The Definitive Guide

O’REILLY® | 'YAHOO! PRESS Tom White

Programming Languages/Hadoop

Hadoop: The Definitive Guide

How can you unleash the power of your massive dataset? With
this comprehensive resource, you'll learn how to use Apache
Hadoop to build and maintain reliable, scalable, distributed
systems. Ideal for programmers looking to analyze datasets of
any size, and administrators who want to set up and run Hadoop
clusters, this revised edition covers recent changes to Hadoop—
including features such as Hive, Sqoop, and Avro. It also provides
illuminating case studies that demonstrate how Hadoop is used to
solve specific problems.

B Store large datasets with the Hadoop Distributed File
System (HDFS), then run distributed computations with
MapReduce

B Use Hadoop's data and I/0 building blocks for
compression, data integrity, serialization, and persistence

m Discover common pitfalls and advanced features for
writing real-world MapReduce programs

B Design, build, and administer a dedicated Hadoop cluster,
or run Hadoop in the cloud

B Use Pig, a high-level query language for large-scale data
processing

B Analyze datasets with Hive, Hadoop's data warehousing
system

B Take advantage of HBase, the database for structured and
semi-structured data

B Use ZooKeeper, the toolkit for building distributed systems

Previous programming experience is recommended.

Strata

Making Data Work

Strata is the emerging ecosystem of people,
tools, and technologies that turn big data
into smart decisions. Find information and
resources at oreilly.com/data.

“ Now you have the oppor-
tunity to learn about
Hadoop from a master—
not only of the technology,
but also of common sense
andplain talk.”

—Doug Cutting, Cloudera

Tom White has been an
Apache Hadoop committer
since 2007. He is a member
of the Apache Software
Foundation and an engineer
at Cloudera. Tom has written
for oreilly.com, java.net, and
IBM’s developerWorks, and
speaks at industry conferences.

Cloudera

Cloudera is a leading provider
of Hadoop-based software and
services. Cloudera’s Distribution
for Hadoop (CDH) is a compre-
hensive Apache Hadoop-based
data management platform
and Cloudera Enterprise
includes the tools, platform,
and support necessary to use
Hadoop in production.

O’REILLY"

oreilly.com

US $49.99 CAN $57.99
ISBN: 978-1-449-38973-4

i-) Free online edition

Sa fa r ., for 45 days with purchase of

Books Online this book. Details on last page.

54999
T

9 '78144973897

O’REILLY®

Strata

Learn how to turn
Making Data Work data into dECiSionS.

From startups to the Fortune 500,
smart companies are betting on
data-driven insight, seizing the
opportunities that are emerging
from the convergence of four
powerful trends:

New methods of collecting, managing, and analyzing data

Cloud computing that offers inexpensive storage and flexible,
on-demand computing power for massive data sets

Visualization techniques that turn complex data into images
that tell a compelling story

Tools that make the power of data available to anyone
Get control over big data and turn it into insight with
O'Reilly’s Strata offerings. Find the inspiration and

information to create new products or revive existing ones,
understand customer behavior, and get the data edge.

O'REILLY

Visit oreilly.com/data to learn more.
\ /|

©2011 O'Reilly Media, Inc. O'Reilly logo is a registered trademark of O'Reilly Media, Inc.

SECOND EