sums sequences of numbers.\n"
<< "Enter a series of numbers. Entering a\n"
<< "negative number causes the program to\n"
<< "print the sum and start over with a new\n"
<< "sequence. "
<< "Enter two negatives in a row to end the\n"
<< "program." << endl;
// stay in a loop getting input from the user
// until he enters a negative number
for(;:)
{
// accumulate a sequence
int nSum = sumSequence() ;
// if the sum is zero...
if (nSum == 0)
{
// ...then exit the program
break;
}
// display the result
cout << "Sum = " << nSum << endl;
}
// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;
}

First, concentrate on the main () program. After outputting rather verbose
instructions to the user, the program enters a for loop.

BE,
e‘x’l 4 A for loop whose conditional expression is empty (as in for (; ;)) will loop

forever unless something within the body of the loop causes control to exit
the loop (or until Hell freezes over).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Functions, | Declare! ’ 23

The first non-comment line within this loop is the following:
int nSum = sumSequence() ;

This expression passes control to the sumsequence () function. Once con-
trol returns, the declaration uses the value returned by sumsequence () to
initialize nsum.

The function sumSequence () first initializes nAccumulator to zero. It then
prompts the user for value from the keyboard. If the number entered is not
negative, it is added to the value in naAccumulator, and the user is prompted
for another value in a loop. As soon as the user enters a negative number, the
function breaks out of the loop and returns the value accumulated in nAccu-
mulator to the caller.

The following is a sample run from the FunctionDemo program:

This program sums sequences of numbers.

Enter a series of numbers. Entering a

negative number causes the program to

print the sum and start over with a new

sequence. Enter two negatives in a row to end the

program.
Next: 5
Next: 15
Next: 20
Next: -1
Sum = 40
Next: 1
Next: 2
Next: 3
Next: 4
Next: -1
Sum = 10
Next: -1

Press any key to continue .

Passing Arguments to Functions

Functions that do nothing but return a value are of limited value because the
communication is one-way — from the function to the caller. Two-way com-
munication requires function arguments, which I discuss next.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 2 4 Part lll: Becoming a Functional Programmer

Function with arguments

A function argument is a variable whose value is passed to the function during
the call. The following FactorialFunction converts the previous factorial opera-
tion into a function:

//

// FactorialFunction - rewrite the factorial code as
// a separate function.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//

// factorial - return the factorial of the argument

// provided. Returns a 1 for invalid arguments
// such as negative numbers.

int factorial (int nTarget)

{

// start with an accumulator that's initialized to 1
int nAccumulator = 1;
for (int nvalue = 1; nvValue <= nTarget; nvValue++)
{
nAccumulator *= nvalue;
}

return nAccumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
cout << "This program calculates factorials"
<< " of user input.\n"
<< "Enter a negative number to exit" << endl;

// stay in a loop getting input from the user

// until he enters a negative number

for (;;)

{
// enter the number to calculate the factorial of
int nvalue;

cout << "Enter number: ";
cin >> nvValue;

// exit if the number is negative
if (nvalue < 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Functions, | Declare! ’ 2 5

{
break;

}

// display the result
int nFactorial = factorial (nvalue) ;
cout << nvValue << " factorial is "
<< nFactorial << endl;
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The declaration of factorial () includes an argument nTarget of int.
Looking ahead, you can see that this is intended to be the value to calculate
the factorial of. The return value of the function is the calculated factorial.

Inmain (), the program prompts the user for a value, which it stores in
nValue. If the value is negative, the program terminates. If not, it calls
factorial () passing the value of nvalue. The program stores the returned
value in nFactorial. It then outputs both values before returning to prompt
the user for a new value.

Functions with multiple arguments

A function can have multiple arguments by separating them by commas.
Thus, the following function returns the product of two integer arguments:

int product(int nvaluel, int nvalue2)

{
return nvaluel * nvalue2;

}

Exposing main ()
Now the truth can be told: The “keyword” main () from our standard tem-

plate is nothing more than a function — albeit a function with strange argu-
ments, but a function nonetheless.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 2 6 Part lll: Becoming a Functional Programmer

{
}
{
}
{
}

{

}

Overloading function names

C++ allows the programmer to assign the same name to two or more functions if the func-
tions can be distinguished by either the number or types of arguments. This is called function
overloading. Consider the following example functions:

void someFunction/()

// ...perform some function

void someFunction (int nvalue)

// ...perform some other function

void someFunction (char cValue)

// ...perform a function on characters

int main(int nNumberofArgs, char* pszArgs|[])

someFunction() ; // call the first function
someFunction(10); // call the second function
someFunction('a'); // now the third function
return 0;

By comparing each of the preceding calls with the declarations, it is clear which function is meant
by each call. Because of this, C++ aficionados include the type of arguments with the name of the
function in what is called the function’s extended name or signature. Thus, the extended names
of the three functions are, in fact, different: someFunction (), someFunction (int), and
someFunction (char).

Warning: Notice that the return type is not part of the extended name and cannot be used to dif-
ferentiate functions.

When a program is built, C++ adds some boilerplate code that executes
before your program ever gains control. This code sets up the environment
in which your program will operate. For example, this boilerplate code opens
the default input and output channels and attaches them to cin and cout.

After the environment has been established, the C++ boilerplate code calls
the function main (), thereby beginning execution of your code. When your
program finishes, it returns from main (). This enables the C++ boilerplate
to clean up a few things before terminating the program and handing control
back over to the operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11: Functions, | Declare! ’2 7

Defining Function Prototype Declarations

There’s a little more to the previous program examples than meets the eye.
Consider the second program, FactorialFunction, for example. During the
build process, the C++ compiler scanned through the file. As soon as it came
upon the factorial () function, it made a note in an internal table some-
where in the function’s extended name and its return type. This is how the
compiler was able to understand what [was talking about when I invoked the
factorial () function later on inmain () — it saw that [was trying to call
a function, and it said, “Let me look in my table of defined functions for one
called factorial (). Aha, here’s one!”

In this case, the function was defined and the types and number of arguments
matched perfectly, but that isn’t always the case. What if had invoked the
function not with an integer but with something that could be converted into
an integer? Suppose I had called the function as follows:

factorial(1.1);

That’s not a perfect match, 1.1 is not an integer, but C++ knows how
to convert 1.1 into an integer. So it could make the conversion and use
factorial (int) to complete the call. The question is, does it?

The answer is “Yes.” C++ will generate a warning in some cases to let you
know what it’s doing, but it will generally make the necessary type conver-
sions to the arguments to use the functions that it knows about.

Note: 1 know that [haven't discussed the different variable types and won't until
Chapter 14, but the argument I am making is fairly generic. You will also see in
Chapter 14 how to avoid warnings caused by automatic type conversions.

What about a call like the following:
factorial (1, 2);

There is no conversion that would allow C++ to lop off an argument and use
the factorial (int) function to satisfy this call, so C++ generates an error
in this case.

The only way C++ can sort out this type of thing is if it sees the function dec-
laration before it sees the attempt to invoke the function. This means each
function must be declared before it is used.

I know what you're thinking (I think): C++ could be a little less lazy and look
ahead for function declarations that occur later on before it gives up and
starts generating errors, but the fact is that it doesn’t. It’s just one of those
things, like my crummy car; you learn to live with it.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 2 8 Part lll: Becoming a Functional Programmer

3

So does that mean you have to define all of your functions before you can
use them? No. C++ allows you to declare a function without a body in what is
known as a prototype declaration.

A prototype declaration creates an entry for the function in the table [was
talking about. It fills in the extended name, including the number and type of
the arguments, and the return type. C++ leaves the definition of the function,
the function body, empty until later.

In practice, a prototype declaration appears as follows:

// the prototype declaration
int factorial (int nTarget) ;

int main(int nNumberofArgs, char* pszArgs|[])
{
cout << "The factorial of 10 is "
<< factorial(10) << endl;

return 0;
}

// the definition of the factorial (int) function;

// this satisfies our promise to provide a definition
// for the prototype function declaration above

int factorial (int nTarget)

{
// start with an accumulator that's initialized to 1
int nAccumulator = 1;
for (int nvalue = 1; nvValue <= nTarget; nvalue++)
{
nAccumulator *= nvalue;
}
return nAccumulator;
}

The prototype declaration tells the world (or at least that part of the world
after the declaration) that factorial () takes a single integer argument
and returns an integer. That way, C++ can check the call in main () against
the declaration to see whether any type conversions need to take place or
whether the call is even possible.

The prototype declaration also represents a promise to C++ to provide a
complete definition of factorial (int) somewhere else in the program. In
this case, the full definition of factorial (int) follows right after main ().

It is common practice to provide prototype declarations for all functions defined

within a module. That way, you don’t have to worry about the order in which
they are defined. I'll have more to say about this topic in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12
Dividing Programs into Modules

In This Chapter
Breaking programs down into functions
Writing and using functions
Returning values from a function
Passing values to a function
Providing a function prototype declaration

n Chapter 11, [show you how to divide a complex problem into a number

of separate functions; it is much easier to write and get a number of
smaller functions to work than one large, monolithic program. Oftentimes,
however, you may want to reuse the functions you create in other applica-
tions. For example, I could imagine reusing the factorial () function I cre-
ated in Chapter 11 in the future.

One way to reuse such functions is to copy-and-paste the source code for
the factorial () function into my new program. However, it would be a lot
easier if I could put the function in a separate file that I could then link into
future applications. Breaking programs into separate source code modules is
the subject of this chapter.

Breaking Programs Apart

The programmer can break a single program into separate source files gener-
ally known as modules. These modules are compiled into machine code by
the C++ compiler separately and then combined during the build process to
generate a single program.

The process of combining separately compiled modules into a single pro-
gram is called linking.

www.it-ebooks.info

http://www.it-ebooks.info/

’30 Part lll: Becoming a Functional Programmer

Breaking programs into smaller, more manageable pieces has several advan-
tages. First, breaking a program into smaller modules reduces the compile
time. Code::Blocks takes only a few seconds to gobble up and digest the pro-
grams that appear in this book. Very large programs can take quite a while,
however. [have worked on projects that took most of the night to rebuild.

In addition, recompiling all of the source code in the project just because one
or two lines change is extremely wasteful. It’s much better to recompile just
the module containing the change and then relink it into all of the unchanged
modules to create a new executable with the change. (The updated module
may contain more than just the one changed function but not that many more.)

Second, it’s easier to comprehend and, therefore, easier to write and debug
a program that consists of a number of well thought out but quasi-indepen-
dent modules, each of which represents a logical grouping of functions. A
large, single source module full of all the functions that a program might use
quickly becomes hard to keep straight.

Third is the much vaunted specter of reuse. A module full of reusable func-
tions that can be linked into future programs is easier to document and
maintain. A change in the module to fix some bug is quickly incorporated into
other executables that use that module.

Finally, there’s the issue of working together as a team. Two programmers
can’t work on the same module (at least not very well). An easier approach
is to assign one set of functions contained in one module to a programmer
while assigning a different set of functions in a different module to a second
programmer. The modules can be linked together when ready for testing.

Breaking Up Isn’t That Hard to Do

I can’t really include a large program in a book like this . . . well, I could, but
there wouldn’t be enough left for anything else. I will use the FactorialFunction
demo from Chapter 11 as my example large-scale program. In this section, I
will create the FactorialModule project that separates the program into sev-
eral source modules. To do this, I will perform the following steps:

1. Create the FactorialModule project.

This is no different than creating any of the other project files up to this
point in the book.

2. Create the Factorial. cpp file to contain the factorial function.

3. Create the Factorial.h include file (whatever that is) to be used by all
modules that want to call.

4. Update main.cpp to use the factorial () function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Dividing Programs into Modules ’3 ’

|
Figure 12-1:
The New
File wizard
provides
you help

in adding
source files
to your
project.
|

Creating Factorial.cpp

The initial console application project created by Code::Blocks has only one
source file, main. cpp. The next step is to create a second source file that
will contain the factorial function.

Follow these steps to create factorial.cpp containing the factorial ()
function:

1. Select FilecoNew=>File.

Code::Blocks responds by opening the window shown in Figure 12-1
showing the different types of files you can add.

New from template N — S B=
(
Profects Category: | <Al cotegories> - Gu
Buid targate
Fles E‘ R cR Canvcel

Custorn

User temndales C/C++ header C/C++source Empty flle

Viewas
©) Lage o
O List

TIP: Try right-cicking an item

1. Salact awizard type first on the left
2. Select azpecitic wizard trom the main window (fiker by categories i needed)
3. Press Go

2. Select C/C++ Source and then click Go.

This opens up a box warning that you are about to enter the mysterious
and dangerous Source File Wizard.

3. Click Next.
This will open the Source File Wizard.
4. Click the ... next to the Filename with Full Path prompt.

A File Open dialog box appears, allowing you to navigate to a different
folder if you want to keep your source files in different directories. But
don’t make it any more complicated than it has to be.

5. Enter factorial.cpp as the name of the source file and click Save.

www.it-ebooks.info

http://www.it-ebooks.info/

’32 Part lll: Becoming a Functional Programmer

6. You want this file added to all executables that you create, so select
All for the build targets.

When you are finished, the dialog box should look like Figure 12-2.

. CiC++ source || ‘
(52 o/++ TILE ettt
Filzname with full path: .
Figure 12-2: C:\Beginning_Programming-CPP\FacturidMu U
The C/C++
Source
Flle d|a|0g ,ﬁygjﬁfg’;ﬁl&g:ﬂojoct
box lets (v
you enter
the name
of the new
module, o e
facto-
rial.
Ccpp. [<tsck J| bmsh | | conel
]
@@ABM 7. Click Finish to create Factorial.cpp and add it to the Project.

The project file includes the list of all source files that it takes to build
your program.

8. Update factorial.cpp as follows:

//

// factorial - this module includes the factorial function
//

#include <cstdio>

#include <cstdlib>

#include <iostream>

using namespace std;

#include "factorial.h"

//

// factorial - return the factorial of the argument

// provided. Returns a 1 for invalid arguments
// such as negative numbers.

int factorial (int nTarget)

{

// start with an accumulator that's initialized to 1
int nAccumulator = 1;

for (int nvalue = 1; nvValue <= nTarget; nvalue++)

{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Dividing Programs into Modules ’33

\NG/

.“’fe,

\NG/

."z

nAccumulator *= nvValue;
}

return nAccumulator;
}

The first four lines are part of the standard template used for all C++ source
files in this book. The next line is the factorial .h include file, which I dis-
cuss further later in this chapter. This is followed by the factorial () func-
tion much as it appeared in Chapter 11.

Include files don’t follow the same grammar rules as C++. For example, unlike
other statements in C++, the #include must start in column 1 and doesn’t
require a semicolon at the end.

Don'’t try to compile factorial. cpp, as you haven’t created factorial.h
yet.

Creating an #include file

The next step in the process is to create an include file. Okay, what's an
include file?

As I discuss in Chapter 11, the prototype declaration describes the functions
to be called by providing the number and types of arguments and the type of
the return value. Every function that you invoke must have a prototype decla-
ration somewhere before the call.

It is possible to list out the prototype declarations manually for each function
you intend to use, but fortunately that isn’t necessary. Instead C++ allows the
same dummy who created the function to create an include file that contains
the function’s prototype declarations. This file can then be included in the
source files of the modules where the functions are called.

There are (at least) two ways to include these prototypes. One way is to copy
the contents of the include file and paste them into the module where the
calls are made. This isn’t a very good idea, however. For one thing, it is really
laborious. For another, if the prototype declaration for any one of the functions
in the include file is changed, the programmer will have to go through every
place the include file is used, delete the old one, and repaste in the new file.

Rather than do that, C++ includes a preprocessor that understands very
few instructions. Each of these instructions starts with a pound sign (#) in
column 1 followed immediately by a command. (Preprocessor commands
also end at the end of the line and don’t require a semicolon.)

www.it-ebooks.info

http://www.it-ebooks.info/

134

Part lll: Becoming a Functional Programmer

The most common preprocessor command is #include "filename.h".
This command copies and pastes the contents of filename.h at the point of
the #include to create what is known as an infermediate source file. The pre-
processor then passes this intermediate source file on to the C++ compiler
for processing. This process is shown graphically in Figure 12-3.

Figure 12-3: ¢, ¢orial h: Intermediate file sent to C++ compiler
The pre- int factorial (int nTarget);
processor

inserts the int factorial (int nTarget);
contents of Preprocessor I:(>

. int main (int nNumberofArgs, char* pszArgs|[])
aninclude {

file at the
point of the

#include
command #include "factorial.h"

bEfc.)re int main(int nNumberofArgs, char* pszArgs{})
passing

the results for (;;)
to the C++ {
compiler.
|

using namespace std;

. for (;7)
main.cpp: (

using namespace std; // ,,,file continues...

// +,,file continues...

Including #include files

The Code::Blocks wizard makes creating an include file painless. Just execute
the following steps:
1. Select File=>Newr>File.

Code::Blocks responds by opening the window shown in Figure 12-1 just
as before. This time you're creating an include file.

2. Select Include File and then click Go.

3. In the next window that warns you’re about to enter the Include File
Wizard, click Next.

4. Click the ... next to the Filename with Full Path prompt.
A File Open dialog box appears.
5. Enter factorial.h as the name of the include file and click Save.

6. You want this file added to all executables that you create, so select
All for the build targets.

When you are finished, the dialog box should look like Figure 12-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Dividing Programs into Modules ’3 5

Figure 12-4:
The C/C++
Header File
dialog box
lets you
enter the
name of the
new include
file module,
facto-
rial.h.
|

D

TEC/,

C/C++ header

Flease enter the fie's location and name and
) /0 piur [bidtomriek
Filename weh full parh:
Ci\Begirning_Programming CPMFactoriaMo j
Header quard word:
FAC TORIAL _H_INCLIER D)
/| Add fle to active project
I b L)
= i
A [hene |
[<gak [Fuish | [camel |

7. Click Finish to create an empty include file that looks like the following:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_TINCLUDED

#endif // FACTORIAL_H_INCLUDED

8. Edit the include file by adding the prototype for the factorial()
function as follows:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_INCLUDED

int factorial (int nTarget) ;

#endif // FACTORIAL_H_ INCLUDED
9. Click File Save.

You're done!

Notice that the include file has been added to the project description in the
Management tab of Code::Blocks. This indicates that Code::Blocks will auto-
matically rebuild the application if the include file changes.

Why include factorial.hin factorial.cpp? After all, factorial ()
doesn’t require a prototype of itself. You do this as a form of error checking.
C++ will generate an error message when compiling factorial.cpp if the
prototype declaration in factorial.h does not match the definition of the
function. This ensures that the prototype declaration being used by other
source code modules matches the function definition.

www.it-ebooks.info

http://www.it-ebooks.info/

’36 Part lll: Becoming a Functional Programmer

Creating main.cpp

You're almost there: Open main. cpp and edit it to look like the following:

<nE

Co
é —

//

// FactorialModule - rewrite the factorial code as

// a separate function in its own module.
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

#include "factorial.h"

int main(int nNumberofArgs, char* pszArgs|[])

{
cout << "This program calculates factorials"
<< " of user input.\n"
<< "Enter a negative number to exit" << endl;

// stay in a loop getting input from the user
// until he enters a negative number
for (;;)
{

// enter the number to calculate the factorial of

int nvalue;

cout << "Enter number: ";

cin >> nvValue;

// exit if the number is negative

if (nvalue < 0)

{

break;

}

// display the result

int nFactorial = factorial (nvalue) ;

cout << nvalue << " factorial is "

<< nFactorial << endl;
}
// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;
}

This version of main. cpp looks identical to the FactorialFunction version
except that the definition of the factorial () function has been removed
and the #include "factorial.h" added.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12: Dividing Programs into Modules ’3 7

Building the result

Now you can build the program (by selecting Build=Build). Notice in the
output messages that the compiler now compiles two files, main. cpp and
factorial.cpp. This is then followed by a single link step.

When executed, the output from this version is indistinguishable from earlier
versions as demonstrated by the following test output:

This program calculates factorials of user input.
Enter a negative number to exit

Enter number: 5

5 factorial is 120

Enter number: 6

6 factorial is 720

Enter number: -1

Press any key to continue .

Using the Standard C++ Library

3

Now you can see why the standard C++ template includes the directives

#include <cstdio>
#include <cstdlib>
#include <iostream>

These include files contain the prototype declarations for functions provided
by C++ as part of its standard library of routines (like cin >>, for example).

Notice that the standard C++ library include files are included in angle brack-
ets (<>), while I included my user-defined include file in quotes (“). The only
difference between the two is that C++ looks for files contained in quotes
starting with the “current” directory (the directory containing the project
file), while C++ begins searching for bracketed files in the C++ include file
directories.

The online help files (at www . cppreference. com/wiki/) are a good source
of information about the functions that make up the Standard C++ Library.

Variable Scope

Variables are also assigned a storage type depending upon where and how
they are defined, as shown in the following snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

138

sﬁ)&BER

Part lll: Becoming a Functional Programmer

int nGlobalvariable;
void fn()

{
int nLocalVariable;
static int nStaticvariable = 1;

nStaticvariable = 2;
}

Variables defined within a function like nL.ocalvariable don’t exist until
control passes through the declaration. In addition, nLocalvariable is only
defined within £n () — the variable ceases to exist when control exits the

fn () function.

By comparison, the variable nGlobalvariable is created when the pro-
gram begins execution and exists as long as the program is running. All func-
tions have access to nGlobalvariable all the time.

We say that nL.ocalvariable has local scope, and nGlobalvVariable has
global scope.

The keyword static can be used to create a sort of mishling — something
between a global and a local variable. The static variable nstaticvariable
is created when execution reaches the declaration the first time that function
fn () is called. Unlike nLLocalvariable, however, nStaticvariableis
not destroyed when program execution returns from the function. Instead, it
retains its value from one call to the next.

In this example, nStaticvariable is initialized to 1 the first time that £n ()
is called. The function changes its value to 2. nStaticvariable retains the
value 2 on every subsequent call — it is not reinitialized once it has been cre-
ated. The initialization portion of the declaration is ignored every subsequent
time that £n () is called after the first time.

However, the scope of nstaticvariable is still local to the function. Code
outside of £n () does not have access to nStaticvariable.

Global variables are useful for holding values that you want all functions to
have access to. Static variables are most useful for counters — for example,
if you want to know how many times a function is called. However, most vari-
ables are of the plain ol’ local variety.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13
Debugging Your Programs, Part 2

In This Chapter
Debugging a multifunction program
Performing a unit test

Using predefined preprocessor commands during debug

l his chapter expands upon the debugging techniques introduced in
Chapter 8 by showing you how to create debugging functions that allow
you to navigate your errors more quickly.

C++ functions represent further opportunities both to excel and to screw up.
On the downside are the errors that are possible only when your program is
divided into multiple functions. However, dividing your programs into func-
tions allows you to examine, test, and debug each function without regard
to how the function is being used in the outside program. This allows you to
create a much more solid program.

Debugging a Dys-Functional Program

To demonstrate how dividing a program into functions can make the result
easier to read and maintain, I created a version of the SwitchCalculator pro-
gram in which the calculator operation has been split off as a separate func-
tion (which it would have been in the first place if I had only known about
functions back then). Unfortunately, I introduced an error during the process
that didn’t show up until performing testing.

The following listing appears on the enclosed CD-ROM as CalculatorErrorl:

// CalculatorErrorl - the SwitchCalculator program
// but with a subtle error in it
//

#include <cstdio>

#include <cstdlib>

www.it-ebooks.info

http://www.it-ebooks.info/

’ 4 0 Part lll: Becoming a Functional Programmer

#include <iostream>

using namespace std;

// prototype declarations

int calculator (char cOperator, int nOperl, int nOper2) ;

int main(int nNumberofArgs, char* pszArgs[])

{

}

// enter operandl op operand2
int nOperl;
int nOper2;
char cOperator;
cout << "Enter 'valuel op value2'\n"
<< "where op is +, -, *, / or %:" << endl;
cin >> nOperl >> cOperator >> nOper2;

// echo what the user entered followed by the
// results of the operation
cout << nOperl << " "
<< cOperator << " "
<< nOper2 << " ="
<< calculator (cOperator, nOperl, noOper2)
<< endl;

// wait until user is ready before terminating program

// to allow the user to see the program results
system("PAUSE") ;
return 0;

// calculator -return the result of the cOperator

//

operation performed on nOperl and nOper2

int calculator (char cOperator, int nOperl, int nOper2)

{

int nResult = 0;
switch (cOperator)
{
case '+':
nResult = nOperl + noper2;
case '-':
nResult = nOperl
break;
case '*':
case 'X':
case 'X':
nResult = nOperl * nOper?2;
break;
case '/':
nResult = nOperl / nOper2;
break;

noper2;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Debugging Your Programs, Part 2 ’ 4 ’

case '%':
nResult = nOperl % noOper?2;
break;
default:
// didn't understand the operator
cout << " is not understood";

}
return nResult;
}

The beginning of this program starts the same as its SwitchCalculator precur-
sor except for the addition of the prototype declaration for the newly cre-
ated calculator () function. Notice how much cleaner main () is here: It
prompts the user for input and then echoes the output along with the results
from calculator (). Very clean.

The calculator () function is also simpler than before since all it does is
perform the computation specified by coperator. Gone is the irrelevant
code that prompts the user for input and displays the results.

All that’s left to do is test the results.

Performing unit level testing

Breaking a program down into functions not only allows you to write your
program in pieces, but also it allows you to test each function in your pro-
gram separately. In this functional version of the SwitchCalculator program,
I need to test the calculator () function by providing all possible inputs
(both legal and illegal) to the function.

First, I generate a set of test cases for calculator (). Clearly, I need a test
for each case in the switch statement. [will also need some boundary condi-
tions, like “how does the function respond when asked to divide by zero?”
Table 13-1 outlines some of the cases I need to test.

Table 13-1 Test Cases for calculator() Showing
Expected and Actual Results

Operator Operand1 Operand2 Expected Actual Explanation

Result Result
+ 10 20 30 Simple case
- 20 10 10 Simple case

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

’ 42 Part lll: Becoming a Functional Programmer

Table 13-1 (continued)

Operator Operand1 Operand2 Expected Actual Explanation
Result Result
- 10 20 -10 Generate
a negative
number
* 10 20 200 Simple case
* 10 -5 -50 Try with a
negative
argument
X 10 20 200 Use the
other form
of multiply
operator
/ 20 10 2 Simple case
/ 10 0 Don't Try divide
care by zero
aslong
error
gener-
ated and
program
doesn't
crash
% 23 10 3 Simple case
% 20 10 0 Generate a
zero result
% 23 -10 3 Try modulo
with a nega-
tive number
v 20 10 Don't lllegal input
care as
long as
error
gener-
ated and
program
doesn't
crash

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Debugging Your Programs, Part 2 ’ 43

WING/
&

It turns out that I'm lucky in this case — the calling function main () allows
me to provide any input to the function that [want. I can send each of these
test cases to calculator () without modifying the program. That isn’t usu-
ally the case — very often the function is only invoked from the main pro-
gram in certain ways. In these cases, | must write a special test module that
puts the function under test through its paces by passing it the various test
cases and recording the results.

Why do you need to write extra debug code? What do you care if the function
doesn’t handle a case properly if that case never occurs in the program? You
care because you don’t know how the function will be used in the future. Once
written, a function tends to take on a life of its own beyond the program that

it was written for. A useful function might be used in dozens of different pro-
grams that invoke the function in all sorts of different ways that you may not
have thought of when you first wrote the function.

The following shows the results for the first test case:

Enter 'valuel op value2'
where op is +, -, *, / or %:
10 + 20

10 + 20 = -10

Press any key to continue .

Already something seems to be wrong. What now?

Outfitting a function for testing

Like most functions, calculator () doesn’t perform any I/O of its own. This
makes it impossible to know for sure what'’s going on within the function.

[addressed this problem in Chapter 8 by adding output statements in key
places within the program. Of course, in Chapter 8, you didn’t know about
functions, but now you do.

It turns out that it’s easier to create an error function that prints out every-
thing you might want to know. You can then just copy and paste calls to this
test function in key spots. This is quicker and less error prone than making
up a unique output statement for each different location.

C++ provides some help in creating and calling such debug functions. The
preprocessor defines several special symbols shown in Table 13-2.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 44 Part lll: Becoming a Functional Programmer

Table 13-2 Predefined Symbols Useful in
Creating Debug Functions

Symbol Type Value

_ LINE_ int The line number within
the current source code
module

_ _FILE_ const char* The name of the current
module

_ DATE_ const char* The date that the module
was compiled (not the
current date)

__ TIME_ const char* The time that the module
was compiled (not the
current time)

_ FUNCTION_ _ const char* The name of the current
function (GCC only)

__ PRETTY_FUNCTION_ _ const char* The extended name of
the current function
(GCC only)

You haven't seen the type const char*. You will in Chapter 16. You'll have
to take my word for now that this is the type of a character string contained in
double quotes like "Stephen Davis is a great guy".

You can see how the predefined preprocessor commands from Table 13-2 are
used in the following version of the calculator () function outfitted with
calls to a newly created debugger function printErr () (the following code
segment is taken from the program CalculatorError2, which is on the enclosed
CD-ROM):

void printErr (int nLN, char cOperator, int nOpl, int noOp2)
{
cout << "On line " << nLN
<< ": \'" << cOperator

<< "\' operand 1 = " << nOpl
<< " and operand 2 = " << noOp2
<< endl;

}

// calculator -return the result of the cOperator

// operation performed on nOperl and nOper2
int calculator (char cOperator, int nOperl, int nOper2)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13: Debugging Your Programs, Part 2 ’ 4 5

printErr (__ LINE
int nResult = 0;
switch (cOperator)

, cOperator, nOperl, nOper2) ;

{
case '+':
printErr(___ LINE__, cOperator, nOperl, nOper2);
nResult = nOperl + noOper2;
case '-':

printErr(__ LINE__, cOperator, nOperl, nOper2);
nResult = nOperl - noOper2;
break;
case '*':
case 'X':
case 'X':
printErr(__ LINE__, cOperator, nOperl, nOper2);
nResult = nOperl * nOper?2;
break;
case '/':
printErr(_ LINE__, cOperator, nOperl, nOper2) ;
nResult = nOperl / noOper2;
break;
case '%':
printErr(_ LINE__, cOperator, nOperl, nOper2) ;
nResult = nOperl % noOper?2;
break;
default:
// didn't understand the operator
cout << " is not understood";

}
return nResult;

}

The printErr () function displays the value of the operator and the two
operands. It also displays the line number that it was called from. The line
number is provided by the C++ preprocessor in the form of the __ LINE___
symbol. Printing the line number with the error messages tells me how to dif-
ferentiate the debug output from the program’s normal output.

You can see how this works in practice by examining the output from this
newly outfitted version of the program:

Enter 'valuel op value2'

where op is +, -, *, / or %:

10 + 20

On line 50: '+' operand 1 = 10 and operand 2 = 20
On line 55: '+' operand 1 = 10 and operand 2 = 20
On line 58: '+' operand 1 = 10 and operand 2 = 20

10 + 20 = -10
Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

146

Part lll: Becoming a Functional Programmer

Figure 13-1:
The view of
thecalcu-
lator ()
function
in the
CodeBlocks
editor show-
ing the line
numbers.
|

Figure 13-1 shows the display of the program within the CodeBlocks editor
including the line numbers along the left side of the display.

mah.cpp X -
40 int calculacor (char coperactor, int nuperl, int noperz)
49 |
50 printErr(__LINE__, cOperator, nUperl, noperz);
51 int nResult = 0;
52 switch (cOperator)
53 {
54 case
55 printBrr(_ LINE__, cOperstor, nOperl, noper2):
56 nResult = noperl + nOper2;
57 case :
58 printBrr(__LINE__, cOperstor, noOperl, nOper2);
54 nResult = noparl - nOpar2:
60 break;
61 cage "'
62 case
63 case "1l':
64 printBrr(__LINE__, cOperstor, noperl, noOper2);
65 nResult = noperl * noperz;
n ’

Immediately after I input “10 + 20" followed by the Enter key, the program calls
the printErr () function from line 50. That’s correct since this is the first line
of the function. Checking the values, you can see that the input appears to be
correct: cOperator is ‘+’, noper1 is 10, and noper2 is 20 just as you expect.

The next call to printErr () occurred from line 55, which is the first line
of the addition case, again just as expected. The values haven’t changed, so
everything seems okay.

The next line is completely unexpected. For some reason, printErr () is
being called from line 58. This is the first line of the subtraction case. For
some reason, control is falling through from the addition case directly into
the subtraction case.

And then [see it! The break statement is missing at the end of the addition
case. The program is calculating the sum correctly but then falling through
into the next case and overwriting that value with the difference.

First, I add the missing break statement. [do not remove the calls to print-
Err () — there may be other bugs in the function, and I'll just end up putting

them back. There's no point in removing these calls until I am convinced that
the function is working properly.

Returning to unit test
The updated program generates the following output for the addition test case:
Enter 'valuel op value2'

where op is +, -, *, / or %:
10 + 20

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 13-2:
The
Calculator-
Error
program
terminates
with a mys-
terious error
message
when | enter
"10/0.
|

Chapter 13: Debugging Your Programs, Part 2 7 4 7

On line 49: '+' operand 1 = 10 and operand 2 = 20
On line 54: '+' operand 1 = 10 and operand 2 = 20
10 + 20 = 30

Press any key to continue .

This matches the expected results from Table 13-1. Continuing through the
test cases identified in this table, everything matches until I get to the case of
10 / 0 towhich I get the output shown in Figure 13-2. The output from the
printErr () shows that the input is being read properly, but the program
crashes soon after line 68.

It's pretty clear that the program is, in fact, dying on line 69 when it performs
division by zero. I need to add a test to intercept that case and not perform
the division if the value of noper?2 is zero.

B main.cpp [CalcultarFror] - ConeAToeks svm bulld EREOEES
File Edit \Vie swch Project Build Debug weSmih T Pluging Settings Malg
\ 3 B < e (S92 : =~ b 3 [T e o
TP~ R 4, By QPQ:__@&M'MW' 1 Y= DG
[cauteton(cher cOpersor, ok s0pen 1, ok iOper2) : e -]
- NENCEY | Man.cpp X v
Prwjacks [Synbele | Raasioew 1 47 |int calculator(char cOperatcor, int noperl, int noperz
48 {
49 printErr (__LINE__, cOperator, nOperl, nOper2);
S int nResult = 0:

doexe

& Microsoft Wisdows

q alculatorfrror3.exe has stopped workin
§ | Calculatort has stopped g

Windows can check oniine for 8 solution to the problem
|

% Check online for a solution and close the program

Close the program

~) View problem detais

\DabugiCaleulatorRrrord, axe® (in C-\Maginning Programning-CoP

WINDOWS- 1252

Rebuild all modues inthe acke proect Line 56, Column 19 Iresort ReadWite defaull

Of course, this begs the question: What value should I return from the func-
tion if noper2 is zero? The “Expected Result” case in Table 13-1 says that we
don’t care what gets returned when dividing by zero as long as the program
doesn’t crash. That being the case, | decide to return 0. However, | need to
document this case in the comments to the function.

With that addition to the function, I start testing again from the top.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 48 Part lll: Becoming a Functional Programmer

é"g\wfﬂ

You need to restart back at the beginning of your test cases each time you
modify the function.

The function generates the expected results in every case. Now | can remove
the printErr () functions. The completed calculator () function
(included in the CalculatorError4 program on the enclosed CD-ROM)
appears as follows:

// calculator -return the result of the cOperator

// operation performed on nOperl and nOper2
// (In the case of division by zero or if it
// cannot understand the operator, the

// function returns a zero.)

int calculator (char cOperator, int nOperl, int nOper2)

{

int nResult = 0;
switch (cOperator)

{

case '+':
nResult = nOperl + noOper?2;
break;

case '-':
nResult = nOperl - noOper?2;
break;

case '*':

case 'X':

case 'X':
nResult = nOperl * nOper?2;
break;

case '/':
if (nOper2 != 0)
{

nResult = nOperl / noOper2;

}
break;

case '%':
nResult = nOperl % noOper?2;
break;

default:
// didn't understand the operator
cout << " is not understood";

}

return nResult;
}

This version of the calculator () function does not suffer from the error
that made the original version incapable of adding properly. In addition, this
updated version includes a test in the division case: If nOper2, the divisor, is
zero, the function does not perform a division that would cause the program
to crash but leaves the value of nResult its initial value of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV
Data Structures

The 5th Wave By Rich Tennant
Frme———
— ——

“This should unstick the Keys a little.”

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

o far you've been limited to just integer and character

variables. Fortunately, C++ defines a rich set of vari-
able types, including that most feared of concepts, the
C++ pointer. (Don’t worry if you don’t know what I'm talk-
ing about, you will soon.) I wrap up this part with another
discussion of debugging.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Other Numerical Variable Types

In This Chapter

Reviewing the limitations of integers

Introducing real numbers to C++

Examining the limitations of real numbers

Looking at some variable types in C++

Overloading function names

T]e programs so far have limited themselves to variables of type int with
just a few chars thrown in. Integers are great for most calculations —
more than 90 percent of all variables in C++ are of type int. Unfortunately,
int variables aren’t adapted to every problem. In this chapter, you will see
both variations of the basic int as well as other types of intrinsic variables.
An intrinsic type is one that’s built into the language. In Chapter 19, you will
see how the programmer can define her own variable types.

Some programming languages allow you to store different types of data in the
same variable. These are called weakly typed languages. C++, by contrast, is a
strongly typed language — it requires you to declare the type of data the vari-
able is to store. A variable, once declared, cannot change its type.

The Limitations of Integers in C++

The int variable type is the C++ version of an integer. As such, int variables
suffer the same limitations as their counting integer equivalents in mathemat-
ics do.

Integer round-off

It isn’t that an integer expression can’t result in a fractional value. It’s just
that an int has no way of storing the fractional piece. The processor lops off

www.it-ebooks.info

http://www.it-ebooks.info/

’ 5 2 Part IV: Data Structures

\NG/
S

the part to the right of the decimal point before storing the result. (This lop-
ping off of the fractional part of a number is called truncation.)

Consider the problem of calculating the average of three numbers. Given
three int variables — nvaluel, nvalue2, and nvalue3 — their average is
given by the following expression:

int nAverage = (nvValuel + nvValue2 + nvalue3)/3;

Suppose that nvaluel equals 1, nvalue2 equals 2, and nvalue3 equals 2 —
the sum of this expression is 5. This means that the average is 5 /3 or either 1
2/3 or 1.666, depending upon your personal preference. But that’s not using
integer math.

Because all three variables are integers, the sum is assumed to be an integer
as well. And because 3 is also an integer, you guessed it, the entire expres-
sion is taken to be an integer. Thus, given the same values of 1, 2, and 2, C++
will calculate to the unreasonable but logical result of 1 for the value of nav-
erage (3, 4, and 5 divided by 3 are all 1; 6 divided by 3 is 2).

The problem is much worse in the following mathematically equivalent
formulation:

int nAverage = nvaluel/3 + nvalue2/3 + nvalue3/3;

Plugging in the same values of 1, 2, and 2, the resulting value of naverage is
now 0 (talking about logical but unreasonable). To see how this can occur,
consider that 1/2 truncates to 0, 2/3 truncates to 0, and 2/3 truncates to 0.
The sum of 0, 0, and 0 is (surprise!) 0.

You can see that there are times when integer truncation is completely
unacceptable.

Limited range

A second problem with the int variable type is its limited range. A normal
int can store a maximum value of 2,147,483,647 and a minimum value of
-2,147,483,648 — that’s roughly from positive 2 billion to negative 2 billion
for a total range of 4 billion.

That’s on a modern PC, Mac, or other common processor. If you have a much

older machine, the int may not be nearly so expansive in its range. [will have
a little more to say about that later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

BER Two billion is a very large number — plenty big enough for most applications.
S@l That's why the int is useful. But it's not large enough for some applications,
including computer technology. In fact, your computer probably executes faster
than 2 GHz (gigahertz), depending on how old your computer is (2 GHz is two bil-
lion cycles per second). A single strand of fiber cable (the kind that’s strung back
and forth from one side of the country to the other) can carry way more than 2
billion bits per second. I won't even start on the number of stars in the Milky Way.

A Type That “doubles” as a Real Number

The limitations of the int variable are unacceptable in some applications.
Fortunately, C++ understands decimal numbers that have a fractional part.
(Mathematicians call these real numbers.) In C++, decimal numbers are called
floating point numbers or simply floats. This is because the decimal point can
float around from left to right to handle fractional values.

Floating point variables come in two basic flavors in C++. The small variety is
declared using the keyword float as follows:

float fvaluel; // declare a floating point
float fvalue2 = 1.5; // initialize it at declaration

Oddly enough, the standard floating point variable in C++ is its larger sibling,
the double precision floating point or simply double. You declare a double
precision floating point as follows:

double dvaluel;
double dvalue2 = 1.5;

<P Because the native floating point type for C++ is the double, I generally avoid
using float. The float does take up less memory, but this is not an issue for
most applications. I will stick with double for the remainder of this book. In
addition, when I say “floating point variable,” you can assume that I'm talking
about a variable of type double.

Solving the truncation problem

To see how the double fixes our truncation problem, consider the average of
three floating point variables dvaluel, dvalue2, and dvalue3 given by the
formula

double dAverage = dvValuel/3.0 + dvalue2/3.0 + dvalue3/3.0;

www.it-ebooks.info

Chapter 14: Other Numerical Variable Types ’ 53

http://www.it-ebooks.info/

154

Part IV: Data Structures

\NG/
&

A\

\\J

Assume, once again, the initial values of 1.0, 2.0, and 2.0. This renders the
above expression equivalent to

double dAverage = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;
which is, in turn, equivalent to

double dAverage = 0.333... + 0.6666... + 0.6666...;
resulting in a final value of

double dAverage = 1.666...;

I have written the preceding expressions as though there were an infinite
number of sixes after the decimal point. In fact, this isn’t the case. The
accuracy of a double is limited to about 14 significant digits. The difference
between 1.666666666666 and 1 2/3 is small, but not zero. I will have more to
say about this a little later in this chapter.

When an integer is not an integer

C++ assumes that a number followed by a decimal point is a floating point
constant. Thus, it takes 2.5 to be a floating point. This decimal point rule
is true even if the value to the right of the decimal point is zero. Thus, 3.0
is also a floating point. The distinction to you and me between 3 and 3.0 is
small, but not to C++.

Actually, you don’t have to put anything on the right of the decimal point.
Thus 3. is also a double. However, it’s considered good style to include the 0
after the decimal point for floating point constants.

Computer geeks will be interested to know that the internal representations
of 3 and 3.0 are totally different (yawn). More importantly, the constant int
3 is subject to int rules, whereas 3.0 is subject to the rules of floating point
arithmetic.

Thus, you should try to avoid expressions like the following:

double dvalue = 1.0;
double dOneThird = dvalue/3;

Technically this is what is known as a mixed mode expression because
dvalue is a double, while 3 is an int. C++ is not a total idiot — it knows
what you want in a case like this, so it will convert the 3 to a double and per-
form floating point arithmetic.

We say that C++ promotes the int 3 to a double.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Other Numerical Variable Types ’ 5 5

\\3

f)ﬂﬂfﬁ

C++ will also allow you to assign a floating point result to an int variable:
int nvalue = dvalue / 3.0;
Assigning a double to an int is known as a demotion.

Some C++ compilers generate a warning when promoting a variable, but
Code::Blocks/gcc does not. All C++ compilers generate a warning (or error)
when demoting a result due to the loss of precision.

You should get in the habit of avoiding mixed mode arithmetic. If you have to
change the type of an expression, do it explicitly using a caste as in the fol-
lowing example:

void fn(int nArg)

{
// calculate one third of nArg; use a caste to
// promote it to a floating point
double dOneThird = (double)nArg / 3.0;

// ...function continues on

I am using the naming convention of starting double precision double vari-
ables with the letter d. That is merely a convention. You can name your vari-
ables any way you like — C++ doesn’t care.

Discovering the limits of double

Floating point variables come with their own limitations. They cannot be
used to count things, they take longer to process, they consume more
memory, and they also suffer from round-off error (though not nearly as bad
as int). Now, consider each one of these problems in turn.

Counting

You can’t use a floating point variable in an application where counting is
important. In C++, you can’t say that there are 7.0 characters in my first
name. Operators involved in counting don’t work on floating point variables.
In particular, the auto-increment (++) and auto-decrement (-) operators are
strictly verboten on double.

Calculation speed

Computers can perform integer arithmetic faster than floating point arithme-
tic. Historically, this difference was significant. In the 1980s, a CPU without a

floating point processor to help it along took about 1,000 times longer to per-
form a floating point division than it did to perform an integer division.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 5 6 Part IV: Data Structures

Fortunately, floating point processors have been built into CPUs for many
years now, so the difference in performance is not nearly so significant. [wrote
the following loop just as a simple example, first using integer arithmetic:

int nvaluel = 1, nvalue2 = 2, nvValue3d = 2;
for (int i = 0; 1 < 1000000000; i++)
{
int nAverage = (nvaluel + nvValue2 + nvalue3) / 3;
}

This loop took about 5 seconds to execute on my laptop. I then executed the
same loop in floating point:

double dvaluel = 1, dvalue2 = 2, dvalue3 = 2;
for (int 1 = 0; 1 < 1000000000; i++)
{
double daverage = (dvaluel + dvalue2 + dvalue3) / 3.0;
}

This look took about 21 seconds to execute on the same laptop. Calculating
an average 1 billion times in a little over 20 seconds ain’t shabby, but it’s still
four times slower than its integer equivalent.

Consume more memory

Table 14-2 shows the amount of memory consumed by a single variable

of each type. On a PC or Macintosh, an int consumes 4 bytes, whereas a
double takes up 8 bytes. That doesn’t sound like much and, in fact, it isn’t;
but if you had a few million of these things you needed to keep in memory . .
. well, it still would be a great number. But if you had a few hundred million,
then the difference would be considerable.

This is another way of saying, unless you need to store a heck of a lot of
objects, don’t worry about the difference in memory taken by one type
versus another. Instead, pick the variable type based upon your needs.

If you do just happen to be programming an application that needs to manip-
ulate the age of every human on the planet at one time, then you may want
to lean toward the smaller int (or one of the other integer types I discuss in
this chapter) based upon the amount of memory it consumes.

Loss of accuracy

A double variable has about 16 significant digits of accuracy. Consider that a
mathematician would express the number 1/3 as 0.333..., where the ellipses
indicate that the threes go on forever. The concept of an infinite series makes
sense in mathematics, but not in computing. A computer only has a finite
amount of memory and a finite amount of accuracy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Other Numerical Variable Types ’ 5 7

\NG/
R

C++ can correct for round-off error in a lot of cases. For example, on output

if a variable is 0.99999999999999, C++ will just assume that it’s really 1.0 and
display it accordingly. However, C++ can’t correct for all floating point round-
off errors, so you need to be careful. For example, you can’t be sure that 1/3 +
1/3 + 1/3 is equal to 1.0:

double dl = 23.0;
double d2 = dl / 7.0;
if (dl1 == (a2 * 7.0))
{

cout << "Did we get here?" << endl;

}

You might think that this code snippet would always display the "Did we
get here?" string, but surprisingly it does not. The problem is that 23 / 7
cannot be expressed exactly in a floating point number. Something is lost.

Thus, d2 * 7 is very close to 23, but is not exactly equal.

Rather than looking for exact equality between two floating point numbers,
you should be asking, “Is d2 * 7 vanishingly close to d1 in value?” You can do
that as follows:

double di
double d2

23 W
di / 7.0;

// Is d2 * 7.0 within delta of dl?
double difference = (d2 * 7.0) - di;
double delta = 0.00001;
if (difference < delta && difference > -delta)
{
cout << "Did we get here?" << endl;

}

This code snippet calculates the difference between d1 and a2 * 7.0. If this
difference is less than some small delta, the code calls it a day and says that
dl and 32 * 7 are essentially equal.

Not so limited range

The largest number that a double can store is roughly 10 to the 38th power.
That’s a 1 with 38 zeroes after it; that eats the puny 2 billion maximum size
for an int for breakfast. That's even more than the national debt (at least, at
the time of this writing). 'm almost embarrassed to call this a limit, but I sup-
pose there are applications where 38 zeroes aren’t enough.

Remember that only the first 16 digits are significant. The remaining 22 digits

are noise having already succumbed to standard floating point round-off
error.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 5 8 Part IV: Data Structures

Variable Size — the “long”
and “short” of It

\\j

S

TEI,‘/,

C++ allows you to expand on integer variable types by adding the following
descriptors on the front: const, unsigned, short, or else 1ong. Thus, you
could declare something like the following:

unsigned long int ulnvVariable;

A const variable cannot be modified. All numbers are implicitly const.
Thus, 3 is of type const int, while 3.0 is a const double, and ‘3’ is a
const char.

An unsigned variable can take on non-negative values only; however, it
can handle a number roughly twice as large as its signed sibling. Thus,
an unsigned int has arange of 0 to 4 billion (as opposed to the regular
signed int'’s range of -2 billion to 2 billion).

C++ allows you to declare a short int and a long int. For example, a
short int takes less space but has a more limited range than a regular int,
whereas a 1ong int takes more storage and has a significantly larger range.

The int is assumed. Thus, the following two declarations are both accepted
and completely equivalent:

long int 1nvarl; // declare a long int
long 1lnvar2; // also a long int; int is assumed

The C++ 2009 Standard even defines a long long int and a long double.
The Code::Blocks/gcc that comes on the enclosed CD-ROM understands what
these are, but not all compilers do. These are just like 1ong int and double,
respectively, only more so — more accuracy and larger range.

Not all combinations are allowed. For example, unsigned can be applied
only to the counting types int and char. Table 14-1 shows the legal combi-
nations and their meaning along with how to declare a constant of that type.

Table 14-1 The Common C++ Variable Types
Type Declaring What It Is
a Constant
int 1 A simple counting number, either positive or
negative.
unsigned 1U A non-negative counting number.
int

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Other Numerical Variable Types ’ 5 9

Type Declaring What It Is
a Constant

short int A potentially smaller version of the int. It uses
less memory but has a more limited range.

long int L A potentially larger version of the int. It may
use more memory but has a larger range. There
is no difference between 1ong and int onthe
Code::Blocks/gcc compiler.

long long 1LL A potentially even larger version of the int.

int

float 1.0F A single precision real number.

double 10 A double precision real number.

long A potentially larger floating point number. On

double the PC, 1long double is the native size for
numbers internally to the numeric processor.

char ‘e’ A single char variable stores a single character.
Not suitable for arithmetic.

wchar_t L'c’ A wide character. Used to store larger char-

acter sets such as Chinese kanji symbols. Also
known as UTF or Unicode.

How far do numbers range?

It may seem odd, but the C++ standard doesn’t actually say exactly how big
anumber each of the data types can accommodate. The standard addresses
only the relative size of each variable type. For example, it says that the maxi-
mum long int is at least as large as the maximum int.

The authors of C++ weren't trying to be mysterious. They wanted to allow
the compiler to implement the absolute fastest code possible for the base
machine. The standard was designed to work for all different types of proces-
sors running different operating systems.

In fact, the standard size of an int has changed over the past decades.
Before 2000, the standard int on most PCs was 2 bytes and had a range of
plus or minus 64,000. Some time around 2000, the basic word size on the Intel
processors changed to 32 bits. Most compilers changed to the default int of
today that’s 4 bytes and has a range of plus or minus 2 billion.

Table 14-2 provides the size and range of each variable type on the Code::Blocks/
gcc compiler provided on the enclosed CD-ROM (and most other compilers
meant for an Intel processor running on a 32-bit operating system).

www.it-ebooks.info

http://www.it-ebooks.info/

’ 60 Part IV: Data Structures

A\

Table 14-2 Range of Numeric Types in Code::Blocks/gcc

Type Size [bytes] Accuracy Range

short int 2 exact -32,768 to 32,767

int 4 exact -2,147,483,648 to 2,147,483,647
long int 4 exact -2,147,483 648 to 2,147,483,647
long long 8 exact -9,223,372,036,854,775,808 to
int 9,223,372,036,854,775,807
float 4 7 digits +/~3.4028 * 10+-38

double 8 16 digits +/-1.7977 * 10+-308

long double 12 19 digits +/-1.1897 * 10+/-4932

Attempting to calculate a number that is beyond the range of a variable’s
type is known as an overflow. The C++ standard generally leaves the results of
an overflow undefined. That’s another way that the inventors of C++ wanted
to leave the language flexible so that the machine code generated would be
as fast as possible.

On the PC, a floating point overflow generates an exception that, if not han-
dled, will cause your program to crash. (I don't discuss exception handling
until Chapter 32.) As bad as that sounds, an integer overflow is even worse —
C++ generates an incorrect result without complaint.

Types of Constants

I mentioned the const declaration earlier in this chapter and again in Table
14-1, but I would like to take a minute to expand upon constants now.

A constant value is an explicit number or character such as 1 or 0.5 or ‘c’.
Constant values cannot be changed, that is, they cannot appear on the left-
hand side of an assignment statement. Every constant value has a type.

The type of 1 is const int. The type of 0.5 is const double. Table 14-1
explains how to declare constant values with different types. For example, 1L
is of type const long.

A variable can be declared constant using the const keyword:

const double PI = 3.14159; // declare a constant variable

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Other Numerical Variable Types ’6 ’

A const variable must be initialized when it is declared since you will not get
another chance in the future — just like a constant value, a const variable
cannot appear on the left-hand side of an assignment statement.
W It is common practice to declare const variables using all capitals. Multiple
words within a variable name are divided by an underscore as in TWO_PI. As
always, this is just convention — C++ doesn’t care.

It may seem odd to declare a variable and then say that it can’t be changed.
Why bother? Largely because a carefully named constant can make a pro-
gram a lot easier to understand. Consider the following two equivalent
expressions:

double dC = 6.28318 * dR; // what does this mean?
double dcircumference = TWO_PI * dRadius; // this is a lot
// easier to understand

It should be a lot clearer to the reader of this code that the second expres-
sion is multiplying the radius by 2n to calculate the circumference.

Passing Different Types to Functions

Floating point variables and variables of different size are passed to function
in the same way that int variables are as demonstrated in the following code
snippet. This example snippet passes the value of the variable darg along
with the const double 0.0 to the function maximumFloat ().

// maximumFloat - return the larger of two floating

// point arguments
double maximumFloat (double dl, double d2)
{ if (d1 > d2)
‘ return d4di;
)]}return az;

void otherFunction()

{
double dArg = 1.0;
double dNonNegative = maximumFloat (dArg, 0.0);
// ...function continues...

I discuss functions in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 62 Part IV: Data Structures

£3

Overloading function names

The type of the arguments are part of the extended name of the function.
Thus, the full name of the earlier example function is maximumFloat
(double, double).In Chapter 11, you see how to differentiate between two
functions by the number of arguments. You can also differentiate between two
functions by the type of the arguments, as shown in the following example:

double maximum(double dl, double2);
int maximum(int nl, int n2);

When declared this way, it's clear that the call maximum (1, 2) refers
tomaximum(int, int), while the callmaximum(3.0, 4.0) refersto
maximum(double, double).

Defining functions that have the same name but different arguments is called
function overloading.

Sometimes the programmer’s intentions start to get a little obscure, but you
can even differentiate by the signedness and length as well:

int maximum(int nl, int n2);
long maximum(long 11, long 12);
unsigned maximum(unsigned unl, unsigned un2);

Fortunately, this is rarely necessary in practice.

Mixed mode overloading

The rules can get really weird when the arguments don'’t line up exactly.
Consider the following example code snippet:

double maximum(double dl, double d2);
int maximum(int nl, int n2);

void otherFunction()

{
// which function is invoked by the following?
double dNonNegative = maximum(dArg, O0);
// ...function continues...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14: Other Numerical Variable Types ’ 63

const arguments are a constant problem

Since C++ passes the value of the argument, you cannot differentiate by const-ness. Consider
the following call to see why:

double maximum(double dl, double d2);

void otherFunction()

{
double dArg = 2.0;
double dNonNegative = maximum(dArg, 0.0);

What actually gets passed to maximum () are the values 2.0 and 0.0. The maximum () function
can't tell whether these values came from a variable like dArg or a constant like 0.0.

You can declare the arguments of a function to be const. Such a declaration means that you cannot
change the argument’s value within the function. This is demonstrated in the following implementation
of maximum (double, double):

double maximum(const double dl, const double d2)

{
double dResult = d4dil;
if (d2 > drResult)
{
dResult = 4z2;

}

// the following would be illegal
dl = 0.0; d2 = 0.0

return dResult;
}

The assignment to 31 and @2 is not allowed because both have been declared const and there-
fore are not changeable.

What is not legal is the following:

// these two functions are not different enough to be
distinguished

double maximum(double dl, double d2);

double maximum(const double dl, const double d2);

void otherFunction()

{
double dArg = 2.0;

// C++ doesn't know which one of the above functions to call
double dNonNegative = maximum(dArg, 0.0);

C++ has no way of differentiating between the two when you make the call. | have more to say
about const arguments in Chapter 17.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 64 Part IV: Data Structures

Here, the arguments don’t line up exactly with either declaration. There is no
maximum(double, int).C++ could reasonably take any one of the follow-
ing three options:

+ Promote the 0 to a double and call maximum(double, double).

1 Demote the double to an int and invoke maximum(int, int).

v Throw up its electronic hands and report a compiler error.
The general rule is that C++ will promote arguments in order to find a match
but will not automatically demote an argument. However, you can’t always

count on this rule. In this case, Code::Blocks generates an error that the call
is ambiguous. That is, the third option wins.

My advice is to not rely on C++ to figure out what you mean by making the
necessary conversions explicit:

void otherFunction(int nArgl, double darg2)
{
// use an explicit cast to make sure that the
// proper function is called
double dNonNegative = maximum((double)nArgl, dArg2):;

Now it is clear that I mean to call maximum (double, double).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15
Arrays

In This Chapter

Expanding simple variables into an array

Comparing the array to a rental car lot

Indexing into an array

Initializing an array

Tle variables declared so far have been of different types with different
sizes and capabilities. Even so, each variable has been capable of hold-
ing only a single value at a time. If I wanted to hold three numbers, | had to
declare three different variables. The problem is that there are times when

I want to hold a set of numbers that are somehow closely related. Storing
them in variables with names that bear some similarity of spelling like narg1,
nArg2, and so on may create associations in my mind but not for poor, igno-
rant C++.

There is another class of variable known as the array that can hold a series
of values. Arrays are the subject of this chapter and the next chapter. (Here |
present arrays in general. In the next chapter, I look at the particular case of
the character array.)

What Is an Array?

3

If you are mathematically inclined and were introduced to the concept of the
array in high school or college, you may want to skim this section.

You may think of a variable as a truck. There are small trucks, like a short
int, capable of holding only a small value; and there are larger trucks, like
along double, capable of holding astoundingly large numbers. However,
each of these trucks can hold only a single value.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 66 Part IV: Data Structures

Each truck has a unique designator. Perhaps you give your vehicles names,
but even if you don’t, each has a license plate that uniquely describes each of
your vehicles, at least within a given state.

This works fine for a single family. Even the largest families don’t have so
many cars that this arrangement gets confusing. But think about an auto

rental agency. What if they referred to their cars solely by a license plate
number or some other ID? (Boy, just thinking about that Hertz!)

After filling out the myriad forms — including deciding whether [want the
full insurance coverage and whether I'm too lazy to fill it up with gas before |
bring it back — the guy behind the counter says, “Your car is QZX123.” Upon
leaving the building and walking to the parking lot, I look over a sea of cars
that rival a Wal-Mart parking lot. Exactly where is QZX123?

That’s why the guy behind the counter actually says something quite differ-
ent. He says something to the effect, “Your car is in slot B11.” This means
that I am to skip past row A directly to row B and then start scanning down
the line for the eleventh car from the end. The numbers are generally painted
on the pavement to help me out, but even if they weren't, [could probably
figure out which car he meant.

Several things have to be true in order for this system to work:
v The slots have to be numbered in order (B2 follows Bl and comes imme-

diately before B3), ideally with no breaks or jumps in the sequence.

v Each slot is designed to hold a car (a given parking slot may be empty,
but the point is that [would never find a house in a parking slot).

1+~ The slots are equally spaced (being equally spaced means that I can
jump ahead and guess about where B50 is without walking along from Bl
through B49, checking each one).

That’s pretty much the way arrays work. I can give a series of numbers a
single name. I refer to individual numbers within the series by index. So the
variable x may refer to a whole series of whole numbers, x(1) would be the

first number in the series, x(2) the second, and so on, just like the cars at the
rental agency.

Declaring an Array

To declare an array in C++, you must provide the name, type, and number of
elements in the array. The syntax is as follows:

int nScores[100];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Arrays ’6 7

3

This declares an array of 100 integers and gives them the name nScores.

It is common practice to use the same naming convention for arrays as for
non-arrays but to use the plural form. That makes sense because nScores
refers to 100 integer values.

Indexing into an Array

Figure 15-1:
Carsina
rental car lot
are typically
numbered
sequentially
starting with
1to make
them easier
to find.
|

You must provide an index to access a specific element within the array. An
index must be a counting type (like int), as demonstrated here:

nScores[11] = 10;

This is akin to the way that rental cars are numbered. However, unlike
humans, C++ numbers its arrays starting with 0. Thus, the first score in the
array nScores isnScores[0].

So how does this work exactly? [will return to the rental car lot one more
time (for the last time, [promise). Figure 15-1 shows how rental cars typically
number their parking lots. The first car in row B carries the designation B1.
To find B11, I simply move my gaze ten cars to the right.

s 3008008005000 00500008a000Ed
39RERARARAAARARRRARARRRAR0R

C++ does a similar thing. To execute the statement nScores[11] = 10, C++
starts with the address of the first element in nScores. It then moves to the
right 11 spaces and stores a 10 at that location. This is shown graphically in
Figure 15-2. (I say a lot more about what it means to “take the address of the
first element” in the next three chapters. Please just accept the statement for
now.)

www.it-ebooks.info

http://www.it-ebooks.info/

168

Part IV: Data Structures

Figure 15-2:

C++ calcu-

Iatgs the nScores[11] =10;
location of
nscores npScores:

[11] by
moving over 10

MMint
slots from 0+ 42 43 #4445 46 47 48 49 +#10 11 412
the begin- T

ning of the +11
nscores

array.
]

\NG/
R

The fact that C++ starts counting at zero leads to a point that always confuses
beginners. The statement

int nScores[100];
declares 100 scores, which are numbered from 0 to 99. The expression
nScores[100] = 0; // this is an error

zeroes out the first element beyond the end of the array. The last element in
the array is nScores[99]. The C++ compiler will not catch this error and
will happily access this non-element, which very often leads to the program
accessing some other variable by mistake. This type of error is very hard to
find because the results are so unpredictable.

Looking at an Example

€ CD
"= The following example averages a set of scores and then displays that aver-

age. However, unlike earlier demonstrations, this program retains the scores’
input in an array that it can then output along with the average.

//

// ArrayDemo - demonstrate the use of an array

// to accumulate a sequence of numbers
//

#include <cstdio>
#include <cstdlib>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Arrays ’ 69

#include <iostream>
using namespace std;

// displayArray - displays the contents of the array

// of values of length nCount
void displayArray(int nvalues[100], int nCount)
{
for(int i = 0; i < nCount; i++)
{
cout.width(3);
cout << i << " - " << nvValues[i] << endl;
}
}
// averageArray - averages the contents of an array
// of values of length nCount
int averageArray(int nvalues[100], int nCount)
{

int nSum = 0;
for(int i = 0; 1 < nCount; i++)
{
nsSum += nvValues|[i];
}
return nSum / nCount;
}

int main(int nNumberofArgs, char* pszArgs|[])
{

int nScores[100];

int nCount;

// prompt the user for input
cout << "This program averages a set of scores\n"
<< "Enter scores to average\n"
<< " (enter a negative value to terminate input"

<< endl;
for (nCount = 0; nCount < 100; nCount++)
{

cout << "Next: ";

cin >> nScores[nCount];

if (nScores[nCount] < 0)

{

break;

}

}

// now output the results
cout << "Input terminated." << endl;
cout << "Input data:" << endl;

www.it-ebooks.info

http://www.it-ebooks.info/

’ 70 Part IV: Data Structures

A\

displayArray (nScores, nCount) ;

cout << "The average is "
<< averageArray (nScores, nCount)
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program starts at the beginning of main () by prompting the user for
a series of integer values. The program saves each of the numbers that the
user inputs into the array nScores in a loop. The program exits the loop as
soon as the user enters a negative number.

Notice that this program keeps track of the number of values entered in the
variable ncount. The program will exit the loop after 100 entries whether or
not the user enters a negative number — because that'’s all the room the pro-
gram has for storing values. You should always make sure that you don’t over-
run the end of an array.

Once the user has either entered a negative value or 100 values in a row,
the program exits the loop. Now the nScores array contains all of the num-
bers entered, and nCount contains a count of the number of values that are
stored in the array.

The program then calls the function displayArray () to echo to the user
the values entered. Finally, the function averageArray () returns the inte-
ger average of the numbers entered.

The displayAverage () function iterates through the values in the array
passed it, displaying each value in turn. The averageArray () function
works by also iterating through the array nvalues, accumulating the sum of
each element in a local variable nsum. The function returns nSum / nCount,
which is the average of the values in nvalues.

In practice, the output of the program appears as follows:

This program averages a set of scores
Enter scores to average
(enter a negative value to terminate input

Next: 10
Next: 20
Next: 30
Next: 40
Next: 50

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15: Arrays ’ 7’

Next: -1
Input terminated.
Input data:

0 - 10

1 - 20

2 - 30

3 - 40

4 - 50

The average is 30
Press any key to continue .

Initializing an Array

Like any other variable, an array starts out with an indeterminate value if you
don’t initialize it. The only difference is that unlike a simple variable, which
contains only one undetermined value, an array starts out with a whole lot of
unknown values:

int nScores[100]; // none of the values in nScores
// known until you initialize them

You can initialize the elements of an array with a loop as follows:
int nScores[100]; // declare the array and then...
for (int 1 = 0; 1 < 100; i++) // ...initialize it
{

nScores[i] = 0;
}

You can also initialize an array when you declare it by including the initial
values in braces after the declaration. For a small array, this is easy:

int nCount([5] = {0, 1, 2, 3, 4};
Here I initialized the value of nCount [0] to 0, nCount[1] to 1, nCount [2]
to 2, and so on. If there are more elements than numbers in the list, C++ pads
the list with zeros. Thus, in the following case:

int nCount[5] = {1};

the first element (nCount [0]) is set to 1. Every other element gets initialized
to zero. You can use this to initialize a large array to zero as well:

int nScores[100] = {0};

This not only declares the array but initializes every element in the array to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

172

Part IV: Data Structures

é}ﬁ)ﬂfﬂ

By the same token, you don’t have to provide an array size if you have an ini-
tializer list — C++ will just count the number of elements in the list and make
the array that size:

int nCount[] = {1, 2, 3, 4, 5};

This declares ncount to be 5 elements large because that’s how many values
there are in the initializer list.

Arrays are useful for holding small to moderate amounts of data. (Really large

amounts of data require a database of some sort.) By far, the most common
type of array is the character array, which is the subject of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16
Arrays with Character

In This Chapter
Introducing the nul1l terminated character array
Creating an ASCIIZ array variable
Examining two example ASCIIZ manipulation programs
Reviewing some of the most common built-in ASCIIZ library functions

‘ hapter 15 introduced the concept of arrays. The example program col-

lected values into an integer array, which was then passed to a function
to display and a separate function to average. However, as useful as an array
of integers might be, far and away the most common type of array is the
character array. Specifically something known as the ASCIIZ character array,
which is the subject of this chapter.

The ASCIl-Zero Character Array

Arrays have an inherent problem: You can never know by just looking at the
array how many values are actually stored in it. Knowing the size of an array
is not enough. That tells you how many values the array can hold, not how
many it actually does hold. The difference is like the difference between how
much gas your car’s tank can hold and how much gas it actually has. Even if
your tank holds 20 gallons, you still need a gas gauge to tell you how much is
init.

For a specific example, the ArrayDemo program in Chapter 15 allocated

enough room in nScores for 100 integers, but that doesn’t mean the user
actually entered that many. He might have entered a lot fewer.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 74 Part IV: Data Structures

There are essentially two ways of keeping track of the amount of data in an
array:

1+~ Keep a count of the number of values in a separate int variable. This
is the technique used by the ArrayDemo program. The code that read
the user input kept track of the number of entries in ncount. The only
problem is that the program had to pass nCount along to every function
to which it passed the nscores array. The array was not useful without
knowing how many values it stored.

1~ Use a special value in the array as an indicator of the last element
used. By convention, this is the technique used for character arrays in
C++.

Look back at the table of legal ASCII characters in Chapter 5. You'll notice
that one character in particular is not a legal character: ‘\0’. This character is
also known as the nul1 character. It is the character with a numerical value
of zero. A program can use the null character as the end of a string of char-
acters since it can never be entered by the user. This means that you don’t
have to pass a separate count variable around — you can always tell the end
of the string by looking for a null.

The designers of C and C++ liked this feature so well that they settled on it as
the standard for character strings. They even gave it a name: the ASCll-zero
array or ASCIIZ for short.

The null character has another advantageous property. It is the only char-
acter whose value is considered false in a comparison expression (such as
in a loop or an if statement).

f’“ﬂ,

Remember from Chapter 9 that 0 or nul1l is considered false. All other
values evaluate to true.

This makes writing loops that manipulate ASCIIZ strings even easier, as you
will see in the following examples.

Declaring and Initializing
an ASCIIZ Array
I could declare an ASCIIZ character array containing my first name as follows:

char szMyName[8] = {'S', 't', 'e', 'p',
lhll lell |n', l\ol};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character ’ 75

é"gxﬂﬁﬁ

Actually, the 8 is redundant. C++ is smart enough to count the number of
characters in the initialization string and just make the array that big. Thus,
the following is completely equivalent to the previous example:

char szMyName[] = {'S', 't', 'e', 'p',
lhl, lel’ lnll I\OI};

The only problem with this is that it's awfully clumsy. | have to type a lot
more than just the seven characters that make up my name. (I had to type
about five keystrokes for every character in my name — that’s a lot of over-
head.) ASCIIZ strings are so common in C++ that the language provides a
shorthand option:

char szMyName[] = "Stephen";
These two initialization statements are completely equivalent. In fact, a string
contained in double quotes is nothing more than an array of constant charac-

ters terminated with a null.

The string "Stephen" consists of eight characters — don’t forget to count
the terminating null.

Looking at an Example

WE CD
S

Let’s take the simple case of displaying a string. You know by now that C++
understands how to display ASCIIZ strings just fine, but suppose it didn't.
What would a function designed to display a string look like? The following
DisplayASCIIZ program shows one example:

//

// DisplayASCIIZ - display an ASCIIZ string one character
// at a time as an example of ASCIIZ

// manipulation

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// displayString - display an ASCIIZ string one character
// at a time

void displayString(char szStringl[])

{

www.it-ebooks.info

http://www.it-ebooks.info/

’ 76 Part IV: Data Structures

for (int index = 0; szString[index] != '\0'; index++)
{
cout << szString[index];
}
}

int main(int nNumberofArgs, char* pszArgs|[])
{
char szNamel[] = {'S', 't', 'e', 'p',
Ihll |el’ lnll |\0|};

char szName2[] "Stephen" ;

cout << "Output szNamel: ";
displayString (szNamel) ;
cout << endl;

cout << "Output szName2: ";
displayString (szName2) ;
cout << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The displaystring() function is the key to this demonstration program.
This function iterates through the array of characters passed to it using the
variable index. However, rather than rely on a separate variable containing
the number of characters in the array, this function loops until the character
at szstring[index] is the null character, '\ 0'. As long as the current
character is not a null character, the loop outputs it to the display.

Themain () function creates two versions of my name, first using dis-
crete characters for szNamel and then a second time using the shortcut
"Stephen" for szName2. The function then displays both strings using the
displaysString () function both to show that the function works and to
demonstrate the equivalence of the two strings.

The output from the program appears as follows:

Output szNamel: Stephen
Output szName2: Stephen
Press any key to continue .

Notice that szNamel and szName2 display identically (since they are the
same).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character

Constant character problems

Technically "stephen™ is not of type char [], that is, “array of characters” — it's of type
const char [],thatis “array of const characters.” The difference is that you cannot modify the
characters in an array of constant characters. Thus, you could do the following:

char cT = "Stephen"[1]; // fetch the second character, the 't’
But you could not modify it by putting it on the left-hand side of an equal sign:
"Stephen" [1] = 'X'; // replace the 't' with an 'x’

This pickiness about const doesn't normally make a difference, but it can cause C++ consterna-
tion when declaring arguments to a function. For example, in the DisplayASCIIZ demo program, |
could notsay displayString ("Stephen") because displayString () isdeclaredto
accept an array of characters (char []), where "Stephen™ is an array of const characters
(const char[]).

| can solve this problem by simply declaring displaysString () as follows:
void displayString(const char szStringl[]):;

The function works because displaysString () never tries to modify the szString array
passed to it.

Don’t worry if this discussion of const versus non-const variables leaves you confused —you'll
get another chance to see this in action in Chapter 18.

Looking at a More Detailed Example

Displaying a string of characters is fairly simple. What about a little bit

tougher example? The following program concatenates two strings that it

BE, reads from the keyboard.

&3
To concatenate two strings means to tack one onto the end of the other. For

example, the result of concatenating "abc" with "DEF" is "abcDEF".

Before you examine the program, think about how you could go about con-
catenating a string, call it szSource, onto the end of another one called
szTarget.

First, you need to find the end of the szTarget string (see the top of Figure
16-1). Once you've done that, you copy characters from szSource one at a
time into szTarget until you reach the end of the szsource string (as dem-
onstrated at the bottom of Figure 16-1). Make sure that the result has a final
null on the end, and you're done.

www.it-ebooks.info

177

http://www.it-ebooks.info/

’ 78 Part IV: Data Structures

I
F_irgl"’e 16-1: szTarget:
o concat-
enaete (] t1r[i]n]o] J1lof[7[7|2[7]7]2[2]7|] 7]7[2]7)
function Wﬁmﬁ
must do the
following:) o : i i
(a) First, After the first loop, nT contains the index of the NULL that terminates String 1.

find the

terminating
nullof SzZlarget

et [T [o]o] [1[s]T[a[1[Nz 7] [e 2 7] [?[2]7]]
Then copy
characters nT

fromthe szSource:
source to

o targr sITR]tiN]e] J2je 2]z 2[e]e 2 2 e[2]2 2] 2] ?]?]

nullon s
the source The following assignment transfers a character from szSource to szTarget

is encoun- starting at the terminating NULL:
tered. szTarget[nT] szSource[nS];

That's exactly how the concatenatestring () function works in the
ConcatenateString example program.

//

// ConcatenateString - demonstrate the manipulation of
// ASCIIZ strings by implementing a

// concatenate function

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// concatenateString - concatenate one string onto the
// end of another
void concatenateString(char szTarget[],

const char szSourcel])

{
// first find the end of the target string
int nT;
for (nT = 0; szTarget[nT] != '\0'; nT++)
{
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character ’ 79

// now copy the contents of the source string into
// the target string, beginning at 'nT'
for(int nsS = 0; szSource[nS] != '\0'; nT++, NS++)
{

szTarget [nT] = szSource[nS];
}

// add the terminator to szTarget
szTarget [nT] = '\0"';
}

int main(int nNumberofArgs, char* pszArgs[])
{
// Prompt user
cout << "This program accepts two strings\n"
<< "from the keyboard and outputs them\n"
<< "concatenated together.\n" << endl;

// input two strings

cout << "Enter first string: ";
char szStringl[256];
cin.getline(szStringl, 256);

cout << "Enter the second string: ";
char szString2[256];
cin.getline(szString2, 256);

// now concatenate one onto the end of the other

cout << "Concatenate first string onto the second"
<< endl;

concatenateString(szStringl, szString2);

// and display the result
cout << "Result: <"

<< szStringl

<< ">" << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The concatenatestring () function accepts two strings, szTarget and
szSource. Its goal is to tack szSource onto the end of szTarget.

The function assumes that the szTarget array is large enough to hold both
strings tacked together. It has no way of checking to make sure that there is
enough room. More on that a little later in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

’ 8 0 Part IV: Data Structures

3

»

TEL‘/,

Notice that the target argument is passed first and the source second. This
may seem backwards, but it really doesn’t matter — either argument can be
the source or the target. It’s just a C++ convention that the target goes first.

In the first for loop, the function iterates through szTarget by increment-
ing the index nT until szTarget [nT] == '\0°', that is, until nT points to
the terminating nul1l character. This corresponds to the situation at the top
of Figure 16-1.

The function then enters a second loop in which it copies each character
from szSource into szTarget starting at nT and moving forward. This cor-
responds to the bottom of Figure 16-1.

This example shows a situation when using the comma operator in a for
loop is justified.

Since the for loop terminates before it copies the terminating null from
szSource, the function must add the terminating null onto the result
before returning.

Themain () program prompts the user to enter two strings, each terminated
with a newline. The program then concatenates the two strings by calling the
new concatenatestring() function and displays the results.

The expression cin >> string; stops inputting at the first white space.
The getline () function used in the example program reads input from the
keyboard just like cin >> string;, but it reads an entire line up to the
newline at the end. It does not include the newline in the character string that
it returns. Don’t worry about the strange syntax of the call to getline () —1I
cover that in Chapter 23.

The results of a sample run of the program appear as follows:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: sString 1

Enter the second string: STRING 2
Concatenate first string onto the second
Result: <String 1STRING 2>

Press any key to continue .

Note that the second argument to concatenatesString () is actually
declared to be a const char[] (pronounced “array of constant characters™).
That's because the function does not modify the source string. Declaring it to
be an array of constant characters allows you to call the function passing it a
constant string as in the following call:

concatenateSstring(szString, "The End") ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character

Foiling hackers

How does the concatenatestring () function in the earlier example
program know whether there is enough room in szTarget to hold both
the source and target strings concatenated together? The answer is that it
doesn’t.

This is a serious bug. If a user entered enough characters before pressing
Enter, he could overwrite large sections of data or even code. In fact, this
type of fixed buffer overwrite bug is one of the ways that hackers gain control
of PCs through a browser to plant virus code.

In the following corrected version, concatenatestring () accepts an addi-
tional argument: the size of the szTarget array. The function checks the
index nT against this number to make sure that it does not write beyond the
end of the target array.

The program appears as ConcatenateNString on the enclosed CD-ROM:

// concatenateString - concatenate one string onto the
// end of another (don't write beyond
// nTargetsSize)
void concatenateString(char szTarget[],
int nTargetSize,
const char szSourcel[])

{
// first find the end of the target string
int nT;
for (nT = 0; szTarget[nT] != '\0'; nT++)
{
}
// now copy the contents of the source string into
// the target string, beginning at 'nT' but don't
// write beyond the nTargetSize'th element (- 1 to
// leave room for the terminating null)
for(int ns = 0;
nT < (nTargetSize - 1) && szSource[nS] != '\0';
nT++, NS++)
{
szTarget [nT] = szSource[nS];
}
// add the terminator to szTarget
szTarget [nT] = '\0"';
}

The first part of the function starts out exactly the same, incrementing
through szTarget looking for the terminating nul1. The difference is in the
second loop. This for loop includes two terminating conditions. Control
exits the loop if either of the following is true:

www.it-ebooks.info

181

http://www.it-ebooks.info/

’ 8 2 Part IV: Data Structures

v szSource[nS] is the null character, meaning that you've gotten to the
final character in szSource.

» nT is greater than or equal to nTargetSize - 1 meaning that you've
exhausted the space available in szTarget (- 1 because you have to
leave room for the terminating null at the end).

This extra check is irritating but necessary to avoid overrunning the array
and producing a program that can crash in strange and mysterious ways.

Do I Really Have to Do All That Work?

C++ doesn’t provide much help with manipulating strings in the language
itself. Fortunately, the standard library includes a number of functions for
manipulating these strings that save you the trouble of writing them yourself.
Table 16-1 shows the most common of these functions.

Table 16-1 Common ASCIIZ String Manipulation Functions

Function Description

isalpha (char c) Returns a true if the character is alpha-
betic (‘A" through Z’ or ‘a’ through ‘7).

isdigit (char c) Returns a true if the character is a digit (‘0
through ‘9’).

isupper (char c) Returns a true if the character is an upper-
case alphabetic.

islower (char c) Returns a true if the character is a lower-
case alphabetic.

isprint (char c) Returns a true if the character is printable.

isspace (char c) Returns a true if the character is a form of
white space (space, tab, newline, and so on).

strlen(char s[]) Returns the number of characters in a string
(notincluding the terminating nul1).

strcemp (char s1[], Compares two strings. Returns 0 if the

char s2[1) strings are identical. Returns a 1 if the first

string occurs later in the dictionary than the
second. Returns a -1 otherwise.

strncpy (char targetl], Copies the source string into the target string
char sourcel[], but not more than ‘size’ characters.
int size)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character ’ 83

Function Description

strncat (char target[], Concatenates the source string onto the end
char sourcel], of the target string for a total of not more
int size) than ‘size’ characters.

tolower (char c) Returns the lowercase version of the

character passed to it. Returns the current
character if it is already lowercase or has no
uppercase equivalent (such as a digit).

toupper (char c) Returns the uppercase version of the char-
acter passed to it.

The following example program uses the toupper () function to convert a
string entered by the user into all caps:

//

// ToUpper - convert a string input by the user to all
// upper case.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// toUpper - convert every character in an ASCIIZ string

// to uppercase
void toUpper (char szTarget[], int nTargetSize)
{
for (int nT = 0;
nT < (nTargetSize - 1) && szTarget[nT] != '\0';
nT++)

szTarget [nT] = toupper (szTarget[nT]) ;

}

int main(int nNumberofArgs, char* pszArgs|[])
{
// Prompt user
cout << "This program accepts a string\n"
<< "from the keyboard and echoes the\n"
<< "string in all caps.\n" << endl;

// input two strings

cout << "Enter string: ";
char szString[256];
cin.getline(szString, 256);

www.it-ebooks.info

http://www.it-ebooks.info/

’ 8 4 Part IV: Data Structures

3

// now convert the string to all uppercase
toUpper (szString, 256);

// and display the result
cout << "All caps version: <"
<< szString
<< ">" << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The toUpper () function follows a pattern that will quickly become old hat
for you: It loops through each element in the ASCIIZ string using a for loop.
The loop terminates if either the size of the string is exhausted or the pro-
gram reaches the terminating null character.

The function passes each character in the string to the standard C++ library
toupper () function. It stores the character returned by the function back
into the character array.

It is not necessary to first test to make sure that the character is lowercase
using islower () — both the tolower () and the toupper () functions
return the character passed to them if the character has no lower- or upper-
case equivalent.

Themain () function simply prompts the user to enter a string. The program
reads the input string by calling get1ine (). It then converts whatever it
reads to uppercase by calling toUpper () and then displays the results.

The following shows the results of a sample run:

This program accepts a string
from the keyboard and echoes the
string in all caps.

Enter string: This 1s a string 123!@#.
All caps version: <THIS IS A STRING 123!@#.>
Press any key to continue .

Notice that the input string includes uppercase characters, lowercase charac-
ters, digits, and symbols. The lowercase characters are converted to upper-
case in the output string, but the uppercase characters, digits, and symbols
are unchanged.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16: Arrays with Character 1 8 5

In this chapter, you’ve seen how to handle ASCIIZ strings as a special case of
character arrays. In practice, many of the standard functions rely on some-
thing known as a pointer. In the next two chapters, you'll see how pointers
work. | will then return to these same example functions and implement them
using pointers to demonstrate the elegance of the pointer solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17

Pointing the Way to C++ Pointers

In This Chapter

Introducing the concept of pointer variables

Declaring and initializing a pointer

Using pointers to pass arguments by reference

Allocating variable-sized arrays from the heap

\NG/
&

r)is chapter introduces the powerful concept of pointers. By that I don’t
mean specially trained dogs that point at birds but rather variables that
point at other variables in memory. [start with an explanation of computer
addressing before getting into the details of declaring and using pointer vari-
ables. This chapter wraps up with a discussion of something known as the
heap and how we can use it to solve a problem that I slyly introduced in the
last chapter.

But don’t think the fun is over when this chapter ends. The next chapter
takes the concept of pointers one step further. In fact, in one way or another,
pointers will reappear in almost every remaining chapter of this book.

It may take you a while before you get comfortable with the concept of pointer
variables. Don’t get discouraged. You may have to read through this chapter
and the next a few times before you grasp all of the subtleties.

What's a Pointer?

\NG/
&

A pointer is a variable that contains the address of another variable in the
computer’s internal memory. Before you can get a handle on that statement,
you need to understand how computers address memory.

The details of computer addressing on the Intel processor in your PC or
Macintosh are quite complicated and much more involved than you need to
worry about in this book. | will use a very simple memory model in these
discussions.

www.it-ebooks.info

http://www.it-ebooks.info/

’ 8 8 Part IV: Data Structures

£3

A\

Every piece of random access memory (RAM) has its own, unique address.
For most computers, including Macintoshes and PCs, the smallest address-
able piece of memory is a byte.

A byte is 8 bits and corresponds to a variable of type char.

An address in memory is exactly like an address of a house, or would be if
the following conditions were true:

v Every house is numbered in order.

v There are no skipped or duplicated numbers.

v The entire city consists of one long street.
So, for example, the address of a particular byte of memory might be 0x1000.

The next byte after that would have an address of 0x1001. The byte before
would be at 0x0OFFF.

I don’t know why, but, by convention, memory addresses are always
expressed in hexadecimal. Maybe it's so that non-programmers will think that
computer addressing is really complicated.

Declaring a Pointer

A char variable is designed to hold an ASCII character, an int an integer
number, and a double a floating point number. Similarly, a pointer variable
is designed to hold a memory address. You declare a pointer variable by
adding an asterisk (*) to the end of the type of the object that the pointer
points at, as in the following example:

char* pChar; // pointer to a character
int* pInt; // pointer to an int

A pointer variable that has not otherwise been initialized contains an
unknown value. You can initialize a pointer variable with the address of a
variable of the same type using the ampersand (&) operator:

char cSomeChar = 'a';
char* pChar;
pChar = &cSomeChar;

In this snippet, the variable cSomeChar has some address. For argument’s

sake, let’s say that C++ assigned it the address 0x1000. (C++ also initialized
that location with the character 'a'.) The variable pchar also has a location of

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers ’ 8 9

Figure 17-1:
The layout
of cSome
Char and
pCharin

memory
after their
declaration
and initial-
ization, as
described in
the text.
|

A\

its own, perhaps 0x1004. The value of the expression &cSomecChar is 0x1000,
and its type is char* (read “pointer to char™). So the assignment on the third
line of the snippet example stores the value 0x1000 in the variable pChar.
This is shown graphically in Figure 17-1.

FFF_ 0x1000 0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 O

a 0x1000
Il Il

cSomeChar ‘a’; T
pChar &cSomeChar;

Take a minute to really understand the relationship between the figure and
the three lines of C++ code in the snippet. The first declaration says, “go out
and find a 1-byte location in memory, assign it the name cSomecChar, and ini-
tialize it to 'a'.” In this example, C++ picked the location 0x1000.

The next line says, “go out and find a location large enough to hold the
address of a char variable and assign it the name pChar.” In this example,
C++ assigned pChar to the location 0x1004.

In Code::Blocks, all addresses are 4 bytes in length irrespective of the size of
the object being pointed at — a pointer to a char is the same size as a pointer
to a double. The real world is similar — the address of a house looks the
same no matter how large the house is.

The third line says, “assign the address of csomecChar (0x1000) to the vari-
able pchar.” Figure 17-1 represents the state of the program after these three
statements.

“So what?” you say. Here comes the really cool part demonstrated in the fol-
lowing expression:

*pChar = 'b';

www.it-ebooks.info

http://www.it-ebooks.info/

’ 90 Part IV: Data Structures

Figure 17-2:
The steps
involved in
executing
*pChar

= 'b".
]

This line says, “store a 'b' at the char location pointed at by pchar.” This
is demonstrated in Figure 17-2. To execute this expression, C++ first retrieves
the value stored in pchar (that would be 0x1000). It then stores the charac-
ter 'b' at that location.

FFF_0x1000 0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 O:
b 0x1000
I

.

*pChar 'b';

The * when used as a binary operator means “multiply”; when used as a unary
operator, * means “find the thing pointed at by.” Similarly & has a meaning

as a binary operator (though I didn’t discuss it), but as a unary operator, it
means “take the address of.”

So what's so exciting about that? After all, I could achieve the same effect by
simply assigning a 'b' to cSomeChar directly:

cSomeChar = 'b';

Why go through the intermediate step of retrieving its address in memory?
Because there are several problems that can be solved only with pointers. |
discuss two common ones in this chapter. I'll describe a number of problems
that are most easily solved with pointers in subsequent chapters.

Passing Arguments to a Function

There are two ways to pass arguments to a function: either by value or by ref-
erence. Now, consider both in turn.

Passing arguments by value

In Chapter 11, [write that arguments are passed to functions by value, mean-
ing that it is the value of the variable that gets passed to the function and not
the variable itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers

é}ﬁ)ﬂfﬂ

The implications of this become clear in the following snippet (taken from the
PassByReference example program on the enclosed CD-ROM):

void fn(int nArgl, int nArg2)

{
// modify the value of the arguments
nArgl = 10;
nArg2 = 20;
}
int main(int nNumberofArgs, char* pszArgs|[])
{
// initialize two variables and display their values
int nvaluel = 1;
int nvalue2 = 2;
// now try to modify them by calling a function
fn (nvaluel, nvValue2) ;
// what is the value of nValuel and nValue2 now?
cout << "nvValuel = " << nValuel << endl;
cout << "nvValue2 = " << nValue2 << endl;
return 0;
}

This program declares two variables, nvaluel and nvalue2, initializes them
to some known value, and then passes their value to a function £n (). This
function changes the value of its arguments and simply returns.

Question: What is the value of nvaluel and nvalue2 inmain () after
the control returns from £n()?

Answer: The value of nvaluel and nvalue2 remain unchanged at 1 and
2, respectively.

To understand why, examine carefully how C++ handles memory in the call
to £n (). C++ stores local variables (like nvaluel and nvalue2) in a special
area of memory known as the stack. Upon entry into the function, C++ figures
out how much stack memory the function will require and then reserves that
amount. Say, for argument’s sake, that in this example, the stack memory
carved out for main () starts at location 0x1000 and extends to 0x101F. In
this case, nvaluel might be at location 0x1000 and nvalue2 at location
0x1004.

An int takes up 4 bytes in Code::Blocks. See Chapter 14 for details.

www.it-ebooks.info

191

http://www.it-ebooks.info/

’ 92 Part IV: Data Structures

é§§ﬂmfﬂ

Figure 17-3:
A possible
layout of
memory
immedi-
ately after
entering
the function
fn(int,
int).
|

As part of making the call to £n (), C++ first stores the values of each argu-
ment on the stack starting at the rightmost argument and working its way to
the left.

The last thing that C++ stores as part of making the call is the return address
so that the function knows where to return to after it is complete.

For reasons that have more to do with the internal workings of the CPU, the
stack “grows downward,” meaning that the memory used by fn () will have
addresses smaller than 0x1000. Figure 17-3 shows the state of memory at the
point that the computer processor reaches the first statement in fn (). C++
stored the second argument to the function at location 0x0FF4 and the first
argument at 0x0OFF0.

Remember that this is just a possible layout of memory. I don’t know (or care)
that any of these are in fact the actual addresses used by C++ in this or any
other function call.

\QFFF 0x‘|000“0x‘|00‘| II0x‘|002”0x10(13 0x1004"0x1005”0x1006”0x1007 0x1008 O

1 2
I I Il Il I I

T T

nValuel nValue?2

FEF 0xOFF0 IIOXOFF'I II0x()FF2”0x0FF3 OXOFH»I ﬁxOFFSHOXOFFSHOXOFH 0xO0FF8 0
1 2
T I I Il T Il I I
nArgl nArg2

Layout in memory immediately after making the call:
fn(nValuel, nValue2)

The function fn (int, int) contains two statements:

nArgl
nArg2

10;
20;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers ’ 93

Figure 17-4:
The same
memory
locations
immediately
prior to
return-

ing from

fn (int,
int).
—

Figure 17-4 shows the contents of memory immediately after these two state-
ments are executed. Pretty simple, really — the value of nArg1 has changed

to 10 and nArg?2 to 20 just as you would expect. The main point of this dem-

onstration, however, is the fact that changing the value of nargl and nArg2

has no effect on the original variables back at nvaluel and nvalue2.

FFF 0x1000"0x1001 II0x1002”0x10{l3 0x1004|0x1005”0x1006”0x1007 0x1008 0
1 2

f T

nValuel nValue?2

\QFEF 0xOFF0 IIOXOFF'I ||OXOFF2||OXOFF3 0x0FF4|0x0FF5”0x0FF6”0x0FF7 0xOFF8 0
r
10 20

IL IL JL Il JL IL

T T

nArgl nArg2

Contents of memory after executing the two assigning statements:
fn(int nArgl, int nArg2)
{

nArgl 10;

nArg2 20;

Passing arguments by reference

So what if I wanted the changes made by £n () to be permanent? I could do
this by passing not the value of the variables but their address. This is dem-
onstrated by the following snippet (also taken from the PassByReference
example program):

// fn(int*, int*) - this function takes its arguments

// by reference
void fn(int* pnArgl, int* pnArg2)
{

// modify the value of the arguments
*pnArgl = 10;
*pnArg2 = 20;

www.it-ebooks.info

http://www.it-ebooks.info/

’ 94 Part IV: Data Structures

int main(int nNumberofArgs, char* pszArgs|[])

{
// initialize two variables and display their values
int nvaluel = 1;
int nvalue2 = 2;
fn (&nvaluel, &nvValue2) ;
return 0;
}

Notice first that the arguments to fn () are now declared not to be integers
but pointers to integers. The call to fn (int*, int*) passes not the value
f‘“ﬂm of the variables nvaluel and nvalue2 but their address.

In this example, the value of the expression &nvaluel is 0x1000, and the type
is int* (which is pronounced “pointer to int").

The state of memory upon entry into this function is shown in Figure 17-5.

\QFFF 0x1000"0x1001 II0x1002”0x1003 0x1004"0x1005”0x1006”0x1007 0x1008 O
1 2

1L 1L I Il Il 1L

T T

nValuel nValue?2

I \QFEF 0xOFF0 OxOFF1 OxOFF2 O0xOFF3 O0xOFF4 OxOFF5 OxOFF6 OxOFF7 O0xOFF8 0.
I I " l I l

Figwe 17-5: 0x1000 0x1004
The content Il Il I M Il Il
of memory T T
after the call
to £n pnArgl pnArg2

(int~*,

int*). Layout in memory immediately after making the call:
I fn (&nValuel, &nValue?2)

The function fn (int*, int*) now stores its values at the locations pointed
at by its arguments:

*pnArgl
*pnArg2

10;
20;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers ’ 9 5

This first statement says “store the value 10 at the int location passed to me
in the argument pnArgl.” This stores a 10 at location 0x1000, which happens
to be the variable nvaluel. This is demonstrated graphically in Figure 17-6.

\QFFF 0x1000 0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 O
I I I l I 1
10 205

I I IL L L IL
nValuel nVallue?2

\QFEF 0x0FF0 II0x0FF1 II0x0FF2”0x0FF3 FF4 IQXOFFSHOXOFFGHOXOFH FF8 0

0x1000 0x1004
I Il IL I It il Il
Figure 17-6: T T
The content
memory pnArgl pnArg2
immediately
prior to Contents of memory after executing the two assignment statements:
returning fn (int* pnArgl, int* pnArg2)
from £n {
(int~*, *pnArgl 10;
int*). *pnArg2 20;
I }

Putting it together

The complete PassByReference program appears as follows:

//

// PassByReference - demonstrate passing arguments to a
// function both by value and by

// reference.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// fn(int, int) - demonstrate a function that takes two

// arguments and modifies their value
void fn(int nArgl, int nArg2)
{

www.it-ebooks.info

http://www.it-ebooks.info/

’ 96 Part IV: Data Structures

// modify the value of the arguments

nArgl = 10;
nArg2 = 20;
}
// fn(int*, int*) - this function takes its arguments
// by reference
void fn(int* pnArgl, int* pnArg2)
{
// modify the value of the arguments
*pnArgl = 10;
*pnArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])

{
// initialize two variables and display their values
int nvaluel = 1;
int nvalue2 = 2;
cout << "The value of nArgl is " << nValuel << endl;
cout << "The value of nArg2 is " << nvValue2 << endl;

// now try to modify them by calling a function
cout << "Calling fn(int, int)" << endl;

fn(nvaluel, nvalue2) ;

cout << "Returned from fn(int, int)" << endl;

cout << "The value of nArgl is " << nvValuel << endl;
cout << "The value of nArg2 is " << nvValue2 << endl;

// try again by calling a function that takes

// addresses as arguments

cout << "Calling fn(int*, int*)" << endl;

fn (&nvaluel, &nvValue2);

cout << "Returned from fn(int*, int*)" << endl;

cout << "The value of nArgl is " << nValuel << endl;
cout << "The value of nArg2 is " << nvValue2 << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The following is the output from this program:

The value of nArgl is 1
The value of nArg2 is 2
Calling fn(int, int)
Returned from fn(int, int)
The value of nArgl is 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers ’ 9 7

The value of nArg2 is 2
Calling fn(int*, int¥*)
Returned from fn(int*, int*)
The value of nArgl is 10
The value of nArg2 is 20
Press any key to continue .

This program declares the variables nvaluel and nvalue2 and initializes
them to 1 and 2, respectively. The program then displays their value just to
make sure. Next, the program calls the fn (int, int), passing the value of
the two variables. That function modifies the value of its arguments, but this
has no effect on nvaluel and nvalue2 as demonstrated by the fact that
their value is unchanged after control returns tomain ().

The second call passes not the value of nvaluel and nvalue2 but their
address to the function fn (int*, int*). This time, the changes to pnargl
and pnArg?2 are retained even after control returns tomain ().

Notice that there is no confusion between the overloaded functions fn (int,
int) and fn(int*, int*). The types of the arguments are easily
distinguished.

Playing with Heaps of Memory

One of the problems addressed in Chapter 16 was that of fixed-size arrays.
For example, the concatenate () function concatenated two ASCIIZ strings
into a single string. However, the function had to be careful not to overrun
the target array in the event that there wasn’t enough room to hold the com-
bined string. This problem would have gone away if concatenate () could
have allocated a new array that was guaranteed to be large enough to hold
the concatenated string.

That’s a great idea, but how big should I make this target array — 256 bytes,
512 bytes? There’s no right answer since there’s no way to know at compile
time how big to make the target array so that it has enough room to hold all
possible concatenated strings. You can’t know for sure until runtime how
much memory you will need.

Do you really need a new keyword?

C++ provides an extra area in memory just for this purpose, known by the
somewhat cryptic name of the heap. A programmer can allocate any amount
of memory off of the heap using the keyword new, as in the following example
snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

’ 98 Part IV: Data Structures

\NG/
&

char* pArray = new char[256];

This example carves a block of memory large enough to hold 256 characters
off of the heap. The new keyword returns a pointer to the newly created
array. Unlike other variables, heap memory is not allocated until runtime,
which means the array size is not limited to constants that are determined at
compile time — they can also be variables that are computed at runtime.

It may seem odd that the argument to new is an array while what is returned is
a pointer. [will have a lot more to say about the relationship between pointers
and arrays in the next chapter.

Thus, I could have said something like the following:

int nSizeOfArray = someFunction() ;
char* pArray = new char[nSizeOfArrayl];

Here the size of the array is computed by someFunction (). Obviously this
computation can’t occur until the program is actually executing. Whatever
value someFunction () returns is used as the size of the array to be allo-
cated in the next statement.

A more practical example is the following code snippet that makes a copy of
an ASCIIZ string (assuming you consider copying a string as practical):

int nLength = strlen(pszString) + 1;
char* pszCopy = new char [nLength];
strncpy (pszCopy, nLength, pszString);

The first statement calls the string function strlen (), which returns the
length of the string passed it not including the terminating NULL character.
The + 1 adds room for the terminating NULL. The next statement allocates
room for the copy off of the heap. Finally, the third string uses the string
function strncpy () to copy the contents of pszstring into pszCopy. By
calculating how big an array you need to store the copy, you are guaranteed
that pszCopy is large enough to hold the entire string.

Don’t forget to clean up after yourself

Allocating memory off of the heap is a neat feature, but it has one very big
danger in C++: If you allocate memory off of the heap, you must remember to
return it.

You return memory to the heap using the delete keyword as in the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17: Pointing the Way to C++ Pointers ’ 99

f)ﬂfﬁ

3

char* pArray = new char[256];
// ...use the memory all you want...

// now return the memory block to the heap
delete[] pArray;
PArray = NULL;

The delete[] keyword accepts a pointer that has been passed to you from
the new keyword and restores that memory to the heap.

Use delete[] to return an array. Use delete (without the open and closed
brackets) when returning a single object to the heap.

If you don’t return heap memory when you are done with it, your program
will slowly consume memory and eventually slow down more and more

as the operating system tries to fulfill its apparently insatiable gluttony.
Eventually, the program will come to a halt when the O/S can no longer sat-
isfy its requests for memory.

Returning the same memory to the heap twice is not quite as bad. That
causes the program to crash almost immediately. It is considered good pro-
gramming practice to zero out a pointer once you have deleted the memory
block that it points to for two very good reasons:

+~ Deleting a pointer that contains a NULL has no effect.

1+ NULL is never a valid address. Trying to access memory at the NULL
location will always cause your program to crash immediately, which
will tip you off that there is a problem and make it a lot easier to find.

You don’t have to delete memory if your program will exit soon — all heap
memory is restored to the operating system when a program terminates.
However, returning memory that you allocate off the heap is a good habit to
get into.

Looking at an example

The following ConcatenateHeap program is a version of the concatenate ()
function that allocates its memory off of the heap:

//

// ConcatenateHeap - similar to ConcatenateString except
// this version stores the concatenated
// string in memory allocated from the
// heap so that we are guaranteed

// that the target array is always

// large enough

//

www.it-ebooks.info

http://www.it-ebooks.info/

2 0 0 Part IV: Data Structures

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together

//
//

into an array allocated off of the
heap

char* concatenateString(const char szSrcl[],

{

int

const char szSrc2[])

// allocate an array of sufficient length
int nTargetSize = strlen(szSrcl) + strlen(szSrc2) + 1;
char* pszTarget = new char[nTargetSize];

// first copy the first string into the target
int nT;
for(nT = 0; szSrcl[nT] != '\0'; nT++)
{
pszTarget [nT] = szSrcl[nT];
}

// now copy the contents of the second string onto
// the end of the first
for (int nS = 0; szSrc2[nS] != '\0'; nT++, NS++)
{
pszTarget [nT] = szSrc2[nS];
}

// add the terminator to szTarget
pszTarget [nT] = '\0"';

// return the results to the caller
return pszTarget;

main (int nNumberofArgs, char* pszArgs[])

// Prompt user

cout << "This program accepts two strings\n"
<< "from the keyboard and outputs them\n"
<< "concatenated together.\n" << endl;

// input two strings

cout << "Enter first string: ";
char szStringl[256];
cin.getline(szStringl, 256);

cout << "Enter the second string: ";

char szString2[256];
cin.getline(szString2, 256);

www.it-ebooks.info

http://www.it-ebooks.info/

f)ﬂfﬁ

// now concatenate one onto the end of the other

cout << "Concatentate second string onto the first"
<< endl;

char* pszT = concatenateString(szStringl, szString2);

// and display the result
cout << "Result: <"

<< pszT

<< ">" << endl;

// return the memory to the heap
delete[] pszT;
pszT = NULL;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program includes the #include file cstring to gain access to the
strlen () function. The concatenatestring () function is similar to the
earlier versions, except that it returns the address of a block of heap memory
containing the concatenated string rather than modify either of the strings
passed to it.

Declaring the arguments as const means that the function promises not to
modify them. This allows the function to be called with a const string as in
the following snippet:

char* pFullName = concatenateString("Mr. ", pszName) ;

The string "Mr. " is a const character array in the same sense that 1 is a
const integer.

The first statement within concatenatestring () calculates the size of the
target array by calling strlen () on both source strings and adding 1 for the
terminating null.

The next statement allocates an array of that size off of the heap using the
new keyword.

The two for loops work exactly like those in the earlier concatenate exam-
ples by copying first szsrc1 into the pszTarget array and then szSrc2
before tacking on the final terminating nul1l.

The function then returns the address of the pszTarget array to the caller.

www.it-ebooks.info

Chapter 17: Pointing the Way to C++ Pointers 2 0 ’

http://www.it-ebooks.info/

2 0 2 Part IV: Data Structures

Themain () function works the same as in the earlier Concatenate program
by prompting the user for two strings and then displaying the concatenated
result. The only difference is that this version returns the pointer returned
by concatenatestring () to the heap before terminating by executing the
following snippet:

delete pszT;
pPszT = NULL;

The output from running this program is indistinguishable from its earlier
cousins:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string

Enter the second string: THIS IS ALSO A STRING
Concatentate second string onto the first
Result: <this is a stringTHIS IS ALSO A STRING>
Press any key to continue .

The subject of C++ pointers is too vast to be handled in a single chapter. The

next chapter examines the relationship between arrays and pointers, a topic |
glossed over in the final example programs in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18

Taking a Second Look
at C++ Pointers

In This Chapter
Defining operations on a pointer
Comparing pointer addition with indexing an array
Extending arithmetic to different types of pointers
Sorting out constant pointers from pointers to constants
Reading the arguments to a program

‘ hapter 17 introduced the concept of a pointer variable as a variable

designed to contain the address of another variable. I even went so far
as to suggest a couple of uses for pointer variables. However, you've only
begun to see the myriad ways that pointer variables can be used to do some
pretty cool stuff and really confuse you at times as well.

This chapter examines carefully the relationship between pointers and
arrays, a topic that I brushed over in the last chapter.

Pointers and Arrays

Some of the same operators applicable to integers are applicable to pointer
types. This section examines the implications of this to both pointers and the
array types studied so far.

Operations on pointers

Table 18-1 lists the three fundamental operations that are defined on pointers.

www.it-ebooks.info

http://www.it-ebooks.info/

2 04 Part IV: Data Structures

Table 18-1 Three Operations Defined on Pointer Type Variables

Operation Result Meaning

pointer + pointer Calculate the address of the object offset entries
offset from the pointer

pointer++ pointer Move the pointer over one entry

pointer2 - offset Calculate the number of entries between pointer2
pointerl and ponter1

Although not listed in Table 18-1, operations that are related to addition,
such as pointer += offset, are also defined. Subtraction is defined as
well, since it is merely a variation on addition.

The simple memory model used to explain pointers in Chapter 17 will work
here to explain how these operations work. Consider an array of 32 one-byte
characters called cArray. If the first byte of this array is stored at address
0x1000, then the last location will be at 0x101F. While cArray [0] will be at
0x1000, cAarray [1] will be at 0x1001, cArray[2] at 0x1002, and so forth.

Now assume a pointer pArray is located at location 0x1100. After executing
the expression

pPArray = &cArray[0];

the pointer pArray will contain the value 0x1000 (see Figure 18-1). By the
way, you read this as “pArray gets the address of cArray sub 0.”

Adding a value n to pArray generates the address of cArray [n]. For exam-
ple, consider the case where n equals 2. In that case, pArray + 2 generates
the address 0x1002, which is the address of cArray[2]. This correspon-
dence is demonstrated in Table 18-2. Figure 18-2 shows this graphically.

Table 18-2 The Correspondence between Pointer Offsets
and Array Elements

Offset Result Corresponds to...
+0 0x1000 cArray[0]
+1 0x1001 cArray[1]
+2 0x1002 cArray[2]
+n 0x1000 + n cArray[n]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 0 5

Figure 18-1:
After the
assignment
pArray =
&CArray
[0] the
pointer
pArray
points to the
beginning

of the array
CArray.
]

_— L=

//\//
0x1000 cArray [0] <
0x1001 cArray[1]
0x1002 cArray[2]
0x1003 cArray [3]
0x1004 cArray [4]
0x1005 | —\ | -

//:\//4/
0x1100
0x1101
0x1102

pArray = &cArray[0];
0x1103 0x1000
0x1104 | — | 1 —
/\/

Pointer addition versus
indexing into an array
The claim

pArray = &cArrayl[0];
*(pArray + 2) = 'c';

is the same as

cArray([2] = 'c';
Before you can respond to this claim, | need to explain how to read the first
code snippet. Take it one step at a time. You already know to read the first

expression: pArray = &cArray[0] means “pArray gets the address of
cArray sub 0.”

www.it-ebooks.info

http://www.it-ebooks.info/

2 06 Part IV: Data Structures

Figure 18-2:
lf pArray
points to the
beginning of
cArray,
then
pArray

+ 2 points
to
cArray
[21.
]

fﬂfﬂ

//’\/”//
/\//

0x1000 cArray [0]
0x1001 cArray[1]
0x1002 cArray[2] <
0x1003 cArray [3]
0x1004 cArray [4]

0x1005 | — | |
::::Xd”,”,_zzf”

0x1100

0x1101

0x1102
0x1103 0x1000

0x1104 —f_’,,ﬁ——wﬂﬂ”_
//—/\//

pArray + 2

To interpret the second expression, remember that pArray + 2 generates
the value 0x1002, and it is of type char*. * (pArray + 2) on the left-hand
side of an assignment operator says, “store a 'c' in the char pointed at by
pArray + 2.” This is demonstrated graphically in Figure 18-3.

The parentheses around * (pArray + 2) are necessary because unary * has
higher precedence than addition. The expression *pArray + 2 retrieves

the character pointed at by pArray and adds 2 to it. Adding the parentheses
forces the addition to occur first and the unary operator to be applied to the
result.

In fact (here comes the kicker), the correspondence between the two forms
of expression is so strong that C++ considers cArray [n] nothing more than

a shorthand for * (pArray + n) where pArray points to the first element in
cArray:

cArray[n] is interpreted as * (&cArray[0] + n)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 0 7

]
Figure 18-3:
The
expression
* (PATr-
ray

+ 2) =
'c' stores
a'c'in
cArray
[2].
]

_— L —

,»«'\”’f’,,,/~*”
0x1000 cArray [0]
0x1001 cArray[1]
0x1002 c cArray[2] <
0x1003 cArray[3]
0x1004 cArray [4]
0x1005 ”’/’,,,’/\””’

::—~\H’4”’,,/——”
0x1100
0x1101
0x1102

*(pArray +2)="¢’
0x1103 0x1000
ox1104 | —\ |

To complete this association, C++ takes another shortcut by making the
second, following interpretation:

cArray is interpreted as &cArray[0]

That is, an array name when it appears without a subscript is interpreted as
the address of the first element of the array; thus the following:

cArray[n] is interpreted as *(cArray + n)

In fact, the C++ compiler considers the expression on the left nothing more
than some human shorthand for the expression on the right.

So, if I can treat the name of an array as though it were a pointer (which it is,
by the way), can I use the index operator on pointer variables? Absolutely.
Thus, the following is perfectly legal:

char cArray[256];

char* pArray = cArray;
PArray[2] = 'c';

www.it-ebooks.info

http://www.it-ebooks.info/

2 08 Part IV: Data Structures

That is how [was able to write expressions like the following in Chapter 17:

int nTargetSize
char* pszTarget

strlen(szSrcl) + strlen(szSrc2) + 1;
new char[nTargetSize];

// first copy the first string into the target
int nT;
for(nT = 0; szSrcl[nT] != '\0'; nT++)
{
pszTarget [nT] = szSrcl[nT];
}

The variable pszTarget is declared as char* (read “pointer to a char™)
because that’s what new char [nTargetSize] returns. The subsequent
for loop assigns values to elements in this array using the expression
pszTarget [nT], which is the same as accessing char elements pointed at
by pszTarget + nT.

By the way, the psz prefix is the naming convention for “pointer to an ASCIIZ
string.” An ASCIIZ string is a character array that ends with a terminating
null character.

Using the pointer increment operator

The following is what you might call the pointer arithmetic version of the
concatenatestring () function from the ConcatenateHeap program
from Chapter 17. This version is part of the program ConcatenatePtr on the
enclosed CD-ROM.

In fact, you were dealing with pointer arithmetic in Chapter 17 as well, but the
pointer arithmetic was written using array indexing.

C++ programmers love their pointers. The following explicit pointer version
of concatenatestring () is much more common than the array index ver-
sion in Chapter 17.

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrcl,
const char* pszSrc2)

{

// allocate an array of sufficient length

int nTargetSize = strlen(pszSrcl)+strlen(pszSrc2)+1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 0 9

char* pszTarget = new char[nTargetSize];

// first copy the first string into the target
char* pszT = pszTarget;
for(; *pszSrcl != '\0'; pszT++, pPszSrcl++)

{
*pszT = *pszSrcl;
}

// now copy the contents of the second string onto
// the end of the first
for(; *pszSrc2 != '\0'; pszT++, PSzZSrc22++)

{
*pszT = *pszSrc2;
}

// add the terminator to szTarget
*pszT = '\0';

// return the unmodified address of the array
// to the caller
return pszTarget;

}

This version of concatenatestring () starts out exactly like the earlier
ConcatenateHeap version from Chapter 17. The difference between this ver-
sion and its predecessor lies in the two for loops. The version in Chapter 17
left the pointer to the target array, pszTarget, unchanged and incremented
an index into that array.

The version that appears here skips the intermediate step of incrementing an
index and simply increments the pointer itself. First, it checks to make sure
that pszsrcl doesn’t already point to the null character that indicates the
end of the source character string. If not, the assignment within the for loop

*pszT = *pszSrcl;

says retrieve the character pointed at by pszSrc1 and store it into the loca-
tion pointed at by pszT. This is demonstrated graphically in Figure 18-4.

The increment clause of the for loop
pPszT++, pszSrcl++
increments both the source pointer, pszSrc1, and target pointer, pszT, to

the next character in the source and destination arrays. This is demonstrated
by Figure 18-5.

www.it-ebooks.info

http://www.it-ebooks.info/

2 ’0 Part IV: Data Structures

_— L —
//\’///
b

\

pszTarget —

~<— pszT

Figure 18-4:
The expres-
sion *pszT —

/\/
= *psz i\//a’//
b

*pszT * Srcl;

Srcl
copies the
character
pointed at c ~<— pszSrcl
bypsz
Srclto
the location

d
pointed at /3//\/

bypszT.

—//\/

The remainder of the program is identical to its Chapter 17 predecessor, and
the results from executing the program are identical as well:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: SO IS THIS
Concatentate first string onto the second
Result: <this is a stringSO IS THIS>
Press any key to continue .

Why bother with array pointers?

The sometimes cryptic nature of pointer-based manipulation of character
strings might lead the reader to wonder why. That is, what advantage does
the char* pointer version of concatenatestring () have over the easier-
to-read index version?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 ’ ’

pszTarget —>| a

|
Figure 18-5: /\—//
The incre- — -
ment clause T —
of the for
loop incre- b
ments both

source and c
destination ; pszSrcl++

pointers d -~ pszSrel
to the next

location in //_e//—\/

the array.

_//\/

Note: “Easier-to-read” is a matter of taste. To a seasoned C++ programmer,
the pointer version is just as easy to fathom as the index version.

The answer is partially historic and partially human nature. As compli-
cated as it might appear to the human reader, a statement such as *pszT =
*pszSrcl can be converted into an amazingly small number of machine
instructions. Older computer processors were not very fast by today’s stan-
dards. When C, the progenitor of C++, was introduced to the world some

40 years ago, saving a few computer instructions was a big deal. Pointer
arithmetic gave C a big advantage over other languages of the day, notably
Fortran, which did not offer pointer arithmetic. This, more than any other
single feature, did more to advance C and later C++ over its competitors.

In addition, programmers like to generate clever program statements to
combat what can be a repetitively boring job. Once C++ programmers learn
how to write compact and cryptic but efficient statements, there is no getting
them back to scanning arrays with indices.

www.it-ebooks.info

http://www.it-ebooks.info/

2 ’2 Part IV: Data Structures

WING/
g“

Don't fall into the trap of cramming as much as you can into a single C++ state-
ment, thinking that a few C++ source statements will generate fewer machine
instructions that will, therefore, execute faster. In the old days, when compil-
ers were simpler, that may have worked, but today there is no obvious rela-
tionship between the number of C++ instructions and the number of machine
instructions generated. For example, the expression

*pszT++ = '\0';

does not necessarily generate machine instructions that are any different
from the following expression that is both easier to read and easier to debug:

*pszT = '\0';
pPSzT++;

Today's optimizing compilers generate minimal amounts of code.

Operations on Different Pointer Types

‘s‘g)ﬂfﬂ

It’s not too hard to convince yourself that pszTarget + n points to
pszTarget [n] when each element in the array is 1 byte in length as is
the case for char strings. After all, if cArray is located at 0x1000, then
cArray[5] must be at 0x1005.

It is not so obvious that pointer addition works for arrays of objects other
than 1-byte characters. Consider an array naArray of ints. Since an int
occupies 4 bytes in Code::Blocks/gcc, if nArray is located at 0x1000, then
nArray [5] will be located at 0x1000 + (5 * 4) or 0x1014.

Hexadecimal 0x14 is equal to 20 decimal.
Fortunately for us, in C++, array + n points to array[n] no matter how

large a single element of array might be. C++ makes the necessary conver-
sions to ensure that this relationship is true.

Constant Nags

Chapter 14 introduced the concept of const variables. For example, the
following

const double PI = 3.14159;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 ’3

declares a constant variable PI. Constant variables must be initialized when
created and cannot be changed later just like numbers like 2 and 3.14159.

The concept of const-ness can be applied to pointers as well, but the ques-
tion is, where does the const keyword go? Consider the following three dec-
larations. Which of these are legal?

const char* pszArrayl;

char const* pszArray2;

char* const pszArray3;
It turns out all three are legal, but one of them has a different meaning than
the other two. The first two variables, pszArray1 and pszArray2, are both
pointers to constant char arrays. This means that you can modify the point-
ers, but you cannot modify the characters that they point at. Thus, the fol-
lowing is legal:

pszArrayl = new char[128]; // this is OK
But the following is not:

(*pszArrayl) = 'a'; // not legal
By comparison, pszArray3 is a constant pointer to a char array. In this
case, you cannot change the pointer once it has been declared. Therefore,
you must initialize it when declared since you won't get a chance later as in
the following:

char* const pszArray3 = new char[128];
Once declared, the following is not legal:

pszArray3 = pszArrayl; // not legal - you
// can't change pszArray3

But you can change the characters that it points to, like this:

char* const pszArray3 = new char[128];
(*pszArray3) = 'a'; // legal

A single pointer can be both constant and point to constant characters:
const char* const pszMyName = "Stephen";

The value of this pointer cannot be changed nor can the characters that it
points to.

www.it-ebooks.info

http://www.it-ebooks.info/

214

Part IV: Data Structures

3

As a beginning programmer, do you really need to worry about all these con-
stant declarations? The answer is, “Sometimes.” You will get a warning if you
do the following:

char* pszMyName = "Stephen";
Because you could conceivably try to modify my name by putting *pszMyName
(or the equivalent pszMyName [n]) on the left-hand side of an assignment

operator. The proper declaration is

const char* pszMyName = "Stephen";

Differences Between Pointers and Arrays

With all the similarities, one might be tempted to turn the question around
and ask, “What’s the difference between a pointer and the address of an
array?” There are basically two differences:

v An array allocates space for the objects; a pointer does not.

v A pointer allocates space for the address; an array does not.
Consider these two declarations:

int nArray[128];
int* pnPtr;

Both nArray and pnPtr are of type pointer to int, but nArray also allo-
cates space for 128 int objects, whereas pnPtr does not. You can consider
nArray to be a constant address in the same way that 3 is a constant int.
You can no more put nArray on the left-hand side of an assignment than you
can 3. The following is not allowed:

nArray = pnPtr; // not allowed

Thus, pnPtr is of type int*, whereas nArray is actually of type int* const.

My main () Arguments

Now you've come far enough to learn the last secret of the program template
that you've been using: What are the arguments tomain ()?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 ’ 5

int main(int nNumberOfArgs, char* pszArgs|[])

These point to the arguments of the program. The first argument is the
number of arguments to the program, including the name of the program
itself. The second argument is an array of pointers to character strings repre-
senting the arguments themselves. Arrays of pointers? What?

Arrays of pointers

If a pointer can point to an array, then it seems only fitting that the reverse
should be true as well. Arrays of pointers are a type of array of particular
interest.

The following declares an array of ten pointers to integers:
int* pInt[10];

Given this declaration, then pInt [0] is a pointer to an integer. The follow-
ing snippet declares an array of three pointers to integers and assigns them
values:

void fn()
{
int nl1, n2, n3;
int* pInts[3] = {&nl, &n2, &n3};

for(int n = 0; n < 3; n++)
{
// initialize the integers
*pInts[n] = n * 10;
}

After the declaration, pInts[0] points to the variable n1, pInts[1] points
ton2, and pInts[2] points to n3. Thus, an expression like

*pInts[1] = 10;
sets the int pointed at by pInts[1] (that would be n2) to 10. The effect of

the for loop in the prior snippet is to initialize n1, n2, and n3 to 0, 10, and
20, respectively. This is shown graphically in Figure 18-6.

www.it-ebooks.info

http://www.it-ebooks.info/

2 ’6 Part IV: Data Structures

Figure 18-6:
The effects
of setting up
and using
an array

of three
pointers to
integers.
]

_— —
pInW

pint[1]

pint{2]

The effects of executing the following:

int nl, n2, n3;

int* pInt[3] {&nl, &n2, &n3};

//’\// for(int n 0; n < 3, n++)
/\/ *pInt[n] n * 10;

}

n3 20 =

n2 10 =

nl 0 =

L1 =
V

Arrays of arguments

Returning to the main () example, the arguments to the program are the
strings that are passed to the program when it is executed. Thus, if | execute
MyProgram as

MyProgram filel file2 /w
the arguments to the program are filel, file2, and /w.

Although technically not an argument, C++ includes the name of the program
as the first “argument.”

Switches are not interpreted, so /w is passed to the program as an argument.
However, the special symbols <", "> and | are interpreted by the command
line interpreter and are not passed to the program.

The following simple PrintArgs program displays the arguments passed to it
by the command line interpreter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 ’ 7

// PrintArgs - print the arguments to the program
#include <cstdio>

#include <cstdlib>

#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs|[])
{
for(int n = 0; n < nNumberofArgs; n++)
{
cout << "Argument " << n
<< " is <" << pszArgs[n]
<< ">" << endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

Now the trick is how to pass arguments to the program.

Passing arguments to your program through the command line

The easiest and most straightforward way is to simply type the arguments
when executing the program from the command line prompt:

PrintArgs filel file2 /w
Doing so generates the following output:

C:\Beginning_ Programming-CPP\PrintArgs\bin\Debug>PrintArgs filel file2 /w
Argument 0 is <printargs>

Argument 1 is <filel>

Argument 2 is <file2>

Argument 3 is </w>

Press any key to continue . . .

The difficulty to this approach is knowing where the executable is stored.
Code::Blocks creates the executable program during the Build step in a
subdirectory of the directory containing the project. Whether you used

the default installation location shown in the preceding code or not, you
can always find the project directory by selecting Project=>Properties. The
default Project Settings tab of the dialog box that pops up displays the path
to the project file, as shown in Figure 18-7.

www.it-ebooks.info

http://www.it-ebooks.info/

2 ’8 Part IV: Data Structures

{Frojet sellins | puld targets | Buid scrpts [Notes | i+ parser options | betugger |
Tithe: PrintArgs
I | | Flatfoms: A fexd
Figure 18-7: Filename: Ci\Deginning_Progamering-CPFIPTntArgs\PItArgs.cbp =~y
The Codes: || ™ — —
e Lode: [T This is @ custom Makefie
Blocks {the flo must oxict, ro Mokefie vl bs suko-genarstod))
If you make changes here, the special settings in the projects build options
Proiect will only be enabled (or disabled), if the proiect is saved,
. Precompiled headers: Strategy
Settlngs) Generate PCHIN a drectory alongside criginal neader
() Generate PCHIn the object outpu: dir
tab of the
Proiect/ ® Geiwerale PCH aloniside vrinal header (Jef ault
IF you change the strategy used For PCH generation,
Tal’get please delets the old PCH File (or drcctory) manualy to avoid conflicts...
Options ; e . . .
. Object names generation; || Generate extended cbiect rames (i.e. "foo.cop.0” instead of "foo.0")
dialog box g;} ;:;z;:_,; m u;:fsl forlarge projects containing simdarly named files
contains the
path to the | Prosect's denendencies. . | | Prosect’s buid ooticns. ..
projectfile. Cx)
|
Select the Build Targets tab to find the path to the executable file, as shown
in Figure 18-8.
Project setbings | Bulld Laruels [suid serpts [motes [i+ parser opions | Debugger|
Buldtargets Selected buid target options
Htborns: N
Type: Kensolespplcation | ~
[1Pause when execufion ends
‘7@57 ::f.reate mport lbrary
Output file
| V]Auto- FeTIename prefi
Fiuure 18.8: Dltutogenerts Henane ctoncon
Igrlll'lreeBUil(i Execution working dr: . E]
(oo]| objocs ouput s conpeduny @
Targets tab TE———— :
rge o) g e
indicates
v man.cnp
the name ‘
and loca- Cese ropec i] -
. Togge checkmarks Selected Hik ties
t]on Of the rarger. ogde ol e propertie:
SXBCEb. Ca)
|

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18: Taking a Second Look at C++ Pointers 2 ’ 9

Figure 18-9:
You can set
up the proj-
ectto pass
arguments
to the pro-
gram when
executed
from Code::
Blocks.
|

If you are using Windows, open an MS-DOS window by selecting Start=>
Programs=>Accessories>Command Prompt (this is for Windows XP and
Vista; the details differ slightly depending upon which version of Windows
you are using). Navigate to the proper window using the CD command (“CD”
stands for Change Directory).

Using the directory path provided in Figure 18-7, I would enter the following:

CD \Beginning_ Programming-CPP\PrintArgs\bin\Debug
PrintArgs filel file2 /w

The details for Linux and Macintosh will be slightly different but similar.

Passing arguments to your program from

the Code::Blocks environment

You can pass arguments to your program from within Code::Blocks itself by
selecting Project=>Set Projects’ Arguments. This opens the dialog box shown
in Figure 18-9. Enter the arguments into the Program Arguments entry field.

Select target B

[TTThis terget provides the project's nain executatle

Program arguments:
File1 Fila2 Jw

Host applcation:

&)

Executing the program from Code::Blocks opens a command line window
with the following contents:

Argument 0 is <C:\Beginning Programming-CPP\PrintArgs\bin\Debug\PrintArgs.exe>
Argument 1 is <filel>

Argument 2 is <file2>

Argument 3 is </w>

Press any key to continue . . .

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 0 Part IV: Data Structures

]
Figure 18-10:
| created
two dummy
filesin the
same direc-
tory as the
PrintArgs.exe
executable.
]

\NG/
&

This technique is a lot easier, but it works only from within the Code::Blocks
environment. However, this is the only way to pass arguments to your pro-
gram when using the Code::Blocks debugger. I talk about the debugger in
Chapter 20.

Passing arguments to your program through Windows

In Windows, there is one final way of passing arguments to a program.
Windows executes a program with no arguments if you double-click the name
of the executable file. However, if you drag a set of files and drop them on the
program’s executable filename, Windows executes the program, passing it
the name of the files as its arguments.

To demonstrate, I created a couple of dummy files in the same directory
as the PrintArg.exe file called filel.txt and file2. txt, as shown in
Figure 18-10.

G'(_‘w’ L« Printargs b bin 3 Desug v | 45 I Search Pl
None o Dot mooned Type Size
B Documents L filelbe 2272010 10:2... Text Document o
\ |_fle2.oe 2212010 10:2,., Text Document 08
B Pictues " Printangs.exe 22018 8:59 ... Appication 1007 K
B Mus
Mo
Foders he
) Netedioops
L. PrsBysteterence

b PrintAegs

) bin

J Denug

b ob)
b Product
4 SwaehCalculator
L SwitchBena
b tet

I then selected both files and dragged and dropped them onto the PrintArgs.
exe filename. Figure 18-11 shows the result.

Windows does not pass the filenames to the program in any particular order.

In particular, it does not necessarily pass them in the order that they appear
in the directory list or the order that you selected them.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 18-11:
Dropping

the two
filenames

on the
PrintArgs.
exe filename
instructs
Windows

to launch
the program
and pass the
name of the
files as argu-
ments to the
program.
|

<MBER
&

Chapter 18: Taking a Second Look at C++ Pointers

a._ Jo| J « Pricthrgs » bin + Desug v | 49 || searen e

Q Orgonize v (1 Vews v @ Open 1o Print @ furn

Nane Dt moaaed

fildbe
B Document flle2,bon
B Pictues = Printang s axe

This chapter and its predecessor are not easy for a beginner. Don’t despair if
you are feeling a little uncertain right now. You may need to reread this sec-
tion. Make sure that you understand the examples and the demonstration pro-
grams. You should find yourself growing more and more comfortable with the
concept of pointer variables as you make your way through the remainder of
the book.

www.it-ebooks.info

221

http://www.it-ebooks.info/

Chapter 19
Programming with Class

In This Chapter
Grouping data using parallel arrays
Grouping data in a class
Declaring an object
Creating arrays of objects

A rrays are great at handling sequences of objects of the same type, such
as ints or doubles. Arrays do not work well, however, when group-
ing different types of data such as when we try to combine a Social Security
number with the name of a person into a single record. C++ provides a struc-
ture called the class (or struct) to handle this problem.

Grouping Data

Many of the programs in earlier chapters read a series of numbers, some-
times into an array, before processing. A simple array is great for standalone
values. However, many times (if not most of the time), data comes in groups
of information. For example, a program may ask the user for his first name,
last name, and Social Security number. Alone, any one of these values is not
sufficient — only in the aggregate do the values make any sense.

You can store associated data of different types in what are known as parallel
arrays. For example, [might use an array of strings called pszFirstNames to
hold people’s first names, a second pszLastNames to hold the last names,
and a third nsocialsecurities to hold the corresponding Social Security
number. [would store the data such that any given index n points to the data
for a given individual.

Thus, my personal data might be at offset 3. In that case, szFirstNames[3]
would point to “Stephen,” szLastNames [3] would point to “Davis,” and
nSocialSecurityNumbers[3] would contain . .. well, you get the idea.
This is shown in Figure 19-1.

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 4 Part IV: Data Structures

Figure 19-1:
Parallel
arrays are
sometimes
used to hold
collections
of related
but dissimi-
lar data in
languages
that don’t
support
classes.
|

pszFirstNames pszLastNames nSocialSecurityNumbers
o —+=, “Adam” 0 —F=, “Laskowski” ? e
I 1 "Kinsey” 1~ >"Davis") 3678901
2 /"Z»"ganettl" — LEddins™ 5[gg6789012
“Stephen” “Davis”
4 —T S>"Tiffany” 4 —1 >"Amrich” A SeTEmIz

This method works, but it’s prone to errors since there’s nothing that
directly associates the first name with the last name and the Social Security
number other than an index. You could easily imagine that a missing instruc-
tion here or there, and | would become “Stephen Eddins” or any other
random combination of first and last names.

Fortunately for us, C++ provides a better way.

The Class

A first name or a Social Security number doesn’t make any sense except in
the context of the person to whom they belong — data like that must have a
context created by its association with other, related data. What we would
like is to be able to create a structure, say Person, that contains all of the
relevant properties that make up a person (in this case, first name, last name,
and social security number).

C++ uses a structure known as the class that has the following format:

class Person

{
public:
char szFirstName[128];
char szLastName[128];
int nSocialSecurityNumber:;
}:

A class definition starts with the keyword class followed by the name of the
class and an open brace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19: Programming with Class 2 2 5

A\

3

£3

The naming rules for class names are the same as for variable names: The first
letter must be one of the letters ‘a’ through ‘z’ or ‘A’ through ‘Z’ or underscore.
Every subsequent character in the name must be one of these or the digits ‘0’
through ‘9’. By convention, class names always start with an uppercase letter.
Class names normally consist of multiple words jammed together, with each
word starting with an uppercase letter.

The first keyword within the open brace in the early examples will always
be public. I'll describe the alternatives to public in Chapter 24, but just
accept it as part of the declaration for now.

You can also use the keyword struct instead of class. A struct is identical
to a class in every respect except that the public is assumed in a struct.
For historical reasons, the term class is more popular in C++, while the term
struct is used more often in C programs.

Following the public keyword are the declarations for the entries it takes to
describe the class. The Person class contains two arrays for the first and
last names and a third entry to hold the Social Security number.

The entries within a class are known as members or properties of the class.

The Object

3

Declaring a class in C++ is like defining a new variable type. You can create a
new instance of a class as follows:

Person me;
An instance of a class is called an object.

People get confused about the difference between a class and an object; some-
times people even use the terms interchangeably. Actually, the difference is
easy to explain with an example. Dog is a class. My dog, Lollie, is an instance
of a dog. My other dog, Jack, is a separate, independent instance of a dog. Dog
is a class; 1ol1lie and jack are objects.

You can access the members of an object by including their name after the
name of the object followed by a dot, as in the following:

Person me;
me.nSocialSecurityNumber = 456789012;
cin >> me.szLastName;

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 6 Part IV: Data Structures

»

TEC/,

Here me is an object of class Person. The element me.nSocialSecurity
Number is a member or property of the me object. The type of me is Person.
The type of me .nSocialSecurityNumber is int, and its value is set to 456-
78-9012. The type of me. szLastName is char [] (pronounced “array of char™).

A class object can be initialized when it is created as follows:
Person me = {"Stephen", "Davis", 456789012};

Assignment is the only operation defined for user-defined classes by default.
Its use is shown here:

Person copyOfMe;
copyOfMe = me; // copy each member of me to copyOfMe

The default assignment operator copies the members of the object on the
right to the members on the left. The objects on the right and left of the
assignment operator must be exactly the same type.

You can define what the other operators might mean when applied to an
object of a class that you define. That is considered advanced strokes, how-
ever, and is beyond the scope of this book.

Arrays of Objects

You can declare and initialize arrays of objects as follows:

Person people([5] = {{ "Adam", "Laskowski", 123456789},

{ "Kinsey", "Davis", 234567890},
{ "Janet", "Eddins", 345678901},
{"Stephen", "Davis", 456789012},
{"Tiffany", "Amrich", 567890123}};

The layout of people in memory is shown in Figure 19-2. Compare this with
the parallel array equivalent in Figure 19-1.

In this example, each one of the elements of the array people is an object.
Thus, people[0] is the first object in the array. My information appears

as people[3]. You can access the members of an individual member of an
array of objects using the same “dot-member” syntax as that used for simple
objects:

// change my social security number
people[3].nSocialSecurityNumber = 456789012;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19: Programming with Class 2 2 7

class Person people[0] “Adam”
szFirstName “Laskowski"
szLastName 123456789
nSocialSecurityNumber people[1] “Kinsey”
"Davis”
me 234567890
"Stephen” " .
people[2] Janet
"Davis” :
A "Eddins”
|
- ds6789012 345678901
Figure 19-2:
The - ;
arrange- people[3] Stephen
mentin
memory of "Davis”
an array of
Sperson 456789012
objects.
|

BER
f‘“ The type of people is Person[], which is read “array of Person” (some-
times programmers use the plural of the class name as in “array of Persons”).
The type of people[3] is Person.

Looking at an Example

I've gone far enough without an example program to demonstrate how class
objects appear in a program. The following InputPerson program inputs the
data for an array of people. It then sorts the array by Social Security number
and outputs the sorted list.

‘»‘\\NGI The sorting algorithm [used is known as a Bubble Sort. It isn’t particularly
K efficient, but it’s very simple to code. | explain how it works in a sidebar, but
don’t get wrapped up in the details of the Bubble Sort. Focus instead on how
the program inputs the critical elements of a Person into a single element of
an array that it can then manipulate as a single entity.

www.it-ebooks.info

http://www.it-ebooks.info/

2 2 8 Part IV: Data Structures

// InputPerson - create objects of class Person and
// display their data

#include <cstdio>

#include <cstdlib>

#include <iostream>

using namespace std;

// Person - stores the name and social security number
class Person

{
public:
char szFirstName[128];
char szLastName[128];
int mnSocialSecurityNumber:;
};:
// getPerson - read a Person object from the keyboard
// and return a copy to the caller
Person getPerson()
{

Person person;

cout << "\nEnter another Person\n"
<< "First name: ";

cin >> person.szFirstName;

cout << "Last name: ";
cin >> person.szLastName;

cout << "Social Security number: ";
cin >> person.nSocialSecurityNumber;

return person;

}

// getPeople - read an array of Person objects;
// return the number read

int getPeople(Person people[], int nMaxSize)

{

// keep going until operator says he's done or
// until we're out of space
int index;
for(index = 0; index < nMaxSize; index++)
{
char cAnswer;
cout << "Enter another name? (Y or N):";
cin >> cAnswer;

if (cAnswer != 'Y' && cAnswer != 'y')
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19: Programming with Class 2 2 9

break;
}

people[index] = getPerson();
}

return index;

}

// displayPerson - display a person on the default display
void displayPerson(Person person)

{
cout << "First name: " << person.szFirstName << endl;
cout << "Last name : " << person.szLastName << endl;
cout << "Social Security number : "
<< person.nSocialSecurityNumber << endl;
}
// displayPeople - display an array of Person objects
void displayPeople(Person people[], int nCount)
{
for (int index = 0; index < nCount; index++)
{
displayPerson (people[index]) ;
}
}
// sortPeople - sort an array of nCount Person objects
// by Social Security Number
// (this uses a binary sort)
void sortPeople(Person people[], int nCount)
{

// keep going until the list is in order

int nSwaps = 1;

while (nSwaps != 0)

{
// we can tell if the list is in order by
// the number of records we have to swap
nswaps = 0;

// iterate through the list...
for(int n = 0; n < (nCount - 1); n++)
{
// ...1f the current entry is greater than
// the following entry...
if (people[n].nSocialSecurityNumber >
people[n+l1] .nSocialSecurityNumber)
{
// ...then swap them...
Person temp = people[n+l];
people[n+l] = people[n];

www.it-ebooks.info

http://www.it-ebooks.info/

2 30 Part IV: Data Structures

people[n] = temp;

// ...and count it.
nswaps++;

}

int main(int nNumberofArgs, char* pszArgs|[])
{

// allocate room for some names

Person people[128];

// prompt the user for input
cout << "Read name/social security information\n";
int nCount = getPeople(people, 128);

// sort the list
sortPeople (people, nCount) ;

// now display the results

cout << "\nHere is the list sorted by "
<< "social security number" << endl;

displayPeople (people, nCount) ;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The program starts by declaring class Person with data members for the
first name, last name, and Social Security number. Contrary to good program-
ming practice, this program uses fixed-length arrays for the name strings.

(If I were writing this for a commercial package, [would use variable length
arrays, or | would include a test to make sure that input from the keyboard
did not overflow the buffer. See Chapter 17 if you don’t know what I'm talking
about.)

The first function, getPerson (), prompts the user for the data necessary to
describe a single Person object. It then returns a copy of that Person to the
caller.

The second function, getPeople (), invokes the getPerson () function
repeatedly to retrieve the data for a number of individuals. It stores the
Person objects retrieved into the array people. This function accepts as

an argument the maximum size of the people array and returns to the caller
the actual number of elements stored there.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19: Programming with Class

The displayPerson () and displayPeople () functions are the output
analogs to the getPerson () and getPeople () functions. display
Person () outputs the information for a single individual, whereas display
People () calls that function on each element defined in the people array.

The sortPeople () function sorts the elements of the people array in
order of increasing Social Security number. This function is described in the
“Bubble Sort” sidebar. Don’t worry too much about how this function works.
You're way ahead of the game if you can follow the rest of the program.

The output from a test run of this program appears as follows:

Read name/social security information
Enter another name? (Y or N):y

Enter another Person

First name: Adam

Last name: Laskowskl

Social Security number: 123456789
Enter another name? (Y or N):y

Enter another Person

First name: Stephen

Last name: Davis

Social Security number: 456789012
Enter another name? (Y or N):y

Enter another Person

First name: Janet

Last name: Eddins

Social Security number: 345678901
Enter another name? (Y or N):n

Here is the list sorted by social security number.
First name: Adam

Last name : Laskowski

Social Security number : 123456789
First name: Janet

Last name : Eddins

Social Security number : 345678901
First name: Stephen

Last name : Davis

Social Security number : 456789012
Press any key to continue .

You've seen most of the non-object-oriented features of C++. The next chap-
ter introduces you to the Code::Blocks debugger, which wraps up the sec-
tions dedicated to what I call functional programming. After that, I jump into
object-oriented programming in Part V.

www.it-ebooks.info

231

http://www.it-ebooks.info/

2 3 2 Part IV: Data Structures

Bubble Sort

Most of this book is dedicated to the syntax of C++. However, in addition to the details of the lan-
guage, you will also need to learn common programming algorithms in order to become a proficient
programmer. The Bubble Sort is one of those algorithms that every programmer should master.

There are a number of common algorithms for sorting fields. Each has its own advantages. In gen-
eral, the simpler algorithms take longer to execute, whereas the really fast algorithms are more
difficult to program. The Bubble Sort is very easy to program but isn't particularly fast. This is not a
problem for small data sets; arrays up to several thousand entries in length can be sorted in very
much less than a second on modern high-speed processors. For small to moderate amounts of
data, the simplicity of the Bubble Sort far outweighs any performance penalty.

Inthe Bubble Sort, the program makes multiple passes through the data set. On each pass, it compares
each element with the next element in the list. If element N is less than N+1, then these two are in the
proper order so the Bubble Sort takes no action. However, if element N is greater than N+1, then the
Bubble Sort swaps the two elements and then moves on to the next element. In practice, this looks
like the following:

// 1if the current entry is greater than

// the following entry...

if (people[n].nSocialSecurityNumber >
people[n+1] .nSocialSecurityNumber)

{
// ...then swap them...
Person temp = people[n+l];
people[n+l] = people[n];
people[n] = temp;
// ...and count it.
nswaps++;

}

At the end of the first pass through the entire array, the largest element will have moved to the
end of the list, but the rest of the array will still not be in order. However, repeated passes through
the array cause each element to “bubble” up to its proper place in the array. The Bubble Sort sets
the number of elements that were swapped on each pass by zeroing the counter nSwaps before
iterating through the list and incrementing the number of elements swapped on each pass. The
algorithm doesn’t really care how many swaps were executed; if any swaps were executed, then
the array was not in order. However, once the Bubble Sort can make it all the way through the list
without executing any swaps, then it knows that the array is in order.

The figure demonstrates how the Bubble Sort sorts an array of five integers. During the first pass
through the list, two swaps are executed. On the second pass, the algorithm executes only a single
swap. The resulting list is in order, but the algorithm doesn’t know this until it makes its way all
the way through the array without making any swaps, as shown in the third pass. At this point, the
Bubble Sort is finished.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19: Programming with Class 233

First Pass

N+1

N+1

N+1 N

N+1

W N
W N
=
w| |
W AN
D W AN

nSwaps=0 nSwaps=0 nSwaps=1 nSwaps=1 nSwaps=2

Second Pass
N | 1 1 1 1
N+1| 2 N 2 2 2 2
4 | No 4| N | 8 3 3
3 3 N+1| 3 N 4 4
6 6 6 N+1| 6 6

nSwaps=0 nSwaps=0 nSwaps=1 nSwaps=1 nSwaps=1

Third Pass
N |1 1 1 1 1
N+1| 2 N 2 2 2 2
3 N+1| 3 N 3 3 3
4 4 N+1| 4 N 4 4
6 6 6 N+1| 6 6

nSwaps=0 nSwaps=0 nSwaps=0 nSwaps=0 nSwaps=0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20
Debugging Your Programs, Part 3

In This Chapter
Debugging using the built-in debugger
Building your application with debugger information
Setting a breakpoint
Single-stepping your program
Fixing a sample problem

introduced a few techniques for finding errors at the end of Parts Il
(Chapter 8) and IIl (Chapter 13). Now that you are nearing the end of
Part IV, | want to touch on debugging techniques one final time.

In this chapter, I introduce you to the debugging tools built into the Code::Blocks
development environment (similar tools exist for most other environments).
Learning to use the debugger will give you clear insight into what your pro-
gram is doing (and what it’s not doing, at times).

A New Approach to Debugging

Chapters 8 and 13 demonstrated how to find problems by adding output
statements in key positions. Outputting key variables lets you see what inter-
mediate values your program is calculating and what path it’s taking through
your C++ code.

However, the output technique has several distinct disadvantages. The first
is that it’s difficult to know what to display. In a small program, such as most
of the programs in this book, you can display almost everything — there
just aren’t that many variables to slug through. However, in a major league
program, there may be many hundreds of variables, especially if you include
all of the elements in the arrays. Knowing which variables to display can be
problematic.

www.it-ebooks.info

http://www.it-ebooks.info/

2 36 Part IV: Data Structures

3

A second problem is the time it takes to rebuild the program. Once again, this
isn’t a problem with small programs. Code::Blocks can rebuild a small program
in just a few seconds. In these cases, adding or changing output statements
doesn’t take more than a few minutes. However, | have been on projects where
rebuilding the entire program took many hours. In a big program, adding new
output statements as you zero in on a bug can take a long time.

Finally, it's very difficult to debug a pointer problem using the output
approach. If a pointer is invalid, any attempt to use it will cause the program
to abort, and knowing a valid pointer from an invalid one simply by display-
ing its value on cout is almost impossible.

The solution

What you need is a way to stop the program in the middle of its execution
and query the value of key variables. That’s exactly what the debugger does.

The debugger is actually a utility built into the Code::Blocks environment.
Every environment has some type of debugger, and they all offer the same
basic features though the specific commands may be different. The debug-
ger allows the programmer to control the execution of her program. She can
execute one step in the program at a time, she can stop the program at any
point, and she can examine the value of variables.

Unlike the C++ language, which is standardized, every debugger has its own
command set. Fortunately, once you've learned how to use the Code::Blocks
debugger, you won't have any trouble learning to use the debugger that comes
with your favorite C++ environment.

The programmer controls the debugger through commands entered from the
keyboard within the Code::Blocks environment exactly as she would use the
edit commands to modify the C++ source code or build commands to create
the executable program. The debug commands are available from both menu
items and hot keys.

The best way to learn how to use the Code::Blocks debugger is to use it to
find a couple of nasty problems in a buggy version of one of the programs
you've already seen.

Entomology for Dummies

<NECD

The following version of the Concatenate program (which you’ll find on the
enclosed CD-ROM as ConcatenateErrorl) represents my first attempt at the
ConcatenateHeap program from Chapter 18.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 23 7

N\
This version has at least two serious bugs, both of which are in the
concatenateString () function.

//

// ConcatenateErrorl - similar to ConcatenatePtr except
// this version has several bugs in it
// that can be easily found with the
// debugger

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrcl,
const char* pszSrc2)

{

// allocate an array of sufficient length

int nTargetSize = strlen(pszSrcl)+strlen(pszSrc2)+1;

char* pszTarget = new char[nTargetSize];

// first copy the first string into the target
while(*pszSrcl != '\0')
{

*pszTarget++ = *pszSrcl++;

}

// now copy the contents of the second string onto
// the end of the first
while(*pszSrc2 != '\0')
{
*pszTarget++ = *pszSrc2++;
}

// return the resulting string to the caller
return pszTarget;
int main(int nNumberofArgs, char* pszArgs|[])
// Prompt user
cout << "This program accepts two strings\n"
<< "from the keyboard and outputs them\n"

<< "concatenated together.\n" << endl;

// input two strings

www.it-ebooks.info

http://www.it-ebooks.info/

2 38 Part IV: Data Structures

cout << "Enter first string: ";
char szStringl[256];
cin.getline(szStringl, 256);

cout << "Enter the second string: ";
char szString2[256];
cin.getline(szString2, 256);

// now concatenate one onto the end of the other

cout << "Concatentate first string onto the second"
<< endl;

char* pszT = concatenateString(szStringl, szString2);

// and display the result
cout << "Result: <"

<< pszT

<< ">" << endl;

// return the memory to the heap
delete pszT;
pszT = NULL;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The following shows the results of executing the program:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string

Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second
Result: <OF_fdT D>

Press any key to continue .

Clearly, the result is not correct, so something must be wrong. Rather than
start inserting output statements, I will use the debugger to find the problems
this time.

I suggest that you follow along with me and take the same steps I do in the fol-
lowing section. You can start with the ConcatenateErrorl program from the
CD-ROM.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 2 3 9

Starting the debugger

I can tell the debugger that I want to execute the program up to a certain line or
view a particular variable. In order to do that, however, the debugger has to
know exactly where each C++ line of code is stored and where each variable
is kept. It does this by attaching extra information onto the executable —
actually, quite a bit of extra information. Because this information can get
really lengthy and because | don’t need it for the release version that I ship
to the public, including debug information is optional.

I decided whether to include debug information in the executable when I
created the project. Figure 20-1 shows the next to last dialog box presented
by the Project Wizard, the Console Application dialog box. The default is to
generate debug information as shown here. The Release configuration is the
version of the executable without the extra debug information. I cannot use
the debugger if [do not create a Debug configuration version.

s | Consule application E
T-Fr:gucrs nzsot;re ﬂ Cons 0| e :Iia:’c;f::_la:lm ::';Ut;:&?udm:kjnuuﬁwaliwn
Application reprt— =
dialog box of B
th e PI' Oj e Ct V. Create “Debuy” configuration: Delaug
. "D ! s
Wizard @:f dr - biniDebug)
allows you Objects output dir.: obj\ebug)
to select
whether || Create "Release” configuration: Release
to build a fraeae onins e
o dir.: unipieleac
debug ver- :W dr.: obfiReleasel
. Ohyerts ot dr.: obfiRelease!
sion of the
executable
or not. [<sak [Foish | [canel
|
<P I can turn debugger information on at any time by selecting Settings=>Compiler

and Debugger and then making sure that the Produce Debugging Symbols
[-g] check box is checked in the Compiler Flags subwindow of the Compiler
Settings window. [have to rebuild the executable by selecting Build=>Rebuild
for the change to have any effect.

So assume that I did tell Code::Blocks to include debug information in the
executable.

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 0 Part IV: Data Structures

I am reasonably certain that the problem is in the concatenatestring()
function itself. So I decide that I want to stop executing the program at the
call to concatenatestring (). To do this, I need to do what's called setting
a breakpoint.

A breakpoint is a command to the debugger that says stop execution of the
program if you get to this spot. There are at least four ways to set a break-
point, all of which are equivalent:

v Click with the cursor just to the right of the line number on line 60 (see
Figure 20-2).

1~ Right-click on line 60 and select Toggle Breakpoint from the menu that
appears (it’s the first option).

v Put the cursor on line 60 and select F5 (Toggle Breakpoint).
1~ Put the cursor on line 60 and select Debug=>Toggle Breakpoint.
Multiple methods exist for entering almost every other debugger command

that I describe in this chapter, but in the interest of brevity, I describe only
one. You can experiment to find the others.

A small stop sign appears just to the right of the line number, as shown in

Figure 20-2.
HBile Edt View Search gro;m lullﬂ ntbug wxSnith Tools Plugins jettings Hep
1 QP e B[R] © P QO rurmfotn
~ | maindnk nhumberaifrgs, char® p2Avgsl]) : ik
| waingpp X , ‘
45 < "frow the keybcard and outputs them\n" -
a6 "concatenated together.\n" endl:
47
40 // input two strings
49 cout "Enter first string: ":
50 char szstringl[256]
i cin.getline (sz8tringl, 256):
52
53 cout "Enter the secoend string: "
54 char szstring2
55 cin.getline (sz8tring2, 256);
— 2e
57 // now concatenate one onto the end of the other =
. . 58 cout "Concatentate first string onto the second”
Figure 20-2: 50 Soats :
Asma" red 60 @ char’ psz? = concatenateString(szStringl, szString2); 5
’ 51
stop s|gn &2 // and diszplay the razult
T 63 cout "Result: <"
indicates &4 pozn
G5 << "»" << endl;
thata e]
breakpoint | |-= =t :
& others x
has been | “*
A Code:Blods | (4 Searchrents | © Duildlog | ff Duldmessages | € Debuooer | \) Debugger {debug) b4
setatthe | cueonin tor exsmence: o 5 eor T eim)
. \Comcasematelrrorl axs B
Execucing: *C:\Progras Filer\CodeBlocks/cb_console rumr.exs “C:\Beginning_brogramsing-Chp
specified oo b e
|Ocati0n. \Cane -'.uv.-hunl\) A i
wlNDﬁwG-!ZS) Llneso.(oinmn Insent Read/Wrte default
L]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 24 ’

To start the program, I select Debuge>Start. At first the program seems to
execute like normal. It first prompts me for the first string. It follows that by
prompting me for a second string. As soon as I enter that string, however,
the program appears to stop, and a small, yellow arrow appears inside the
stop sign on the source code display. This is shown in Figure 20-3. This little,
yellow arrow is the current location indicator. This points to the next C++ line
to be executed.

Step Into

Red stop sign Start/resume — Next Line| Reset Program

M main.cpp [Conci| enateErrort] - Code::Blocks sva bulld =%

C1 1 Jhdad i IBIASNLS
—

) : (mainin 1| ambaroi |5, char* | ArosD e

Figure20-3: | ' ¢ p @ 21| maswoet ovn -] WR 2D W00
The pro- | | nemncw = x

gram stops 28

57 /! nov
execut- o+ /
ing, and a sbl char* pszt
a1

small, yel- ‘
e|lening Programming.CPP\ConcatenateFrrorf\binDebug\Concatenatefrrorl.exe =10 %]
low arrow A -

appears at
the next line
to be exe-
cuted when
the program
encounters
a break-
point.
|

ncatenatesString (gzStringl, szsString2

Yellow arrow indicating current location pointer.

You will also notice from Figure 20-3 that another toolbar appears. The
Debugger toolbar includes the most common debug commands, including
most of the commands that I demonstrate in this chapter. (I have added call-
outs for the commands [will describe later in this chapter.)

Navigating through a program
with the debugger

Okay, so I've managed to stop the execution of my program in the middle
with the debugger. What can [do now?

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 2 Part IV: Data Structures

A\

£3

Figure 20-4:
The
Watches
window
shows both
the argu-
ments to
the func-
tions and
any locally
defined
variables.
—

I'll start by executing the concatenatestring () function one statement
at a time. I could set a new breakpoint at the first instruction in the func-
tion, but setting a new breakpoint on every line is tedious. Fortunately, the
Code::Blocks debugger offers a more convenient choice: the Step Into
command.

On the Debug toolbar, this is the fifth command from the left. However, if
you get confused, this menu has Tool Tips — just point at the command in
the toolbar and leave the arrow motionless. After a few seconds, the name of
the command will pop up. Or you can select Debug=Step Into from the main
menu.

The Step Into command executes a single C++ statement; in this case, the
command steps into the function call. Execution stops immediately before
the first executable statement in concatenatestring (). Next, I select
Debug=>Debugging Windows=>Watches to display the window shown in
Figure 20-4. From this window, I can see that the two arguments to the func-
tion, pszsSrcl and pszSrc2, appear to be correct.

The values of nTargetsize and pszTarget have no meaning at this point
since they have yet to be initialized.

M5 main.cpp [ConcatenateErrort] - Code::Blocks sva bulld [SIEs
File Ede View Search Project Build Debug wiSwith Tools Plugins Seetings Melp
5 & | S e
P QP e o Bl Ry
| ~ | concatenatestringlconst char® prerel, const char® pszSe
: % o | 3
el AP X) { -] W20
| main.cpp X v :
16 [// heap -
17 <char* concatenateString const char® pszsrcl,
10 const char® pszsccZ -
192 ;;
20 // allocate an array of sufficient length
21 p| int nTargetsize = strlen(pszSrcl)+strlen(pszsre?)+
22 char™ pszrarget = new chari(nTargetsSize];
23
24 // fivst copy the fivst string into the tarvget
25 while (*pegzsrel = *\0")
26 | T
27 pezTarget | | YWachs L) (B
m - Lol variales
A — - niaigesTe « a1
Logs B others

pszlarget » LTARINN —

A codestious | O Searhresuts | € pukiiog | §ff | = Tunstion Arguments
’ DSTSICL = GZ2E1C TNIS 153 ST

Mefisnared wiw iyas’ STL Yiser DeTSe = O2AGLE THS 15 ALSOA STANG- -

<

and version: CNU ¢db 6.8
P10 1770

At C.\Beginning_Proye smming-CoPIConcat wnm
Ae C: PPIC

WINDOWS-1252 Line 21, Column {__

I could select Step Into again to move forward, but this will step me into
the strlen () functions. Since these are C++ library routines, I'm willing to
accept that these are working fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 2 43

3

Figure 20-5:
Selecting
Next Line

moves the
current
location
pointer to
line 22 and
initializes
nTarget
Size.
]

4§§mmm

The other option is known as Next Line. Next Line steps to the next line
of C++ code in the current function, treating function calls just like any other
C++ command.

Together, Step Into and Next Line are known as single-step commands. For
commands other than function calls, the two commands are equivalent. Many
debuggers use the term Step Over rather than Next Line to highlight the dis-
tinction from Step Into.

I select Next Line from the Debug toolbar. Notice how the Current location
pointer moves from line 21 to line 22, as shown in Figure 20-5. In addition, the
nTargetsSize variable is highlighted red in the Watch window to indicate
that its value has changed. The value of nTargetsize is now 38, the correct
length of the sum of the two strings.

My maln.cpp [ConcatenateErrort] - Code::Blocks sva bulld [SEs
File Ede \View Search Project Build Debug wiSwith Tools Pluging Seetings Melp
: - - N
Q@ ey o Bl R,
i - [concarenstestringiconst har® pizsre, const char pszén
3 3, 2 ~ | :
ol B A LT -] WEoXD G0
main.cpp X 2L ‘
16 [// heap -
17 <char* concatenateString const char® pszsrcl,
10 const char® pszscc2
19 =
20 // allocate an array of sufficient length '
21 int nTargetSize = strlen(pszsSrcl)+strlen (pszsSrce?)+
22 b char™ pszrarget = new chari(nTargetsSize];
23
24 // first copy the fivst string into the target
25 while (*pszsrel lg A0 e
26 ‘ Warchos =]
27 pszTarget || (ocal mriabks ¥
il
[{ogs B others paTarget » (ifd400m — %
= Function Arguments
A Codetious | L Searchresuts | 6 Buldivg | § PISE] v B2 TE Wi 5 A Sting” Y
Registered new tywe: STL Vector PISIC2 & W2 2HATE TS 15 ALSO ASTRING” =
Swtting brestpoirm.s
Debugger name and version: CNU ydb 6.8
Child procase PID: 1970
At C.\Beghnning_Progesaning-CPP\Concat enn 1
A C: n PPLC B
At C:\Beginning Progremming=CPPiConcat wne
« n '
CiBeginning. WINDOWS-1252 Line 22, ColumirT TITSeeT TETIOT

You need to be absolutely clear about what just happened. All you see is that
the screen blinks and the current location pointer moves down one line. What
actually happened is that the debugger set a temporary breakpoint at line 22
and then restarted the program at line 21. The program executed the two calls
to strlen () and then performed the addition, storing the results in nTarget
Size. You may have seen only the one line of code get executed, but in fact
many lines of C++ code were executed within the strlen () functions (exe-
cuted twice, actually).

www.it-ebooks.info

http://www.it-ebooks.info/

2 44 Part IV: Data Structures

3

Figure 20-6:
Thewhile
loop
increments
pszSrcl
andpsz
Target on
each pass.
]

So far, so good, so I select Next Line a few more times until | enter the while
loop.

This while loop is structured a little differently than what you've seen before.
Here, | increment the pointer as part of the assignment itself, rather than in
the increment clause of a for loop, as follows:

while(*pszSrcl != '\0"')
{

*pszTarget++ = *pszSrcl++; // Line 27
}

Line 27 of the program says, “store the value of the char pointed at by
pszSrcl into the char location pointed at by pszTarget and then incre-
ment pszSrcl and pszTarget.”

Figure 20-6 shows the debug display after I execute the loop a few times.
Notice after each execution that, since their value is modified, both pszsrc1
and pszTarget are highlighted in the Watches window.

s main.cpp [ConcatenateErrort] - Code::Blocks sva bulld [eres
Ede Ede View Senrch Project Build [ebug wxSwith Jools Plugins Settings Melp
P QP | & | R
i - | concetenatestringlconst ar® pizsrcl, const char® pszse
: - c .
5D B E])E st pet - ®WeoRdIOO i@
main.cpp X > ‘
6 // heap -
17 char* concatenateString/const char* pszsrcl,
10 const char® pszscc2 -
19 |
20 /{ allocate an array of sufficient length
21® int nTargetSize = strlen(pszsSrcl)+strlen (pszsSre?)+
22 char™ psztarget = new char(nTargetsize);
23
24 // fivst copy the first string into the target
25 p while (*pegzsrel !z A0y
i
26 | Wirchi @
27 "pezTarget | | ool mrabks -
Y aafll. nTargetsize » %@
=T paTorget = 0x311045 F=s1
[rAns || & runcton Argumens A
A} Codetious | O earhresuts | € oukdiog | | PESIEL » M1 V1D String v |
At C: CPRLC PSICZ & Be22ALCTHIS 15 ALSO ASTRING™ =
AL © \Meginning Progesasing=CPP|Concat e
Az C: » PP
AR C:\Beginning. Progrsming-CoY| anal
At C:\Beghnning_Progesaning=CPP\Concat eng
A C: | A
AL C: g g_Prog ~CPPIConcat L
« m '
Cigeginning._ WINDCWS-1252 Line 25, Columrrr e UETIOT

Also notice that the string pointed at by pszSrc1 seems to be shrinking.
This is because as pszSrcl is incremented, it is effectively moving down
the string until eventually it will point to nothing more than the terminating
null. That's when control will leave the while loop and continue on to the
next loop.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 2 4 5

But wait! The string pointed at by pszTarget is not growing. Remember
that the intent is to copy the contents of pszSrc1l into pszTarget. What's
happening?

After a moment’s reflection, the answer is obvious: I'm also changing the
value of pszTarget and leaving the characters I've copied behind. That's
what was wrong with my function in the first place. I need to keep a copy of
the original pointer unmodified to return to the caller!

Now that | know the problem (or, at least, a problem — there may be
more) | stop the debugger by clicking Stop Debugger on the Debug tool-
bar. The Console Application dialog box disappears immediately, and the
Code::Blocks display returns to that used for editing.

Fixing the (first) bug

To solve the problem that I noted, [only need to save the value returned by
new and return it rather than the modified pszTarget pointer from the func-
tion. I include only the modified concatenatestring () function here (the
rest of the program is unchanged — the entire program is included on the
enclosed CD-ROM as ConcatenateError2):

char* concatenateString(const char* pszSrcl,
const char* pszSrc2)
{
// allocate an array of sufficient length
int nTargetSize = strlen(pszSrcl)+strlen(pszSrc2)+1;
char* pszTarget = new char [nTargetSize];
char* pszT = pszTarget; // save a pointer to return

// first copy the first string into the target
while(*pszSrcl != '\0')
{

*pszTarget++ = *pszSrcl++;

}

// now copy the contents of the second string onto
// the end of the first
while(*pszSrc2 != '\0')
{
*pszTarget++ = *pszSrc2++;
}

// return the original pointer to the caller
return pszT;

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 6 Part IV: Data Structures

Here, | save the pointer returned by new into both pszTarget, which I
intend to increment, and pszT, which will stay unmodified. The function
returns the latter, unmodified pointer to the caller.

I rebuild the application, and then I repeat my earlier steps to single-step
through the first loop within concatenatestring (). Figure 20-7 shows the
display after executing the loop seven times.

H main.cpp [ConcaienateError?] - Code::Blocks svn bulld e
Ede Edt View Sewch froject Budd Debug weSmith Iools Ppgins Settings Help
RN A IR e I SIASNLS
& - | concatenateStringiconst dhar® paSec, const chor® ¢
I | T T
. (0D 5] D ettt omn i T T A M L% A
Figure 20-7: | .. . moncos =
The Watches 17 , >
. 18 // allocate an array of sufficient length
WIndOWOf 0we int nTargetsize = strlen(pszsircl +strlen(pszsrc2)+l;
20 char® pszTarget = new charinlargetsSize] 4
the updated 21 char™ pszT = pszTarget; [/ save a pointer to return
22
con- 23 // first copy the first string into the target
catenate 24 p while (*pszarel 1= *\0O°
25 {
String () i;‘r “psrrarget i = *pszsrelii;
function 28 Watihes 2 -
1 | m | & local virlables
shows ,l.;‘,;ﬁ e TYGeTSEE = 38 51
. I otfiers PIZarget + OxebLOAT PG 618 6 Hud 6 6 *ip
the string || 4 cooemoos | oo, seacvesns| 3 vasn ; : Z
. o Ry . e 3 function Arguments
ING DUIIE 1A% 5 \nerimminyrropeamming-corscomcer povrel = 63363 "2 shing =
_be g bu ¥ Kb 4 pszire? = m22tdic THISTS ALSO A STRING™
inthe array | x cw :
:\Baginning_Programs.
pointed at [& e Cranes
by pszT. |+ g | |15
ClEeginn WINDOWS-1252 Line 24, Column)
L]

Notice how pszT points to an array containing the first seven characters
of the source string this is. Also notice that the value of pszTarget is 7
larger than pszT.

But also notice all the garbage characters in the pszT string that appear after
this is. Code::Blocks displays extra garbage because the target string has
no terminating null. It doesn’t need one yet, since | haven't completed con-
structing it.

Finding and fixing the second bug

The two source strings aren’t all that long, so I use the Next Line command
to single-step through the entire loop. Figure 20-8 shows the Debug window
after executing the second loop for the last time. Here, pszT points to the
completed target string with both source strings concatenated together.
Without a terminating nul1, however, the string still displays garbage after
the final character.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 2 4 7

Figure 20-8:
The Debug
window
after exe-
cuting the
second loop
for the last
time.
]

"M moln.cpp [ConcatenateErrorZ] - Core::Blocks svn balld. Eees
Eide Edt Miew Seach froject Build Debug wxSmith Iools Plgins Settings Help
| @ e Ty @y G Ry

H - | coratenataStringiconst dhar* paSec, const char® ¢
. = - 2
(0D RO astermfous J BEeND 00
[— \Ruatocursee [T _
MaN.COD Maincpp X v
22
23 // first copy the first string iato the target
24 while (*pszsrcl = "\0'
25 {
26 "pszlarget -+ *pETSreltd =
27 '
20
29 /! now copy the contents of the secend string onte
30 // the end of the first
3Lp| while (“pszsre2 \No*
32
33 pezTarget| Walthes o .
™ m | & local varlables
——— nTygetsa: = 38 —
Logs & others C g ot + Oxenlo6 <
A Codetious |) Searchresuts | 6 Dusd oy iz 104 v
At C:\Beginning_Progransing-CoP\Cencat| | = fUncton Arguments =
AL C\Reginning P ¢ prrtrel = dddfede
At C:\Beginning_Progr . v
AR C:\Baginning Progra
At C:\Beginning_Proyramsi
A C:\Beginning_l'rogyanui at
At C:\Beginning Programsing-PP)\Cencat)

Rurprogr WINDOWS-1252 Line 31, Column|

Because I'm now done with the function, I select Debug=Continue from the
Code::Blocks menu. This causes the debugger to resume the program where
it left off and to continue to the next breakpoint or to the end of the program,
whichever comes first.

Sure enough, the displayed concatenated array includes the same garbage
that [saw in the debugger:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string

Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second

Result: <this is a stringTHIS IS ALSO A STRING >
Press any key to continue

If I didn’t include a terminating nul1, then what caused the string returned
by concatenatestring () to terminate at all? Why didn’t the string con-
tinue on for pages? The short answer is, “Nothing.” It could be that C++ had
to display many thousands of characters before eventually hitting a character
containing a null. In practice, this rarely happens, however. Zero is by far
the most common value in memory. You generally don’t have to look too far
before you find a byte containing a zero that terminates the string.

www.it-ebooks.info

http://www.it-ebooks.info/

2 4 8 Part IV: Data Structures

f}lﬂfﬁ

All I need to do to fix this problem is add a terminating nul1l after the final
while loop:

char* concatenateString(const char* pszSrcl,

{

}

const char* pszSrc2)

// allocate an array of sufficient length

int nTargetSize = strlen(pszSrcl)+strlen(pszSrc2)+1;
char* pszTarget = new char[nTargetSize];

char* pszT = pszTarget; // save a pointer to return

// first copy the first string into the target
while(*pszSrcl != '\0')
{

*pszTarget++ = *pszSrcl++;

}

// now copy the contents of the second string onto
// the end of the first
while(*pszSrc2 != '\0')
{
*pszTarget++ = *pPszSrc2++;
}

// add a terminating NULL
*pszTarget = '\0';

// return the unmodified pointer to the caller
return pszT;

Executing this version in the debugger creates the display shown in Figure 20-9.
Notice that once the terminating null has been added, the string pointed at
by pszT magically “cleans up,” losing all the garbage that strings on after the
data that I put there.

Let me be clear: Those garbage characters are still there. It’s just that the ter-
minating null causes C++ to not display them.The output from the program is
the predictable string that you've come to love and admire:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string

Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second
Result: <this is a stringTHIS IS ALSO A STRING>
Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20: Debugging Your Programs, Part 3 2 4 9

Figure 20-9:
Adding the
terminat-
ingnull
removes

all of the
garbage
characters
atthe end
of the con-
catenated
string.
—

naln.cpp [ConcatenateError] - Code::Biocks svn bulld
B Ede Miew Sexch froject Budd Debug weSmith Iools Plgins Settings Help

) o Q@ | o |G Ry

- [conatenatsstngiconst char® psstcl, const chor* ¢
O R AR A v % A S

=}

(0D S] 6 et o
| MAN.CDD *MaN.CoD | Mmain.pp X

31 while (*pszsrcz 1= "\0' -
32 {

33 "pszlarget++
34

35 e
36 // add a terminating NULL

37 *pszTarget = '\0';

30

39 // return the unmodified pointer to the caller
40 b return pszt;
41

= *pszSrc2+ti;

@

42 Watches

A m

v e nTrgetsae = 38

o [222 * x201065

A Codeitious |) Searchresuts | € usd oy P = Gx2b1040 Thix 12 0 ringTHIS 15AL5O A STRING

® H

setting brealipoints B-funcin e,
Detugger name and sersis GRI gab e, o perieel = edfede
Child process PID: 5356 pIzire? = b2t}
AR C:\leginning Progransing- LoV Cencar,

= local varlables

Cort inuing. . .
At C:\Beginning_Programsing-PP\Cencat
At C:\Beginning Programsing-C9P)\Cencat

Uine 40, Column)

CAEeginn WINDOWS-1252

It’s possible to find problems in small programs by adding output statements
at key locations. However, the debugger is a much more elegant and power-
ful tool for finding problems. Single-stepping your way through a program in
the debugger gives you a real feel for what the computer is doing with your
source code. You develop an understanding for how the computer works
that I don’t think you can get any other way. The debugger that comes with
Code::Blocks is about as easy to use as any that I've seen. | recommend that
you use it early and often.

www.it-ebooks.info

http://www.it-ebooks.info/

PartV

Object-Oriented
Programming

The 5th Wave By Rich Tennant
ORIUTENNyr

{

“Ves, I know how to query information from
the program, but what if T yust want to
leak it instead?”

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

arts [through IV describe C++ as just another func-

tional language, not very different from its predeces-
sor, C. This part introduces you to the concepts behind
object-oriented programming. These concepts revolution-
ized the programming world when they became widely
adopted in the late 1980s. This is the part that describes
what makes C++ the truly powerful language that it is.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21

What Is Object-Oriented
Programming?

In This Chapter
Abstracting away the details
Contrasting the object-oriented approach with the functional approach
Classifying things

E(amples of objects abound in everyday life. Right in front of me is a
chair, a table, a computer, and a red Starbucks mug. I have no trouble
grouping these objects into taxonomies based upon their properties. For
example, the mug is a container, it's also a thermal insulator, so I can use it to
hold hot or cold things, and it has mass, so that I can use it as a paperweight
or to throw at the dog. Object-oriented programming applies this view of the
world to that of programming. To explain what I mean, let me start with a

story.

Abstraction and Microwave Qvens

Sometimes when my son and I are watching football, I whip up a batch of
nachos. Nothing fancy, mind you — I dump some chips on a plate, throw

on refried beans, cheese, and a batch of jalapenos, and nuke the lot in the
microwave oven for five minutes. To use the oven, [open the door, place the
nachos inside, punch some buttons on the front, and hit start. After a few
minutes, the bell rings to tell me they're done. If I do something wrong, the
oven beeps at me and doesn’t start. Sometimes it displays an error message
on the little display.

This doesn’t sound very profound, and it isn’t really until you consider all the
things that [don’t do to use my microwave oven:

www.it-ebooks.info

http://www.it-ebooks.info/

254 Part V: Object-Oriented Programming

v~ 1 limit myself to the front panel of the microwave. [don’t look inside the
case. I don’t look at the listings of the code that tells the processor unit
what to do. [don’t study the wiring diagram that’s pasted on the inside
wall of the case.

v I don’t rewrite or change anything inside the microwave to get it to
work. The microwave oven that [use to make nachos is the exact same
microwave that I used earlier to heat up chili dogs (nothing but health
food at my house). And it will be the same microwave I use to heat up
my Malt-O-Meal tomorrow (assuming it doesn’t break).

v [don’t think about what might be going on inside my microwave oven in
order to use it. Even if I designed microwaves for a living, I'm not likely
to think about how it works when [make nachos before the big game.

These are not profound observations. Humans can think about only so much
at any one time. We tend to reduce the number of things that we have to deal
with by abstracting away all the little details. This allows us to work at the
level of detail appropriate to the problem we’re trying to solve.

Note: In object-oriented (OO) terms, this level of detail is known as the level
of abstraction.

When I'm working on nachos, I view my microwave oven as a black box. I
don’t concern myself with what’s going on inside that box unless, of course,
it breaks. Then I might take the top off and see if [can figure out what’s
wrong with it; then I am working at a different level of abstraction. I still don’t
take the tops off the chips on the circuit board or try to take apart the indi-
vidual components. (I'm not that crazy.)

As long as the microwave is heating food, I limit myself to the interface that
it exposes to the outside world: the keypad and LCD display. It is very impor-
tant that from this interface there is nothing that I can do that will cause the
microwave to:

v Enter an inconsistent state and crash (causing me to have to reboot my
microwave)

v Worse, turn my nachos into a blackened, flaming mass

v Worse yet, catch on fire and burn down the house

Functional nachos

Suppose I were to ask my son to write an algorithm for making nachos using
the same basic approach used for changing tires in Chapter 1. He would

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21: What Is Object-Oriented Programming? 2 5 5

£3

probably write something like, “Open a can of beans, grate some cheese, cut
the jalapenos,” and so on. For the part about heating the nachos, he would
write something similar to, “Cook in the oven until cheese is melted.”

That description is straightforward and complete, but it's not how a func-
tional programmer would code a program to make nachos. Functional pro-
grammers live in a world devoid of objects such as microwave ovens. They
tend to worry about flowcharts with their myriad functional paths. In a func-
tional solution, the flow of control would pass from my finger through the
microwave’s front panel and on into the interior of the thing. Soon, the flow
would be wiggling through complex logic paths concerned with how long to
charge up some capacitor and whether it’s time to sound the “come and get
it” tone.

In a world like this, it’s hard to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

Object-oriented nachos

In an object-oriented approach to making nachos, [would start by identifying
the types of objects in the problem: chips, beans, cheese, and an oven. These
are the nouns that I have to work with. That done, I would identify the verbs
relevant to each object. Next, | would solve the problem using nothing but
the nouns and verbs identified before. Finally, then, and only then, I would
implement each of these objects in software.

I identified the nouns and verbs relevant to tire changing for you in Chapter 1.
You were left with the job of implementing the solution using the nouns and
verbs I gave you.

While [am writing object-level code, | am said to be working (and thinking)

at the level of abstraction of the basic objects. I need to think about making a
useful oven, but I don’t have to think about the process of making nachos yet.
After all, the designers of my microwave didn’t think about the specific prob-
lem of my making a snack. Rather, they set about the problem of designing
and building a useful microwave oven.

After I have successfully coded and tested the objects I need, I can ratchet up
to the next level of abstraction. I can start thinking at the nacho-making level,
rather than at the microwave-making level. At this point, [can pretty much
translate my son'’s instructions directly into C++ code.

www.it-ebooks.info

http://www.it-ebooks.info/

256 Part V: Object-Oriented Programming

Classification and Microwave Ovens

Critical to the concept of abstraction is that of classification. If | were to ask
my son, “What’s a microwave oven?” he would probably say, “It’s an oven
that. ...” If I then ask, “What’s an oven?” he might reply, “It’s a kitchen appli-
ance that. . ..” [could keep asking this question, ratcheting myself up the
abstraction ladder until I ended up with, “It’s a thing,” which is another way
of saying, “It’s an object.”

My son understands that our particular microwave is an instance of the type
of things called microwave ovens. In addition, he sees microwave ovens as
just a special kind of oven, which is, in turn, a special type of kitchen appli-
ance, and so on.

The technical way of saying this is that our oven is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the class
oven is a superclass of the class microwave.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things that we have to remember. Consider,
for example, the first time that you saw a hybrid car. The advertisement
called it a “revolutionary automobile, unlike any car you’ve ever seen,” but
you and I know that this just isn’t so. Sure, its propulsion system is different
from conventional cars, but it’s still a car and as such does the same things
that all cars do: convey you and your kin from one place to another. It has a
steering wheel, seats, a motor, brakes, and so on. I bet I could even drive one
without help.

I don’t have to clutter my limited storage with all the things that a hybrid card
has in common with other cars. All I have to remember is that “a hybrid car
is a car that. . ..” and tack on those few things that are unique to a hybrid.
Cars are a subclass of wheeled vehicles, of which there are other members,
such as trucks and pickups. Maybe wheeled vehicles are a subclass of vehi-
cles, which includes boats and planes. And on and on and on.

Why Build Objects This Way?

It may seem easier to design and build a microwave oven specifically for

this one problem, rather than to build a separate, more generic oven object.
Suppose, for example, that [were to build a microwave to cook nachos and
nachos only. I wouldn’t need to put a front panel on it, other than a START
button. I always cook nachos the same amount of time. I could dispense with
all that DEFROST and TEMP COOK nonsense. The microwave could be tiny. It
would need to hold only one fat, little plate. The cubic feet of space would be
completely wasted on nachos.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21: What Is Object-Oriented Programming? 25 7

For that matter, suppose I just dispense with the concept of “microwave
oven” altogether. All [really need is the guts of the oven. Then in the recipe, |
can put the instructions to make it work: “Put nachos in the box. Connect the
red wire to the black wire. Notice a slight hum. Don’t stand too close if you
intend to have children.” Stuff like that.

Nevertheless, the functional approach does have some problems:

v Too complex. You don’t want the details of oven building mixed in with
the details of nacho building. If you can’t define the objects and pull
them out of the morass of details to deal with separately, you must deal
with all the complexities of the problem at the same time.

1 Not flexible. If you need to replace the microwave oven with some other
type of oven, you should be able to do so as long as the interface to the
new oven is about the same as the old one. Without a simple and clearly
delineated interface, it becomes impossible to cleanly remove an object
type and replace it with another.

1 Not reusable. Ovens are used to make many different dishes. You don’t
want to create a new oven each time you encounter a new recipe. Having
solved a problem once, it would be nice to reuse the solution in future
programs.

It does cost more to write a generic object. It would be cheaper to build a
microwave made specifically for nachos. You could dispense with expensive
timers, buttons, and the like that aren’t needed to make nachos. After you
have used a generic object in more than one application, however, the costs
of a slightly more expensive class more than outweigh the repeated costs of
building cheaper, less flexible classes for every new application.

Self-Contained Classes

Now, it’s time to reflect on what you've learned. In an object-oriented
approach to programming:

v The programmer identifies the classes necessary to solve the prob-
lem. (I knew right off that [was going to need an oven to make decent
nachos.)

v The programmer creates self-contained classes that fit the requirements
of the problem and doesn’t worry about the details of the overall
application.

v The programmer writes the application using the classes just created
without thinking about how they work internally.

www.it-ebooks.info

http://www.it-ebooks.info/

258 Part V: Object-Oriented Programming

An integral part of this programming model is that each class is responsible
for itself. A class should be in a defined state at all times. It should not be
possible to crash the program by calling a class with illegal data or with an
illegal sequence of correct data.

Many of the features of C++ that are shown in subsequent chapters deal with

giving the class the capability to protect itself from errant programs just wait-
ing to trip it up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22

Structured Play: Making
Classes Do Things

In This Chapter
Adding member functions to a class
Defining the member function
Invoking the member function
Accessing one member from another member
Overloading member functions

‘ lasses were introduced to the C language as a convenient way to group

unalike but related data elements — for example, the Social Security
number and name of the same person. That’s the way I introduce them in
Chapter 19. C++ expanded the concept of classes to give them the ability to
mimic objects in the real world. That’s the essence of the difference between
C and C++.

In the previous chapter, [review at a high level the concept of object-oriented
programming. In this chapter, I make it more concrete by examining the active
features of a class that allow them to better mimic the object-oriented world
we live in.

Activating Our Objects

C++ uses classes to simulate real-world objects. However, the classes in
Chapter 19 are lacking in that regard because classes do things. (The classes
in Chapter 19 don’t have any verbs associated with them — they don’t

do anything.) Consider for example, a savings account. It is necessary for

a savings class to save the owner’s name, probably her Social Security
number, certainly her account number and balance. But this isn’t sufficient.

www.it-ebooks.info

http://www.it-ebooks.info/

2 60 Part V: Object-Oriented Programming

Objects in the real world do things. Ovens cook. Savings accounts accumu-
late interest. CDs charge a substantial penalty for early withdrawal. Stuff
like that.

Consider the problem of handling deposits in a Savings account class.
Functional programs do things via functions. Thus, a function program might
create a separate function that takes as its argument a pointer to a Ssavings
account object that it wants to update followed by the amount to deposit.

Never mind for now exactly how to pass a pointer to a Savings account
object. You'll see more about that in the next chapter.

But that’s not the way that savings accounts work in the real world. When

I drive up to the bank window and tell them [want to make a deposit to my
savings account, the teller doesn’t hand me a ledger into which I note the
deposit and write the new balance. She doesn’t do it herself either. Instead,
she types in the amount of the deposit at some terminal and then places that
amount in the till. The machine spits out a deposit slip with the new balance
on it that she hands me, and it’s all done. Neither of us touches the bank’s
books directly.

This may seem like a silly exercise but consider why the bank doesn’t do
things “the functional way.” Ignore for a minute the temptation [might have
to add a few extra zeros to the end of my deposit before adding it up. The
bank doesn’t do things this way for the same reason that I don’t energize my
microwave oven by connecting and disconnecting wires inside the box — the
bank wants to maintain tight controls on what happens to its balances.

If something screws up and my savings account balance gets incremented
by a million dollars or so (“My gosh, how did that happen?”), the bank has a
vested interest in being able to figure out exactly what happened and make
sure that it doesn’t happen again. A simple arithmetic error made by me or
the teller is not sufficient justification for a mistake like that. The bank has a
legal and fiduciary responsibility for maintaining its accounts in good order.
It can’t do that if every person who sallies up to the teller window has direct
access to the books.

This care extends to programmers as well. You can rest easy at night know-
ing that not every programmer gets direct access to the bank balances either.
Only the most trusted of programmers get to write the code that increments
and decrements bank balances.

I use the term “trusted” here in two senses. First, the bank trusts these indi-
viduals not to intentionally steal. However, the bank also trusts these pro-
grammers to take all of the necessary process steps to fully vet and test the
deposit () and withdraw () functions to make sure that they are bug-free
and implement the bank’s rules accurately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22: Structured Play: Making Classes Do Things 2 6 ’

To make the savings class mimic a real-world savings account, it needs
active properties of its own, like deposit () and withdrawal () (and
chargePenalty () for who knows why, in my case). Only in this way can a
Ssavings class be held responsible for its state.

Creating a Member Function

oA
§

TEC,

sn@b

A function that is part of a class definition is known as a member function. The
data within the class is known as data members. Member functions are the
verbs of the class, whereas data members are the nouns.

Member functions are also known as methods because that’s what they were
called in the original object-oriented language, Smalltalk. The term methods
had meaning to Smalltalk, but it has no special meaning in C++, except that
it’s easier to say and sounds more impressive in a conversation. I'll try not to
bore you with this trivia, but you will hear the term method bandied about at
object-oriented parties, so you might as well get used to it. I'll try to stick with
the term member functions, but even I slip into technical jargon from time

to time.

Note: Functions that you have seen so far that are not members of a class
don’t have a special name. [refer to them as non-member functions when |
need to differentiate them from their member cousins.

There are three aspects to adding a member function to a class: defining the
function, naming the function, and calling the function. Sounds pretty obvi-
ous when you say it that way.

Defining a member function

The following class demonstrates how to define two key member functions,
deposit () and withdraw (), in a class Savings account:

// Savings - a simple savings account class
class Savings
{
public:
int nAccountNumber ;
double dBalance;

// deposit - deposit an amount to the balance;

// deposits must be positive number; return
// the resulting balance or zero on error
double deposit(double damount)

www.it-ebooks.info

http://www.it-ebooks.info/

2 6 2 Part V: Object-Oriented Programming

// no negative deposits - that's a withdrawal
if (damount < 0)
{
return 0.0;
}

// okay - add to the balance and return the total
dBalance += dAmount;
return dBalance;

}

// withdraw - execute a withdrawal if sufficient funds

// are available
double withdraw(double dAmount)
{

if (dBalance < dAmount)
{

return 0.0;
}

dBalance -= dAmount;
return dBalance;

¥

A real savings account class would have a lot of other information like the
customer’s name. Adding that extra stuff doesn’t help explain the concepts,
however, so I've left it off to keep the listings as short as possible.

You can see that the definition of the deposit () and withdraw () member
functions look just like those of any other function except that they appear
within the definition of the class itself. There are some other subtle differ-
ences that [address later in this chapter.

It is possible to define a member function outside of the class, as you will see a
little later in this chapter.

Naming class members

A member function is a lot like a member of a family. The full name of
the deposit function is Savings: :deposit (double) just like my name
is Stephen Davis. My mother doesn’t call me that unless I'm in trouble.
Normally, members of my family just call me by my first name, Stephen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22: Structured Play: Making Classes Do Things 2 63

A\

Similarly, from within the savings class, the deposit function is known
simply as deposit (double).

The class name at the beginning indicates that this is a reference to the
deposit () function that is a member of the class savings. The : : is simply
a separator between the class name and the member name. The name of the
class is part of the extended name of the member function just like Stephen
Davis is my extended name. (See Chapter 11 if you don’t remember about
extended names.)

Classes are normally named using nouns that describe concepts like Savings
or savingsAccount. Member functions are normally named with the associ-
ated verbs like deposit () or withdraw (). Other than that, member func-
tions follow the same naming convention as other functions. Data members
are normally named using nouns that describe specific properties like szName
or nSocialSecurityNumber.

You can define a different deposit () function that has nothing to do with
the savings class — there are Stephens out there who have nothing to do
with my family. (I mean this literally: | know several Stephens who want noth-
ing to do with my family.) For example, Checking: :deposit (double)

or River: :deposit () are easily distinguishable from

Savings: :deposit (double).

A non-member function can appear with a null class name. For example, if
there were a deposit function that was not a member of any class, its name
would be : :deposit () or simply deposit ().

Calling a member function

Before | show you how to invoke a member function, let me quickly refresh
you on how to access a data member of an object. Given the earlier definition
of the savings class, you could write the following:

void fn()
{

Savings s;
s.nAccountNumber = 0;

s.dBalance = 0.0;
}

The function £n () creates a savings object s and then zeros the data mem-
bers nAccountNumber and dBalance of that object.

www.it-ebooks.info

http://www.it-ebooks.info/

2 64 Part V: Object-Oriented Programming

Notice that the following does not make sense:

void fn()
{

Savings sl, s2;

nAccountNumber = 0; // doesn't work
dBalance = 0.0;
}

Which nAccountNumber and dBalance are you talking about? The account
number and balance of s1 or s2. Or some other object entirely? A reference
to a data member makes sense only in the context of an object.

Invoking a member function is the same. You must first create an object and
then you can invoke the member function on that object:

void fn()

{
// create and initialize an object s
Savings s = {0, 0.0};

// now make a deposit of $100
s.deposit (100.0) ;

// or a withdrawal
s.withdraw(50.0) ;
}

The syntax for calling a member function looks like a cross between the
syntax for accessing a data member and that used for calling functions. The
right side of the dot looks like a conventional function call, but an object
appears on the left side of the dot.

This syntax makes sense when you think about it. In the call s.deposit(), s
is the savings object to which the deposit () is to be made. You can’t make
a deposit without knowing to which account. Calling a member function with-
out an object makes no more sense than referencing a data member without
an object.

Accessing other members from
within a member function

I can see it now: You repeat to yourself, “You can’t access a member without
reference to an object. You can’t access a member without reference to an
object. You can't. . ..” And then, wham, it hits you. savings: :deposit ()
appears to do exactly that:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22: Structured Play: Making Classes Do Things 2 6 5

f’“m

double deposit (double dAmount)
{
// no negative deposits - that's a withdrawal
if (dAmount < 0)
{
return 0.0;

}

// okay - add to the balance and return the total
dBalance += dAmount;
return dBalance;

}

The savings: :deposit () function references dBalance without an
explicit reference to any object. It’s like that TV show: “How Do They Do It?”

So, okay, which is it? Can you or can you not reference a member without an
object? Believe me, the answer is no. When you reference one member from
within another member of the same class without explicitly referring to an
object, the reference is implicitly against the “current object.”

What is the current object? Go back and look at the example in greater detail.
I am pulling out just the key elements of the example here for brevity's sake:

class Savings
{
public:
int nAccountNumber ;
double dBalance;

double deposit(double dAmount)
{
dBalance += dAmount;
return dBalance;

}:

void fn()

{
// create and initialize two objects

Savings sl = {0, 0.0};
Savings s2 = {1, 0.0};

// now make a deposit of $100 to one account
sl.deposit (100.0) ;

// and then the other
s2.deposit (50.0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

2 66 Part V: Object-Oriented Programming

When deposit () is invoked with s1, the unqualified reference to
dBalance refers to s1.dBalance. At that moment in time, s1 is the
“current object.” During the call to s2.deposit (50.0), s2 becomes the
current object. During this call, the unqualified reference to dBalance
refers to s2.dBalance.

The “current object” has a name. It’s called this as in “this object.” Clever,
no? Its type is “pointer to an object of the current class.” | say more about this
in Chapter 23 when I talk about pointers to objects.

Keeping a Member Function after Class

One of the things that I don’t like about C++ is that it provides multiple
ways of doing most things. Keeping with that penchant for flexibility, C++
allows you to define member functions outside the class as long as they are
declared within the class.

The following is an example of the withdraw () function written outside the
class declaration (once again, I've left out the error checking to make the
example as short as possible):

// this part normally goes in the Savings.h include file
class Savings

{
public:
int nAccountNumber ;
double dBalance;
double deposit(double dAmount) ;
)i

// this part appears in a separate Savings.cpp file
double Savings: :deposit (double dAmount)
{
dBalance += dAmount;
return dBalance;
}

Now the definition of Savings contains nothing more than the prototype
declaration of the member function deposit (). The actual definition of the
function appears later. Notice, however, that when it does appear, it appears
with its full extended name, including the class name — there is no default
class name outside of the class definition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22: Structured Play: Making Classes Do Things 2 6 7

This form is ideal for larger member functions. In these cases, the number of
lines of code within the member functions can get so large that it obscures
the definition of the class itself. In addition, this form is useful when defin-
ing classes in their own C++ source modules. The definition of the class can
appear in an include file, savings.h, while the definition of the function
appears in a separately compiled savings. cpp.

Overloading Member Functions

You can overload member functions just like you overload any other func-
tions. Remember, however, that the class name is part of the extended name.
That means that the following is completely legal:

class Student
{
public:
double grade(); // return Student's grade
double grade(double dNewGPA); // set Student's grade
i 5

class Hill

{
public:
double grade(double dSlope); // set the slope
i 5
void grade (double) ;
void fn()
{
Student s;
Hill h;

// set the student's grade
s.grade(3.0);

// now query the grade
double dGPA = s.grade();

// now grade a hill to 3 degrees slope
h.grade(3.0);

// call the non-member function
grade(3.0) ;

www.it-ebooks.info

http://www.it-ebooks.info/

268 Part V: Object-Oriented Programming

When calling a member function, the type of the object is just as important as
the number and type of the arguments. The first call to grade () invokes the
function Student: :grade (double) to set the student’s grade point aver-
age. The second call is to Student: : grade (), which returns the student’s
grade point average without changing it.

The third call is to a completely unrelated function, Hill: : grade (double),

that sets the slope on the side of the hill. And the final call is to the non-
member function : : grade (double).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23
Pointers to Objects

In This Chapter
Adding member functions to a class
Defining the member function
Invoking the member function
Accessing one member from another member
Overloading member functions

‘ hapters 17 and 18 focus on various aspects of the care and feeding of

pointers. Surely, you think, nothing more can be said on the subject. But
I hadn’t introduced the concept classes before those chapters. In this chap-
ter, I describe the intersection of pointer variables and object-oriented pro-
gramming. This chapter deals with the concept of pointers to class objects.
I'll describe how to create one, how to use it, and how to delete it once you're
finished with it.

Pointers to Objects

A pointer to a programmer-defined type such as a class works essentially the
same as a pointer to an intrinsic type:

int nInt;
int* pInt = &nint;

class Savings
{
public:

int nAccountNumber;
double dBalance;

i

Savings s;

Savings* pS = &s;

www.it-ebooks.info

http://www.it-ebooks.info/

2 70 Part V: Object-Oriented Programming

é’ﬁ)ﬂfﬁ

The first pair of declarations defines an integer, nInt, and a pointer to an
integer, pInt. The pointer pInt is initialized to point to the integer nInt.

Similarly, the second pair of declarations creates a Savings object s. It then
declares a pointer to a Savings object, ps, and initializes it to the address of s.

The type of ps is “pointer to savings” which is written savings*.

[feel like the late Billy Mays when I say, “But wait! There’s more!” The similar-
ities continue. The following statement assigns the value 1 to the int pointed
at by pInt:

*pInt = 1;

Similarly, the following assigns values to the account number and balance of
the savings object pointed at by ps.

(*pPS) .nAccountNumber = 1234;
(*pS) .dBalance = 0.0;

The parentheses are required because the precedence of . is higher than *.
Without the parentheses, *pS.nAccountNumber = 1234 would be inter-
preted as * (pS.nAccountNumber) = 1234, which means “store 1234 at
the location pointed at by pS.nAccountNumber.” This generates a compiler
error because nAccountNumber isn't a pointer (nor is ps a Savings).

Arrow syntax

The only thing that I can figure is that the authors of the C language couldn’t
type very well. They wasted no efforts in finding shorthand ways of saying
things. Here is another case where they made up a shorthand to save key-
strokes, inventing a new operator -> to stand for * ():

pS->dBalance = 0.0; // same as (*pS).dBalance = 0.0
Even though the two are equivalent, the arrow operator is used almost exclu-

sively because it’s easier to read (and type). Don’t lose sight of the fact, how-
ever, that the two forms are completely equivalent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23: Pointers to Objects 2 7 ’

Calling all member functions

The syntax for invoking a member function with a pointer is similar to access-
ing a data member:

class Savings
{
public:
int nAccountNumber ;
double dBalance;

double withdraw(double dAmount) ;
double deposit(double dAmount) ;
i 5

void fn()

{
Savings s = {1234, 0.0};
Savings* pS = &s;

// deposit money into the account pointed at by pS
pS->deposit (100.0) ;
}

The last statement in this snippet says “invoke the deposit () member func-
tion on the object pointed at by ps.”

Passing Qbjects to Functions

Passing pointers to functions is just one of the many ways to entertain your-
self with pointers.

Calling a function with an object value

As you know, C++ passes arguments to functions by value by default. If you
don’t know that, refer to Chapter 11. Complex, user-defined objects are
passed by value as well:

class Savings
{
public:
int nAccountNumber ;
double dBalance;

double withdraw(double dAmount) ;
double deposit(double dAmount) ;

www.it-ebooks.info

http://www.it-ebooks.info/

2 72 Part V: Object-Oriented Programming

Ji 5

void someOtherFunction(Savings s)

{
s.deposit(100.0) ;

}

void someFunction/()

{
Savings s = {1234, 0.0};

someOtherFunction (s) ;
}

Here the function someFunction () creates and initializes a Savings
object s. It then passes a copy of that object to someOtherFunction (). The
fact that it’s a copy is important for two reasons:

¥ Making copies of large objects can be very inefficient, causing your pro-
gram to run slower.

1 Changes made to copies don’t have any effect on the original object in
the calling function.

In this case, the second problem is much worse than the former. I can stand a
little bit of inefficiency since a Savings object isn’t very big anyway, but the
deposit made in someotherFunction () got booked against a copy of the
original account. My savings account back in someFunction () still has a
balance of zero. This is shown graphically in Figure 23-1.

Calling a function with an object pointer

The programmer can pass the address of an object rather than the object
itself as demonstrated in the following example:

class Savings
{
public:
int nAccountNumber ;
double dBalance;

double withdraw(double dAmount) ;
double deposit(double dAmount) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23: Pointers to Objects 2 73

]
Figure 23-1:
By default,
C++ passes
a copy

of the
Student
object s to
some
Other
Func-
tion().
]

}i

void someOtherFunction(Savings* pS)
{ pS->deposit (100.0) ;

}

void someFunction()

{ Savings s = {1234, 0.0};

) someOtherFunction (&s) ;

The type of the argument to someOtherFunction () is “pointer to
savings.” This is reflected in the way that someFunction () performs the
call, passing not the object s but the address of the object, &s. This is shown

graphically in Figure 23-2.

— =
’—//\///’

S—> 1234

0.0

’—/’\//

1234

Arguments to

someOtherfunc() 00

1=
//’\//

nAccountNumber

dBalance

someOtherFunc (s) ;

www.it-ebooks.info

http://www.it-ebooks.info/

2 74 Part V: Object-Oriented Programming

////\//:
/\’///‘

s—> 1234 ~<— nAccountNumber

0.0 dBalance

Figure 23-2:
By pass-

ing the L
address of Sy
the original
Savings
object, the &s
programmer Arguments to
can avoid someOtherfunc()

someOtherFunc (&s) ;

creating
a copy of

the original L —
_

object.

I ”’ﬂ’\—»"”"’fffp

This addresses both of the problems with passing a copy:

» No matter how large and complicated the object might be, the call
passes only a single address.

1 Changes made in someOtherFunction () are permanent because they
refer to the original object and not a copy.

Looking at an example

The following program demonstrates the difference between passing an object
by value versus passing the address of an object:

//

// PassObjects - this program demonstrates passing an
// object by value versus passing the
// address of the object

//

#include <cstdio>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23: Pointers to Objects 2 75

#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// Savings - a simple savings account class
class Savings
{
public:
int nAccountNumber ;
double dBalance;

// deposit - deposit an amount to the balance;
// deposits must be positive number; return
// the resulting balance or zero on error
double deposit (double dAmount)
{

// no negative deposits - that's a withdrawal

if (dAmount < 0)

{

return 0.0;
}

// okay - add to the balance and return the total
dBalance += dAmount;
return dBalance;

}

// withdraw - execute a withdrawal if sufficient funds
// are available
double withdraw(double dAmount)

if (dBalance < dAmount)

{
return 0.0;

}

dBalance -= dAmount;
return dBalance;
}

// balance - return the balance of the current object
double balance()

{
return dBalance;

}
}:

// someFunction(Savings) - accept object by value

www.it-ebooks.info

http://www.it-ebooks.info/

2 76 Part V: Object-Oriented Programming

void someFunction(Savings s)

{
cout << "In someFunction(Savings)" << endl;
cout << "Depositing $100" << endl;
s.deposit (100.0) ;
cout << "Balance in someFunction(Savings) is "
<< s.balance() << endl;
}

// someFunction(Savings*) - accept address of object
void someFunction(Savings* pS)
{

cout << "In someFunction(Savings*)" << endl;

cout << "Depositing $100" << endl;
pS->deposit (100.0) ;

cout << "Balance in someFunction(Savings) is "
<< pS->balance() << endl;

int main(int nNumberofArgs, char* pszArgs[])
Savings s = {0, 0.0};

// first, pass by value

someFunction (s) ;

cout << "Balance back in main() is "
<< s.balance() << endl;

// now pass the address

someFunction (&s) ;

cout << "Balance back in main() is "
<< s.balance() << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This program starts by defining a conventional savings class with
deposit(),withdrawal (), and balance () member functions (the last
one just returns the current balance).

The program then defines two overloaded functions someFunction (), one
of which accepts as its argument an object of type savings and the second a
pointer to an object of type savings (written savings*). Both functions do
the same things, first outputting a “Here | am” message and then depositing
$100 to the account.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23: Pointers to Objects 2 77

Passing by reference

In an attempt to make things simpler, C++ added a level of complexity by allowing the programmer
to declare a function that accepts its argument by reference as follows:

// pass by reference
void someFunction(Savings& refS)

{
refS.deposit(100.0); // this deposits back into the original
// object in fn() even though it looks
// copy semantics
}
void fn()
{
Savings s;
someFunction(s) ; // this passes a reference, not a copy
}

This causes C++ to pass the address of s to the function someFunction (Savings). Within
the function, C++ automatically dereferences the address for you. The effect is exactly the same
as if you had passed the address yourself except that C++ handles the pointer grammar. You
might think that this makes things simpler. (I suspect the authors of C++ thought it would.) In prac-
tice, however, it makes things more complicated since it becomes difficult to tell a value from a
reference.

| mention pass by reference not to encourage its use, but because you are likely to see others that
aren’t as comfortable as you with pointer manipulation using it. | would encourage you to avoid use
of references until you are really comfortable with pointers.

Themain () program creates a Savings object s, which it first passes to
someFunction (Savings). It then passes the address of the s object to
someFunction(Savings*).

The output from this program appears as follows:

In someFunction (Savings)

Depositing $100

Balance in someFunction(Savings) is 100
Balance back in main() is 0

In someFunction (Savings*)

Depositing $100

Balance in someFunction(Savings) is 100
Balance back in main() is 100

Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

2 78 Part V: Object-Oriented Programming

Notice how both functions deposit $100 into a Savings account object.
However, since someFunction (Savings) makes the deposit into a copy,
the original s object back inmain () is left unchanged as demonstrated by
the zero balance.

By passing the address of s to someFunction (Savings*), the program
allows that function to modify the original object so the value “stays modi-
fied” inmain () as demonstrated by the fact that the balance is $100 after
control returns.

Allocating Objects off the Heap

D

TEL‘/,

\NG/
&

You can allocate objects off of the heap using the new keyword as shown in
the following example:

Savings* newSavings (int nAccountNum)
{
Savings* pS = new Savings;
pS—->nAccountNumber = nAccountNum;
pS->dBalance = 0.0;
return pS;
}

The function allocates a new object of class savings and then initializes it
with the account number passed as an argument and a zero balance.

This is useful when you don’t know how many objects you are going to need,
like in the case of dynamically sized character arrays in Chapter 18. Then, I
first counted how many characters [needed room for and then allocated an
array of the appropriate size off of the heap.

In this case, | can determine how many savings accounts I need in memory
at one time and allocate them dynamically off of the heap.

Of course, there is the little matter of how do you store an unknown quantity
of objects. C++ provides several variable-sized data structures in addition to

the fixed-sized array as part of the Standard Template Library. A general dis-
cussion of the STL is beyond the scope of a beginner book

You must return every object that you allocate off of the heap by passing the

unmodified address of that object to the keyword delete. Otherwise, your
program will slowly run out of memory and die a horrible death.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23: Pointers to Objects 2 79

What is this anyway?

In Chapter 22, | mention that an otherwise unqualified reference to a member made from within
a member function always refers to the “current object.” | even mention that the current object
has a name: this. You can reference this explicitly. | could have written the Savings class

as follows:

class Savings

{

}

In fact, even without explicitly referring to it, you use this all the time. If you don't specify an
object within a member function, C++ assumes a reference to this. Thus, the preceding is what

public:

int nAccountNumber;
double dBalance;

double withdraw (double dAmount)
{
this->dBalance -= dAmount;
return this->dBalance;
}
double deposit (double dAmount)
{
this->dBalance += dAmount;
return this->dBalance;

}
double balance ()
{
return this->dBalance;
}

C++ actually “sees” even if you don’t mention this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24

Do Not Disturb: Protected
Members

In This Chapter
Protecting members of a class
Why do that?
Declaring friends of the class

M y goal with this part of the book, starting with Chapter 21, has been to
model real-world objects in C++ using the class structure. In Chapter 22, |
introduce the concept of member functions in order to assign classes’ active
properties. Returning to the microwave oven example in Chapter 21, assign-

ing active properties allows me to give my Oven class properties like cook ()
and defrost ().

However, that’s only part of the story. I still haven't put a box around the
insides of my classes. I can’t very well hold someone responsible if the micro-
wave catches on fire as long as the insides are exposed to anyone who wants
to mess with them.

This chapter “puts a box” around the classes by declaring certain members
off limits to user functions.

Protecting Members

Members of a class can be flagged as inaccessible from outside the class with
the keyword protected. This is in direct opposition to the public key-
word, which designates those members that are accessible to all functions.
The public members of a class form the interface to the class (think of the
keypad on the front of the microwave oven) while the protected members
form the inner workings.

www.it-ebooks.info

http://www.it-ebooks.info/

2 8 2 Part V: Object-Oriented Programming

There is a third category called private. The only difference between private
and protected members is the way they react to inheritance, which I don’t
present until Chapter 28.

Why you need protected members

Declaring a member protected allows a class to put a protective box
around the class. This makes the class responsible for its own internal state.
If something in the class gets screwed up, the class, rather the author of the
class, has nowhere to look except herself. It's not fair, however, to ask the
programmer to take responsibility for the state of the class if any ol’ function
can reach in and muck with it.

In addition, limiting the interface to a class makes the class easier to learn
for programmers that use that interface in their programs. In general, I don’t
really care how my microwave works inside as long as [know how to use the
controls. In a similar fashion, I don’t generally worry about the inner work-
ings of library classes as long as | understand the arguments to the public
member functions.

Finally, limiting the class interface to just some choice public functions
reduces the level of coupling between the class and the application code.

Note: Coupling refers to how much knowledge the application has of how

the class works internally and vice versa. A tightly coupled class has inti-
mate knowledge of the surrounding application and uses that knowledge. A
loosely coupled class works only through a simple, generic public interface.
Aloosely coupled class knows little about its surroundings and hides most of
its own internal details as well. Loosely coupled classes are easier to test and
debug and easier to replace when the application changes.

I know what you functional types out there are saying: “You don’t need some
fancy feature to do all that. Just make a rule that says certain members are
publicly accessible and others are not.” This is true in theory, and I've even
been on projects that employed such rules, but in practice it doesn’t work.
People start out with good intentions, but as long as the language doesn'’t at
least discourage direct access of protected members, these good intentions
get crushed under the pressure to get the product out the door.

Making members protected

Adding the keyword public: to a class makes subsequent members publicly
accessible. Adding the keyword protected: makes subsequent members

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24: Do Not Disturb: Protected Members 2 83

protected, which means they are accessible only to other members of the
same class or functions that are specifically declared friends (more on that
later in this chapter). They act as toggles — one overrides the other. You can
switch back and forth between protected and public as often as you like.

Take, for example, a class student that describes the salient features of a
college student. This class has the following public member functions:

» addGrade (int nHours, double dGrade) — add a grade to the

student.
v grade () — return the student’s grade point average (GPA).
» hours () — return the number of semester hours toward graduation.

The remaining members of Sstudent should be declared protected to keep
prying expressions out of his business.

The following SimpleStudent program defines such a student class and
includes a simplemain () that exercises the functions:

//

// SimpleStudent - this program demonstrates how the

// protected keyword is used to protect
// key internal members

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
protected:
double dGrade; // the student's GPA
int nSemesterHours;

public:
// init() - initialize the student to a legal state
void init()

{
dGrade = 0.0;
nSemesterHours = 0;
}
// getGrade() - return the current grade
double getGrade()
{

return dGrade;

www.it-ebooks.info

http://www.it-ebooks.info/

2 8 4 Part V: Object-Oriented Programming

}

// getHours() - get the class hours towards graduation
int getHours()
{

return nSemesterHours;

}

// addGrade - add a grade to the GPA and total hours
double addGrade (double dNewGrade, int nHours)
{
double dwtdHrs = dGrade * nSemesterHours;
dwtdHrs += dNewGrade * nHours;
nSemesterHours += nHours;
dGrade = dwtdHrs / nSemesterHours;
return dGrade;

L5

int main(int nNumberofArgs, char* pszArgs|[])
{
// create a student and initialize it
Student s;
s.init();

// add the grades for three classes

s.addGrade(3.0, 3); // a B

s.addGrade (4.0, 3); // an A

s.addGrade (2.0, 3); // a C (average should be a B)

// now print the results

cout << "Total # hours = " << s.getHours()
<< ", GPA = " << s.getGrade()
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This student protects its members dGrade and nSemesterHours. Outside
functions can’t surreptitiously set their own GPA high by slipping in the
following

void MyFunction (Student* pS)
{

// set my grade to A+

pS->dGrade = 3.9; // generates a compiler error
}

This assignment generates a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24: Do Not Disturb: Protected Members 2 8 5

N\

You can start with either the protected or public members; it doesn’t matter.
In fact, you can switch back and forth as often as you like.

Any function can read a student’s GPA through the function getGrade ().
This is known as an access function. However, though external functions can
read a value, they cannot change the value via this access function.

An access function is also known as a getter function (as in “get the value”™).
A function that sets the value is also known as a setter function.

Themain () function in this program creates a student object s. It cannot ini-
tialize s to some legal state since the data members are protected. Fortunately,
the student class has provided an init () function for main () to call that
initializes the data members to their proper starting state.

After initializing s, main () calls addGrade () to add three different courses
and prints out the results using the access member functions. The results
appear as follows:

Total # hours = 9, GPA = 3
Press any key to continue .

So what?

So what's the big deal? “Okay,” you say, “I see the point about not letting
other functions set the GPA to some arbitrary value, but is that it?” No. A
finer point lies behind this loose coupling. I chose to implement the algo-
rithms for calculating the GPA as simply as I possibly could. With no more
than five minutes’ thought, I can imagine at least three different ways I could
have chosen to store the grades and semester hours internally, each with
their own advantages and disadvantages.

For example, [could save off each grade along with the number of semester
hours in an internal array. This would allow the student to review the grades
that are going into his GPA.

The point is that the application programmer shouldn’t care. As long as the
member functions getGrade () and getHours () calculate the GPA and
total number of semester hours accurately, no application is going to care.

Now suppose the school changes the rules for how to calculate the GPA.
Suppose, for example, that it declares certain classes to be Pass/Fail, mean-
ing that you get credit toward graduation but the grade in the class doesn’t
go into the GPA calculation. This may require a total rewrite of the Student
class. That, in turn, would require modification to any functions that rely

www.it-ebooks.info

http://www.it-ebooks.info/

2 8 6 Part V: Object-Oriented Programming

upon the way that the information is stored internally — that is, any func-
tions that have access to the protected members. However, functions that
limit themselves to the public members are unaffected by the change.

That is the true advantage of loose coupling: tolerance to change.

Who Needs Friends Anyway?

Occasionally, you need to give a non-member function access to the pro-
tected members of a class. You can do this by declaring the function to be a
friend. Declaring a function to be a friend means you don’t have to expose the
protected member to everyone by declaring it public.

It’s like giving your neighbor a key to check on your house during your vaca-
tion. Giving non-family members keys to the house is not normally a good
idea, but it beats the alternative of leaving the house unlocked.

The friend declaration appears in the class that contains the protected
member. The friend declaration consists of the keyword friend followed by
a prototype declaration. In the following example, the initialize () func-
tion is declared as a non-member. However, initialize () clearly needs
access to all the data members of the class, protected or not:

class Student

{
friend void initialize(Student¥*);
protected:
double dGrade; // the student's GPA
int nSemesterHours;
public:

double grade();

int hours() ;

double addGrade (double dNewGrade, int nHours) ;
b

void initialize(Student* pS)
{
pS->dGrade = 0.0;
pS->nSemesterHours = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24: Do Not Disturh: Protected Members 2 8 7

3

A single function can be declared to be a friend of two different classes at
the same time. Although this may seem convenient, it tends to bind the two
classes together. However, sometimes the classes are bound together by
their very nature, as in the following teacher-student example:

class Student; // forward declaration
class Teacher
{
friend void registration(Teacher*, Student¥*);
protected:
int noStudents;
Student *pList[128];

public:
void assignGrades() ;
L5

class Student
{
friend void registration(Teacher*, Student?*);
protected:
Teacher *pTeacher;
int nSemesterHours;
double dGrade;
L5

In this example, the registration () function can reach into both the
Student object to set the pTeacher pointer and into the Teacher object to
add to the teacher’s list of students.

Notice how the class student first appears by itself with no body. This is
called a forward declaration and declares the intention of the programmer

to define a class student somewhere within the module. This is a little bit
like the prototype declaration for a function. This is generally necessary only
when two or more classes reference each other; in this case, Teacher con-
tains a reference to student and Student to Teacher.

Without the forward declaration to student, the declaration within Teacher
of student *pList[100] generates a compiler error because the compiler
doesn’t yet know what a student is. Swap the order of the definitions, and
the declaration Teacher *pTeacher within Student generates a compiler
error because Teacher has not been defined yet.

The forward declaration solves the problem by informing the compiler to be
patient — a definition for this new class is coming very soon.

www.it-ebooks.info

http://www.it-ebooks.info/

2 8 8 Part V: Object-Oriented Programming

A member of one class can be declared a friend of another class:
class Student;

class Teacher

{
// ...other members...
public:
void assignGrade(Student*, int nHours, double dGrade) ;
)i

class Student
{
friend void Teacher: :assignGrade (Student*,

int, double);
// ...other members...

}:

An entire class can be declared a friend of another class. This has the effect
of making every member function of the class a friend. For example:

class Student;

class Teacher

{
protected:
int noStudents;
Student* pList[128];
public:
void assignGrade (Student*, int nHours, double dGrade) ;
¥
class Student
{
friend class Teacher;
// ...other members...
)i

Now every member of Teacher can access the protected members of
student (but not the other way around). Declaring one class to be a friend
of another binds the classes together inseparably.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25
Getting Objects Off to a Good Start

In This Chapter

Creating a constructor

Examining limitations on how constructors are invoked
Reviewing an example constructor

Constructing data members

Introducing the “not constructor” — the destructor

N ormally an object is initialized when it is created as in the following:

double PI = 3.14159;
This is true of class objects as well:

class Student
{
public:
int nHours;
double dGrade;
i h

Student s = {0, 0.0};
However, this is no longer possible when the data elements are declared pro-
tected if the function that’s creating the objects is not a friend or member of

the class (which, in most cases it would not be).

Some other mechanism is required to initialize objects when they are cre-
ated, and that’s where the constructor comes in.

The Constructor

One approach to initializing objects with protected members would be to
create an init () member function that the application could call when the

www.it-ebooks.info

http://www.it-ebooks.info/

2 9 0 Part V: Object-Oriented Programming

object is created. This init () function would initialize the object to some
legal starting point. In fact, that’s exactly what I do in Chapter 24.

This approach would work, but it doesn’t exactly fit the “microwave oven”
rules of object-oriented programming because it’s akin to building a micro-
wave oven that requires you to hit the Reset button before you could do
anything with it. It's as if the manufacturer put some big disclaimer in the
manual: “DO NOT start any sequence of commands without FIRST depress-
ing the RESET button. Failure to do so may cause the oven to explode and kill
everyone in the vicinity or WORSE.” (What could be worse than that?)

Now I'm no lawyer, but even | know that putting a disclaimer like that in your
manual is not going to save your butt when you end up in court because
someone got cut with shrapnel from an exploding microwave, even though
you say very clearly to hit reset first.

Fortunately, C++ takes the responsibility for calling the initialization function
away from the applications programmer and calls the function automatically
whenever an object is created.

You could call this initialization function anything you want as long as there
is a rule for everyone to follow. (I'm kind of partial to init () myself, but

[didn’t get a vote.) The rule is that this initialization function is called a
constructor, and it has the same name as the name of the class.

Outfitted with a constructor, the student class appears as follows:

class Student

{
protected:
int nSemesterHours;
double dGrade;
public:
Student ()
{
nSemesterHours = 0;
dGrade = 0.0;
}
// ...other public member functions...
b
void fn()
{
Student s; // create an object and invoke the
// constructor on it
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 2 9 ’

3

At the point of the declaration of s, C++ embeds a call to
Student: : Student ().

Notice that the constructor is called once for every object created. Thus, the
following declaration calls the constructor five times in a row:

void fn()
{

Student s[5];
}

It first calls the constructor for s[01, then for s[11, and so forth.

Limitations on constructors

The constructor can only be invoked automatically by C++. You cannot call a
constructor like a normal member function. That is, you cannot do something
like the following:

void fn()
{

Student s;
// ...do stuff...
// now reinitialize s back to its initial state

s.Student () ; // this doesn't work
}

The constructor is not just any ol’ function.

In addition, the constructor has no return type, not even void. The default
constructor has no arguments either.

The next chapter shows you how to declare and use a constructor with
arguments.

Finally, the constructor must be declared public, or else you will be able to
create objects only from within other member functions.

The constructor can call other functions. Thus, your constructor could

invoke a publicly available init () function that could then be used by
anyone to reset the object to its initial state.

www.it-ebooks.info

http://www.it-ebooks.info/

2 9 2 Part V: Object-Oriented Programming

Can [see an example?

The following StudentConstructor program looks a lot like the SimpleStudent
program from Chapter 24, except that this version includes a constructor that
outputs every time it’s creating an object. The interesting part to this program
is seeing the cases during which the constructor is invoked.

I highly encourage you to single-step this program in the debugger using the
Step-Into debugger command from Chapter 20. Use the Step Into debugger
command near the declaration of the student objects to step into the con-
structor automatically.

StudentConstructor - this program demonstrates the use
of a default constructor to initialize
objects when they are created

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student

{

protected:

double dGrade; // the student's GPA
int nSemesterHours;

public:

// constructor - init the student to a legal state
Student ()
{
cout << "Constructing a Student object" << endl;
dGrade = 0.0;
nSemesterHours = 0;

}

// getGrade() - return the current grade
double getGrade()
{
return dGrade;
}
// getHours() - get the class hours towards graduation
int getHours()
{

return nSemesterHours;

}
// addGrade - add a grade to the GPA and total hours

double addGrade (double dNewGrade, int nHours)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 2 93

double dwtdHrs = dGrade * nSemesterHours;
dWwtdHrs += dNewGrade * nHours;
nSemesterHours += nHours;

dGrade = dWtdHrs / nSemesterHours;
return dGrade;

¥

int main(int nNumberofArgs, char* pszArgs[])
{
// create a student and initialize it
cout << "Creating the Student s" << endl;
Student s;

// add the grades for three classes

s.addGrade (3.0, 3); // a B

s.addGrade (4.0, 3); // an A

s.addGrade (2.0, 3); // a C (average should be a B)

// now print the results

cout << "Total # hours = " << s.getHours()
<< ", GPA = " << s.getGrade()
<< endl;

// create an array of Students
cout << "Create an array of 5 Students" << endl;
Student sArray|[5]:;

// now allocate one off of the heap
cout << "Allocating a Student from the heap" << endl;
Student *pS = new Student;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The output from this program appears as follows:

Creating the Student s
Constructing a Student object
Total # hours = 9, GPA = 3
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

2 94 Part V: Object-Oriented Programming

The student class has been outfitted with a constructor that not only initial-
izes the number of semester hours and grade point average to zero but also
outputs a message to the console to announce that a Student object is being
created.

Themain () program then simply creates student objects in various ways:

v The first declaration creates a single student object s resulting in C++
invoking the constructor.

1+ The second declaration creates an array of five student objects. C++
calls the constructor five times, once for each object in the array.

1+ The program allocates a student object from the heap. C++ invokes the
constructor again to initialize the object.

Constructing data members

The data members of a class are created at the same time as the object itself.
Consider the following simple class TutorPair consisting of a Student and
a Teacher:

class TutorPair
{
protected:
Student s;
Teacher t;

int nNumberOfMeetings;

public:
TutorPair ()

{
nNumberOfMeetings = 0;
}

// ...other stuff...
Ji 5

It’s not the responsibility of the TutorPair class to initialize the member
Student or the member Teacher; these objects should be initialized by
constructors in their respective classes. The constructor for TutorpPair is
responsible only for initializing the non-class members of the class.

Thus, when a TutorPair is created, C++ does the following (in the order
shown):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 2 9 5

1 It invokes the constructor for the student s.
1 It invokes the constructor for the Teacher t.

v It enters the constructor for TutorPair itself.

The constructors for the data members are invoked in the order that they
appear in the class.

The following TutorPairConstructor program demonstrates:

//

// TutorPairConstructor - this program demonstrates

// how data members are constructed automatically
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
protected:
double dGrade; // the student's GPA
int nSemesterHours;

public:
// constructor - init the student to a legal state
Student ()

{
cout << "Constructing a Student object" << endl;

dGrade = 0.0;
nSemesterHours = 0;

1k

class Teacher
{
public:
// constructor - init the student to a legal state
Teacher ()
{
cout << "Constructing a Teacher object" << endl;

}

}i

class TutorPair

{
protected:
Student s;

www.it-ebooks.info

http://www.it-ebooks.info/

2 9 6 Part V: Object-Oriented Programming

Teacher t;
int nNumberOfMeetings;

public:
TutorPair ()
{
cout << "Constructing the TutorPair members"
<< endl;
nNumberOfMeetings = 0;

};:

int main(int nNumberofArgs, char* pszArgs|[])

{
// create a TutorPair and initialize it
cout << "Creating the TutorPair tp" << endl;
TutorPair tp;
// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

Themain () program does nothing more than output a message and then
creates an object tp of class TutorPair. This causes C++ to invoke the
constructor for TutorPair. However, before the first line of that function is
executed, C++ goes through the data members and constructs any objects
that it finds there.

The first object C++ sees is the student object s. This constructor outputs
the first message that you see on the output. The second object that C++
finds is the Teacher member t. This constructor generates the next line of
output.

With all the data members out of the way, C++ passes control to the body of
the TutorPair constructor that outputs the final line of output:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Press any key to continue .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 2 9 7

Destructors

3

Just as objects are created, so they are destroyed. (I think there’s a Biblical
passage to that effect.) If a class can have a constructor to set things up, it
should also have a special member function to take the object apart and put
back any resources that the constructor may have allocated. This function is
known as the destructor.

A destructor has the name of the class preceded by a tilde (~). Like a con-
structor, the destructor has no return type (not even void), and it cannot be
invoked like a normal function.

Technically, you can call the destructor explicitly: s. ~Sstudent (). However,
this is rarely done, and it's needed only in advanced programming techniques,
such as allocating an object on a predetermined memory address.

In logic, the tilde is sometimes used to mean “NOT" so the destructor is the
“NOT constructor.” Get it? Cute.

C++ automatically invokes the destructor in the following three cases:

1 Alocal object is passed to the destructor when it goes out of scope.

+» An object allocated off the heap is passed to the destructor when it is
passed to delete.

1~ A global object is passed to the destructor when the program terminates.

Looking at an example

The following StudentDestructor program features a Student class that allo-
cates memory off of the heap in the constructor. Therefore, this class needs a
destructor to return that memory to the heap.

Any class whose constructor allocates resources, in particular, a class that
allocates memory off of the heap, requires a destructor to put that memory
back.

The program creates a few objects within a function fn () and then allows
those objects to go out of scope and get destructed when the function
returns. The function returns a pointer to an object that fn () allocates off of
the heap. This object is returned to the heap back inmain ().

www.it-ebooks.info

http://www.it-ebooks.info/

2 98 Part V: Object-Oriented Programming

//

// StudentDestructor - this program demonstrates the use
// of the destructor to return resources

// allocated by the constructor

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
protected:
double* pdGrades;
int* pnHours;

public:
// constructor - init the student to a legal state
Student ()

{
cout << "Constructing a Student object" << endl;

pdGrades = new double[128];
pnHours = new int[128];

}
~Student ()

{
cout << "Destructing a Student object" << endl;

delete[] pdGrades;
pdGrades = 0;

delete[] pnHours;
pnHours = 0;

¥

Student* fn()

{
cout << "Entering fn()" << endl;

// create a student and initialize it
cout << "Creating the Student s" << endl;
Student s;

// create an array of Students
cout << "Create an array of 5 Students" << endl;
Student sArray([5];

// now allocate one off of the heap
cout << "Allocating a Student from the heap" << endl;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 2 9 9

Student *pS = new Student;
cout << "Returning from fn()" << endl;
return pS;

int main(int nNumberofArgs, char* pszArgs|[])

// now allocate one off of the heap
Student *ps = fn();

// delete the pointer returned by fn()
cout << "Deleting the pointer returned by fn()"

<< endl;
delete pS;
psS = 0;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The output from the program appears as follows:

Entering fn()

Creating the Student s
Constructing a Student object
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Returning from fn()
Destructing a Student object

Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object

Deleting the pointer returned by fn()
Destructing a Student object
Press any key to continue .

The first message is from fn () itself as it displays an opening banner to let us
know that control has entered the function. The £n () function then creates

www.it-ebooks.info

http://www.it-ebooks.info/

300 Part V: Object-Oriented Programming

3

wE CO
o

an object s that causes the constructor to output a message. It then creates
an array of five student objects, which causes five more messages from the
Student constructor. And finally fn () allocates one more Student object
from the heap using the new keyword.

The last thing £n () does before returning is output an exit banner message.
C++ automatically calls the destructor six times: five times for the elements of
the array and once for the s object created at the beginning of the function.

You can't tell from the output, but the objects are destructed in the reverse
order that they are constructed.

The destructor is not invoked for the object allocated off of the heap until
main () deletes the pointer returned by fn ().

A memory block allocated off of the heap does not go out of scope when the
pointer to it goes out of scope. It is the programmer’s responsibility to make
sure that the object is returned to the heap using the delete command.

Return a pointer to a non-array with delete. Return an array using
delete[].

Destructing data members

Data members are also destructed automatically. Destruction occurs in the
reverse order to the order of construction: The body of the destructor is
invoked first, and then the destructor for each data member in the reverse
order that the data members were constructed.

To demonstrate this, | added a destructor to the TutorPairConstructor pro-
gram. The entire listing is a bit lengthy to include here, but it is contained on
the enclosed CD-ROM as TutorPairDestructor. I include just the TutorPair
class here:

class TutorPair
{

protected:
Student s;
Teacher t;
int nNumberOfMeetings;

public:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25: Getting Objects Off to a Good Start 30 ’

TutorPair ()
{
cout << "Constructing the TutorPair members"
<< endl;
nNumberOfMeetings = 0;

}
~TutorPair ()
{
cout << "Destructing the TutorPair object"
<< endl;
}
}:
void fn()
{
// create a TutorPair and initialize it
cout << "Creating the TutorPair tp" << endl;
TutorPair tp;
cout << "Returning from fn()" << endl;
}

The output from this program appears as follows:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Returning from fn()

Destructing the TutorPair object
Destructing a Teacher object
Destructing a Student object

Press any key to continue .

This program creates the TutorPair object within the function £n (). The
messages from the constructors are identical to the TutorPairConstructor
program. The messages from the TutorPair destructor appear as control is
returning to main, and they appear in the exact reverse of the order of mes-
sages from the constructors, coming first from ~TutorPair itself, then from
~Teacher, and finally from ~Student

www.it-ebooks.info

http://www.it-ebooks.info/

30 2 Part V: Object-Oriented Programming

Static data members

A special type of data member that deserves separate mention is known as a class member or
static member because it is flagged with the keyword static:

class Student
{
protected:
static int nNumberofStudents;
int nSemesterHours;
double dGrade;

public:
Student ()
{
nSemesterHours = 0;
dGrade = 0.0;

// count how many Students
nNumberOfStudents++;
}
~Student ()

{
nNumberOfStudents--;
}
i

// allocate space for the static member; be sure to

// initialize it here (when the program starts) because
// the class constructor will not initialize it

int Student: :nNumberOfStudents = 0;

Static members are a property of the class and not of each object. In this example, a single
variable Student: :nNumberofstudents is shared by all Student objects. This
example demonstrates exactly what such members are good for: In this case, nNumberof
Students keeps a running count of the number of Student objects that currently exist.

Static members are initialized when the program starts. You can manipulate them from the con-
structor for each object — in this case, | increment the counter in the Student constructor and
decrement it in the destructor. In general, you do not want to initialize a static member in the class
constructor since it will get reinitialized every time an object is created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26
Making Constructive Arguments

In This Chapter
Creating and invoking a constructor with arguments
Overloading the constructor
Constructing data members with arguments
Looking forward to a new format of constructor in the 2009 standard

r)e Student class in Chapter 25 was extremely simple — almost unrea-

sonably so. After all, a student has a name and a student ID as well as a

grade point average and other miscellaneous data. [chose GPA as the data

to model in Chapter 25 because | knew how to initialize it without someone

telling me — I could just zero out this field. But I can’t just zero out the name
and ID fields; a no-named student with a null ID probably does not represent
a valid student. Somehow I need to pass arguments to the constructor to

tell it how to initialize fields that start out with a value that’s not otherwise

predictable.

Constructors with Arguments

C++ allows the program to define a constructor with arguments as shown
here:

class Student
{
public:
Student (const char* pszNewName, int nNewlID)
{
int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;

www.it-ebooks.info

http://www.it-ebooks.info/

304

Part V: Object-Oriented Programming

fl\“ﬂ

~Student ()
{
delete[] pszName;
pszName = 0;
}

protected:
char* pszName;
int nibD;
};:

Here the arguments to the constructor are a pointer to an ASCIIZ string that
contains the name of the new student and the student’s ID. The constructor
first allocates space for the student’s name. It then copies the new name into
the pszName data member. Finally, it copies over the student ID.

A destructor is required to return the memory to the heap once the object is
destroyed. Any class that allocates a resource like memory in the constructor
must return that memory in the destructor.

Remember, you can’t call a constructor like you call a function, so you have
to somehow associate the arguments to the constructor with the object when
it is declared. The following code snippets show how this is done:

void fn()

{
// put arguments next to object normally
Student sl ("Stephen Davis", 1234);

// or next to the class name when allocating

// an object from the heap

Student* pS2 = new Student ("Kinsey Davis", 5678);
}

The arguments appear next to the object normally and next to the class name
when allocating an object off of the heap.

Looking at an example

The following NamedStudent program uses a constructor similar to the one
shown in the snippets to create a Student object and display my, I mean his,
name:

//

// NamedStudent - this program demonstrates the use
// of a constructors with arguments

//

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 30 5

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student

{
protected:
char* pszName;
int niD;
public:
Student (const char* pszNewName, int nNewlD)
{
cout << "Constructing " << pszNewName << endl;
int nLength = strlen(pszNewName) + 1;
pszName = new char[nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;
}
~Student ()
{
cout << "Destructing " << pszName << endl;
delete[] pszName;
pszName = 0;
}
// getName() - return the student's name
const char* getName()
{
return pszName;
}
// getID() - get the student's ID
int getID()
{
return nID;
}
};

Student* fn()

{
// create a student and initialize it
cout << "Constructing a local student in fn()" <<endl;
Student student ("Stephen Davis", 1234);

// display the student's name
cout << "The student's name is "
<< student.getName() << endl;

// now allocate one off of the heap

www.it-ebooks.info

http://www.it-ebooks.info/

306 Part V: Object-Oriented Programming

sﬁ)&“ﬁ

cout << "Allocating a Student from the heap" << endl;
Student *pS = new Student ("Kinsey Davis", 5678) ;

// display this student's name
cout << "The second student's name is "
<< pS->getName() << endl;

cout << "Returning from fn()" << endl;

return pS;
}
int main(int nNumberofArgs, char* pszArgs|[])
{
// call the function that creates student objects
cout << "Calling fn()" << endl;
Student* pS = fn();
cout << "Back in main()" << endl;
// delete the object returned by fn()
delete pS;
psS = 0;
// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;
}

Themain () program starts by outputting a message and then calling the
function £n (). This function creates a student with the unlikely name
“Stephen Davis” and an ID of 1234. The function then asks the object for its
name just to prove that the name was accurately noted in the object. The
function goes on to create another student object, this time off of the heap,
and similarly asks it to display its name.

The £n () function then returns control to main () ; this causes the student
object to go out of scope, which causes C++ to invoke the destructor. main ()
restores the memory returned from fn () to the heap using the keyword
delete. This invokes the destructor for that object.

The constructor for class Student accepts a pointer to an ASCIIZ string and
an int student ID. The constructor allocates a new character array from the
heap and then copies the string passed it into that array. It then copies the
value of the student ID.

Refer to Chapter 16 if you don’t remember what an ASCIIZ string is or what
strlen() does.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 30 7

%
oW
g

b}ﬁ)&BEﬁ

0,/

f&ﬂfﬁ

The destructor for class student simply restores the memory allocated by
the constructor to the heap by passing the address in pszName to delete[].

Use delete[] when restoring an array to the heap and delete when restor-
ing a single object.

The getName () and getID () member functions are access functions for
the name and ID. Declaring the return type of getName () as const char*
(read “pointer to constant char”) — as opposed to simply char* — means
that the caller cannot change the name using the address returned by
getName ().

Refer to Chapter 18 if you don’t remember the difference between a const
char* and a char * const (or if you have no idea what I'm talking about).

The output from this program appears as follows:

Calling fn()

Constructing a local student in fn()
Constructing Stephen Davis

The student's name is Stephen Davis
Allocating a Student from the heap
Constructing Kinsey Davis

The second student's name is Kinsey Davis
Returning from fn()

Destructing Stephen Davis

Back in main()

Destructing Kinsey Davis

Press any key to continue .

I've said it before (and you probably ignored me), but I really must insist this
time: You need to invoke the preceding constructor in the debugger to get a
feel for what C++ is doing with your declaration.

But what if you need both a named constructor and a default constructor?
Keep reading.

Overloading the Constructor

f)ﬂfﬂ

You can have two or more constructors as long as they can be differentiated
by the number and types of their arguments. This is called overloading the
constructor.

Overloading a function means to define two or more functions with the same

short name but with different arguments. Refer to Chapter 11 for a discussion
of function overloading.

www.it-ebooks.info

http://www.it-ebooks.info/

308 Part V: Object-Oriented Programming

Thus, the following student class from the OverloadedStudent program has
three constructors:

//

// OverloadedStudent - this program overloads the Student
// constructor with 3 different choices

// that vary by number of arguments

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{

protected:
char* pszName;
int niD;
double dGrade; // the student's GPA
int nSemesterHours;
public:

Student (const char* pszNewName, int nNewlD,
double dXferGrade, int nXferHours)
{
cout << "Constructing " << pszNewName
<< " as a transfer student." << endl;
int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;
dGrade = dXferGrade;
nSemesterHours = nXferHours;
}
Student (const char* pszNewName, int nNewlID)
{
cout << "Constructing " << pszNewName
<< " as a new student." << endl;
int nLength = strlen(pszNewName) + 1;
pszName = new char[nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;
dGrade = 0.0;
nSemesterHours = 0;
}
Student ()
{
pszName = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 30 9

}:

niD = 0;
dGrade = 0.0;
nSemesterHours = 0;

}

~Student ()

{
cout << "Destructing " << pszName << endl;
delete[] pszName;
pszName = 0;

}

// access functions
const char* getName()

{ return pszName;
int getID()

{ return nID;
éouble getGrade()

{ return dGrade;
%nt getHours ()

return nSemesterHours;
}

// addGrade - add a grade to the GPA and total hours
double addGrade (double dNewGrade, int nHours)
{
double dwtdHrs = dGrade * nSemesterHours;
dwtdHrs += dNewGrade * nHours;
nSemesterHours += nHours;
dGrade = dwtdHrs / nSemesterHours;
return dGrade;

int main(int nNumberofArgs, char* pszArgs|[])

{

// create a student and initialize it
Student student ("Stephen Davis", 1234);

// now create a transfer student with an initial grade
Student xfer ("Kinsey Davis", 5678, 3.5, 12);

// give both students a B in the current class
student.addGrade (3.0, 3);

www.it-ebooks.info

http://www.it-ebooks.info/

3 ’ 0 Part V: Object-Oriented Programming

xfer.addGrade (3.0, 3);

// display the student's name and grades
cout << "Student "

<< student.getName ()

<< " has a grade of "

<< student.getGrade()

<< endl;

cout << "Student "
<< xfer.getName ()
<< " has a grade of "
<< xfer.getGrade()
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

Starting with the student class, you can see that the first constructor within
Student accepts a name, a student ID, and transfer credit in the form of an
initial grade point average (GPA) and number of semester hours. The second
constructor accepts only a name and ID; this constructor is intended for new
students as it initializes the GPA and hours to zero. It's unclear what the third
constructor is for — this default constructor initializes everything to zero.

Themain () function creates a new student using the second constructor
with the name “Stephen Davis”; then it creates a transfer student with the
name “Kinsey Davis” using the second constructor. The program adds three
hours of credit to both (just to show that this still works) and displays the
resulting GPA.

The output from this program appears as follows:

Constructing Stephen Davis as a new student.
Constructing Kinsey Davis as a transfer student.
Student Stephen Davis has a grade of 3

Student Kinsey Davis has a grade of 3.4

Press any key to continue .

Notice how similar the first two student constructors are. This is not
uncommon. This case is one in which you can create an init () function that
both constructors call (only the constructors are shown in this example for
brevity's sake):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 3 ’ ’

class Student

{
protected:
void init(const char* pszNewName, int nNewID,
double dXferGrade, int nXferHours)

{

cout << "Constructing " << pszNewName
<< " as a transfer student." << endl;

int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;
dGrade = dXferGrade;
nSemesterHours = nXferHours;

}

public:
Student (const char* pszNewName, int nNewlD,
double dXferGrade, int nXferHours)

{
init (pszNewName, nNewID, dXferGrade, nXferHours) ;

}

Student (const char* pszNewName, int nNewlD)

{
init (pszNewName, nNewID, 0.0, 0);

}

// ...class continues as before...

};:

In general, the init () function will look like the most complicated construc-
tor. All simpler constructors call init () passing default values for some of
the arguments, such as a 0 for transfer grade and credit for new students.

You can also default the arguments to the constructor (or any function for
that matter) as follows:

class Student

{
public:
Student (const char* pszNewName, int nNewID,
double dXferGrade = 0.0, int nXferHours = 0);
// ...and so it goes...
}i

C++ will supply the defaulted arguments if they are not provided in the decla-
ration. However, default arguments can generate strange error messages and
are beyond the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

3 ’ 2 Part V: Object-Oriented Programming

You can also invoke one constructor from another starting with the C++ 2009
standard. However, as of this writing, no compiler that | know of supports this
feature.

The Default default Constructor

\NG/
&

As far as C++ is concerned, every class must have a constructor; otherwise,
you can’t create any objects of that class. If you don’t provide a constructor
for your class, C++ should probably just generate an error, but it doesn’t. To
provide compatibility with existing C code, which knows nothing about con-
structors, C++ automatically provides an implicitly defined default construc-
tor (sort of a default default constructor) that invokes the default constructor
for any data members. Sometimes I call this a Miranda constructor. You
know, “If you cannot afford a constructor, a constructor will be provided

for you.”

If your class already has a constructor, however, C++ doesn’t provide the
automatic default constructor. (Having tipped your hand that this isn’t a C pro-
gram, C++ doesn'’t feel obliged to do any extra work to ensure compatibility.)

The result is: If you define a constructor for your class but you also want a
default constructor, you must define it yourself.

The following code snippets help demonstrate this principle. The following is
legal:

class Student

{
// ...all the same stuff but no constructors...
};:
void fn()
{
Student s; // create Student using default constructor
}

Here, the object s is built using the default constructor. Because the pro-
grammer has not provided a constructor, C++ provides a default constructor
that doesn’t really do anything in this case.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 3 ’3

However, the following snippet does not compile properly:

class Student
{
public:
Student (const char* pszName) ;

// ...all the same stuff...
i 5

void fn()

{
Student s; // doesn't compile
}

The seemingly innocuous addition of the Student (const char*) construc-
tor precludes C++ from automatically providing a student () constructor
with which to build the s object. Now the compiler complains that it can no
longer find student : : Student () with which to build s. Adding a default
constructor solves the problem:

class Student

{
public:
Student (const char* pszName) ;
Student () ;
// ...all the same stuff...
};:
void fn()
{
Student s; // this does compile
}

It's just this type of illogic that explains why C++ programmers make the
really big bucks.

Constructing Data Members

In the preceding examples, all of the data members have been simple types,
like int and double and arrays of char. With these simple types it’s suf-
ficient to just assign the variable a value within the constructor. But what if
the class contains data members of a user-defined class? There are two cases
to consider here.

www.it-ebooks.info

http://www.it-ebooks.info/

3 ’ 4 Part V: Object-Oriented Programming

Initializing data members with
the default constructor

Consider the following example

class StudentID
{
protected:
static int nBasevalue;
int nvalue;

public:
StudentID()

{
nvValue = nBaseValue++;

}

int getID()

{
return nvalue;

}
i A

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student

{
protected:
char* pszName;
StudentID sID;
public:
Student (const char* pszNewName)
{

int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;

}

~Student ()

{
delete pszName;
pszName = 0;

}

// getName() - return the student's name
const char* getName ()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 3 ’ 5

return pszName;
}

// getID() - get the student's ID
int getID()

{
return sID.getID();

}
}:

The class studentID is designed to allocate student IDs sequentially. The
class retains the “next value” in a static variable studentID: :nBasevalue.

Static data members, also known as class members, are shared among all
objects.

Each time a studentID is created, the constructor assigns nvalue the “next
value” from nBasevalue and then increments nBasevalue in preparation
for the next time the constructor is called.

The student class has been updated so that the sID field is now of type
StudentID. The constructor now accepts the name of the student but relies
on StudentID to assign the next sequential ID each time a new student
object is created.

The constructor for each data member, including studentID, is invoked
before control is passed to the body of the student constructor.

All the student constructor has to do is make a copy of the student’s
name — the s1D field takes care of itself.

Initializing data members with
a different constructor

So now the boss comes in and wants an addition to the program. Now she
wants to update the program so that it can assign a new student ID instead of
always accepting the default value handed over by the studentID class.
Accordingly, I make the following changes:

class StudentID

{
protected:
static int nBaseValue;
int nvalue;

www.it-ebooks.info

http://www.it-ebooks.info/

3 ’ 6 Part V: Object-Oriented Programming

public:
StudentID(int nNewID)
{
nvalue = nNewlD;
}
StudentID()
{

nvalue = nBaseValue++;
}

int getID()
{
return nvalue;
}
}:

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student

{
protected:
char* pszName;
StudentID sID;
void initName (const char* pszNewName)
{
int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;
}
public:
Student (const char* pszNewName, int nNewlID)
{

initName (pszNewName) ;
StudentID sID(nNewlD) ;

}

Student (const char* pszNewName)

{
initName (pszNewName) ;
}
~Student ()
{
delete[] pszName;
pszName = 0;
}
// getName() - return the student's name
const char* getName()
{

return pszName;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 3 ’ 7

// getID() - get the student's ID
int getID()

{
return sID.getID();

}
}:

I added a constructor to studentID to allow the caller to pass a value to use
for the student ID rather than accept the default. Now, if the program doesn’t
provide an ID, the student is assigned the next sequential ID. If the program
does provide an ID, however, then it is used instead, and the static counter is
left untouched.

I also added a constructor to student to allow the program to provide a
studentID when the student is created. This Student (const char*,
int) constructor first initializes the student’s name and then invokes the
StudentID(int) constructor on sID.

When I execute the program, however, [am disappointed to find that this
seems to have made no apparent difference. Students are still assigned
sequential student IDs whether or not they are passed a value to use instead.

The problem, I quickly realize, is that the Student (const char*, int)
constructor is not invoking the new studentID(int) constructor on the
data member sID. Instead, it is creating a new local object called sID within
the constructor, which it then immediately discards without any effect on the
data member of the same name.

Remember that the constructor for the data members is called before con-
trol is passed to the body of the constructor. Rather than create a new value
locally, I need some way to tell C++ to use a constructor other than the
default constructor when creating the data member sID.C++ uses the follow-
ing syntax to initialize a data member with a specific constructor:

class Student

{
public:
Student (const char* pszName,
int nNewID) : sID(nNewlD)
{
initName (pszName) ;

}

// ...remainder of class unchanged...
}i

www.it-ebooks.info

http://www.it-ebooks.info/

3 ’ 8 Part V: Object-Oriented Programming

The data member appears to the right of a colon used to separate such dec-
larations from the arguments to the function but before the open brace of the
function itself. This causes the studentID(int) constructor to be invoked,

passing the nNewID value to be used as the new student ID.

Looking at an example

second Student object:

<cstdio>
<cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

#include
#include

class StudentID

The following CompoundStudent program creates one Sstudent object with
the default, sequential student ID, while assigning a specific student ID to a

CompoundStudent - this version of the Student class
includes a data member that's also
of a user defined type

{
protected:
static int nBasevalue;
int nvalue;
public:
StudentID()
{
nvalue = nBaseValue++;

}

StudentID(int nNewValue)

{
nvValue = nNewValue;
}
int getID()
{

return nvalue;
}
i 5

// allocate space for the
int StudentID::nBaseValue

class property
= 1000;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments 3 ’ 9

class Student
{
protected:
char* pszName;
StudentID sID;

void initName (const char* pszNewName)

{
int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;

}

public:
Student (const char* pszNewName,
int nNewID) : sID(nNewID)
{
initName (pszNewName) ;
}
Student (const char* pszNewName)
{
initName (pszNewName) ;
}
~Student ()
{
delete[] pszName;
pszName = 0;
}

// getName() - return the student's name
const char* getName()
{
return pszName;
}

// getID() - get the student's ID
int getID()
{
return sID.getID();
}
}:

int main(int nNumberofArgs, char* pszArgs|[])

{
// create a student and initialize it
Student studentl ("Stephen Davis") ;

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 0 Part V: Object-Oriented Programming

// display the student's name and ID
cout << "The first student's name is "
<< studentl.getName ()
<< ", ID is "
<< studentl.getID()
<< endl;

// do the same for a second student
Student student2 ("Janet Eddins") ;
cout << "The second student's name is "
<< student2.getName ()
<< ", ID is "
<< student2.getID()
<< endl;

// now create a transfer student with a unique ID
Student student3 ("Tiffany Amrich", 1234);
cout << "The third student's name is "

<< student3.getName ()

<< ", ID is "

<< student3.getID()

<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

The student and StudentID classes are similar to those shown ear-

lier. Themain () function creates three students, the first two using the
Student (const char*) constructor that allocates the default student

ID. The third student is created using the student (const char*, int)
constructor and passed an ID of 1234. The resulting display confirms that the
default IDs are being allocated sequentially and that the third student has a
unique ID.

The first student's name is Stephen Davis, ID is 1000

The second student's name is Janet Eddins, ID is 1001

The third student's name is Tiffany Amrich, ID is 1234
Press any key to continue .
The : syntax here can also be used to initialize simple variables if you prefer:

class SomeClass

{
protected:
int nvalue;
const double PI;
public:
SomeClass(int n) : nvalue(n), PI(3.14159) {}
b5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26: Making Constructive Arguments

Here, the data member nvalue is initialized to n, and the constant double is
initialized to 3.14159.

In fact, this is the only way to initialize a data member flagged as const. You
can’t put a const variable on the left-hand side of an assignment operator.

Notice that the body of the constructor is now empty since all the work is

done in the header; however, the empty body is still required (otherwise, the
definition would look like a prototype declaration).

New with C++ 2009

Starting with the 2009 standard, you can initialize data members to a con-
stant value in the declaration itself, as in the following:

class SomeClass

{
protected:
int nvalue;
const double PI = 3.14159;
char* pSomeString = new char[128];
public:
SomeClass (int n) : nvalue(n) {}
1k

The effect is the same as if you had written the constructor as follows:

class SomeClass
{
protected:
int nvalue;
const double PI;
char* pSomeString;

public:
SomeClass (int n)
: nvalue(n), PI(3.14159), pSomeString(new char[128])
{}
)i

The earlier assignment format is easier to read and just seems more natural
(it is accepted by other C++-like programming languages such as Java and
C#). However, as of this writing, this format is not yet accepted by any C++
compiler, including the one enclosed in this book.

www.it-ebooks.info

321

http://www.it-ebooks.info/

Chapter 27

Coping with the Copy Constructor

In This Chapter

Letting C++ make copies of an object

Creating your own copy constructor
Making copies of data members
Avoiding making copies completely

r)e constructor is a special function that C++ invokes when an object is
created in order to allow the class to initialize the object to a legal state.
Chapter 25 introduces the concept of the constructor. Chapter 26 demon-
strates how to create constructors that take arguments. This chapter con-
cludes the discussion of constructors by examining a particular constructor
known as the copy constructor.

Copying an Object

@'&“BE[’

A copy constructor is the constructor that C++ uses to make copies of objects.
It carries the name X: : X (const X&), where X is the name of the class. That
is, it’s the constructor of class X that takes as its argument a reference to an
object of class X.] know that sounds pretty useless, but let me explain why
you need a constructor like that on your team.

A reference argument type like fn (X&) says, “pass a reference to the object”
rather than “pass a copy of the object.” I discuss reference arguments in
Chapter 23.

Think for a minute about the following function call:

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 4 Part V: Object-Oriented Programming

void fn(Student s)
{

// ...whatever fn() does...
}

void someOtherFn ()
{
Student s;
fn(s);
i

Here the function someOtherFn () creates a Student object and passes a
f’“":” copy of that object to fn ().

By default, C++ passes objects by value, meaning that it must make a copy of
the object to pass to the functions it calls (refer to Chapter 23 for more).

Consider that creating a copy of an object means creating a new object and,
by definition, means invoking a constructor. But what would the arguments
to that constructor be? Why, a reference to the original object. That, by defi-
nition, is the copy constructor.

The default copy constructor

C++ provides a default copy constructor that works most of the time. This
copy constructor does a member-by-member copy of the source object to
the destination object.
3
A member-by-member copy is also known as a shallow copy for reasons that
soon will become clear.

There are times when copying one member at a time is not a good thing,
however. Consider the student class from Chapter 26:

class Student
{
protected:
char* pszName;
int niD;

// ...other stuff...
e

Copying the int data member nID from one object to another is no problem.

However, copying the pointer pszName from the source to the destination
object could cause problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 27: Coping with the Copy Constructor 32 5

|
Figure 27-1:
By default,
C++ per-
forms a
member-
by-member,
“shallow”
copy to cre-
ate copies
of objects,
such as
when
passing an
objecttoa
function.
|

For example, what if pszName points to heap memory (which it almost
surely does)? Now you have two objects that both point to the same block of
memory on the heap. This is shown in Figure 27-1.

sl sl

pszName pszName

Heap H
ea
Memory Memopry

s2

pszName

Before copy After copy

When the copy of the student object goes out of scope, the destructor for
that class will likely delete the pszName pointer, thereby returning the block
of memory to the heap, even though the original object is still using that
memory. When the original object deletes the same pointer again, the heap
gets messed up, and the program is sure to crash with a bizarre and largely
misleading error message.

Looking at an example

The following ShallowStudent program demonstrates how making a shallow
copy can cause serious problems:

//

// ShallowStudent - this program demonstrates why the
// default shallow copy constructor
// isn't always the right choice.

//

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

www.it-ebooks.info

http://www.it-ebooks.info/

3 2 6 Part V: Object-Oriented Programming

class Student
{
protected:
char* pszName;
int niD;

public:
Student (const char* pszNewName, int nNewlD)
{
cout << "Constructing " << pszNewName << endl;
int nLength = strlen(pszNewName) + 1;
pszName = new char [nLength];
strcpy (pszName, pszNewName) ;
nID = nNewlD;
}
~Student ()
{
cout << "Destructing " << pszName << endl;
delete[] pszName;
pszName = 0;
}

// access functions
const char* getName()
{

}
int getID()
{

}

return pszName;

return niID;
b5

void someOtherFn (Student s)

{
// we don't need to do anything here

}

void someFn()

{
Student student ("Adam Laskowski", 1234);
someOtherFn (student) ;

cout << "The student's name is now "
<< student.getName() << endl;
}

int main(int nNumberofArgs, char* pszArgs|[])

{
someFn () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 27: Coping with the Copy Constructor 32 7

\NG/
&

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;
return 0;

}

This deceptively simple program contains a serious problem. The function
main () does nothing more than call the function someFn (). This function
creates a local student object and passes it by value to the function some
otherFn (). This second function does nothing except return to the caller.
The someFn () function then displays the name of the student and returns
tomain().

The output from the program shows some interesting results:

Constructing Adam Laskowski
Destructing Adam Laskowski
The student's name is now X$+*
Destructing X$=*

Press any key to continue .

The first message comes from the student constructor as the student
object is created at the beginning of someFn (). No message is generated by
the default copy constructor that’s called to create the copy of student for
someOtherFn (). The destructor message is invoked at the end of some
otherFn () when the local object s goes out of scope.

The output message in someFn () shows that the object is now messed up
as the memory allocated by the student constructor to hold the student’s
name has been returned to the heap. The subsequent destructor that’'s
invoked at the end of someFn () verifies that things are amiss.

This type of error is normally fatal (to the program, not the programmer). The
only reason this program didn’t crash is that it was about to stop anyway.

Creating a Copy Constructor

Classes that allocate resources in their constructor should normally include
a copy constructor to create copies of these resources. For example, the
Student copy constructor should allocate another block of memory off the
heap for the name and copy the original object’s name into this new block.
This is shown in Figure 27-2.

www.it-ebooks.info

http://www.it-ebooks.info/

328

Part V: Object-Oriented Programming

e S1

Figure 27-2:
A class that
allocates
resources
in the con-
structor
requires a
copy con-
structor that
performs a
so-called
deep copy
of the
source
object.
—

s1

pszName

pszName

Before copy

Allocating a

Heap
Memory

s2

pszName

After copy

new block of memory and copying the contents of the original

into this new block is known as creating a deep copy (as opposed to the

default shall

OW COpY).

The following DeepStudent program includes a copy constructor that per-
forms a deep copy of the student object:

// DeepStudent - this program demonstrates how a copy

#include
#include
#include
#include

constructor that performs a deep copy
can be used to solve copy problems

<cstdio>
<cstdlib>
<iostream>
<cstring>

using namespace std;

class Student

{

protec

ted:

char* pszName;

int

public

nibD;

Student (const char* pszNewName, int nNewlD)

{

cout << "Constructing " << pszNewName << endl;
int nLength = strlen(pszNewName) + 1;

pszName = new char [nLength];

strcpy (pszName, pszNewName) ;

nID = nNewlD;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 27: Coping with the Copy Constructor 32 9

Student (const Student& s)

{
cout<<"Constructing copy of "<< s.pszName << endl;
int nLength = strlen(s.pszName) + 25;
this->pszName = new char[nLength];
strcpy (this->pszName, "Copy of ");
strcat (this->pszName, s.pszName) ;
this->nID = s.nID;

}

~Student ()
{

cout << "Destructing " << pszName << endl;
delete[] pszName;
pszName = 0;

}

// access functions
const char* getName()

{
return pszName;
}
int getID()
{

return niID;
}
Ji 5

void someOtherFn (Student s)

{
// we don't need to do anything here
}
void someFn()
{
Student student ("Adam Laskowski", 1234);
someOtherFn (student) ;
cout << "The student's name is now "
<< student.getName () << endl;
}

int main(int nNumberofArgs, char* pszArgs|[])
{

someFn () ;

// wait until user is ready before terminating program
// to allow the user to see the program results
system("PAUSE") ;

return 0;

www.it-ebooks.info

http://www.it-ebooks.info/

330 Part V: Object-Oriented Programming

3

This program is identical to its ShallowStudent cousin except for the addition
of the copy constructor student (const Students), but what a difference
it makes in the output from the program:

Constructing Adam Laskowski

Constructing copy of Adam Laskowski
Destructing Copy of Adam Laskowski

The student's name is now Adam Laskowski
Destructing Adam Laskowski

Press any key to continue .

The first message is output by the student (const char*, int) con-
structor that’s invoked when the student object is created at the begin-
ning of someFn (). The second message comes from the copy constructor
Student (const Students) that’s invoked to create the copy of student
as part of the call to SsomeOtherFn ().

This constructor first allocates a new block of heap memory for the pszName
of the copy. It then copies the string Copy of into this field before concat-
enating the student’s name in the next line.

You would normally make a true copy of the name and not tack Copy of onto
the front; I do so for instructional reasons.

The destructor that’s invoked as s goes out of scope at the end of some
OtherFn () is now clearly returning the copy of the name to the heap and
not the original string. This is verified back in someFn () when the student’s
name is intact (as you would expect). Finally, the destructor at the end of
someFn () returns the original string to the heap.

Avoiding Copies

Passing arguments by value is just one of several reasons that C++ invokes

a copy constructor to create temporary copies of your object. You may be
wondering, “Doesn’t all this creating and deleting copies of objects take
time?” The obvious answer is, “You bet!” Is there some way to avoid creating
copies?

One way is not to pass objects by value but to pass the address of the object.
There wouldn’t be a problem if someOtherFn () were declared as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 27: Coping with the Copy Constructor 33 ’

// the following does not cause a copy to be created
void someOtherFn(const Student *pS)

{
// ...whatever goes here...
}
void someFn()
{

Student student ("Adam Laskowski", 1234);
someOtherFn (&student) ;
}

This is faster because a single address is smaller than an entire Student
object, but it also avoids the need to allocate memory off the heap for hold-
ing copies of the student’s name.

You can get the same effect using reference arguments as in the following:

// the following function doesn't create a copy either
void someOtherFn (const Student& s)

{
// ...whatever you want to do...
}
void someFn()
{
Student student ("Adam Laskowski", 1234);
someOtherFn (student) ;
}

See Chapter 23 if you don’t remember about referential arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Part VI
Advanced Strokes

The Sth Wave By Rich Tennant
CRATTENNANT

“Why, of course. T’d be very interested in seeing this
new milestone in the project.”

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

ere you pick up a few loose ends that are n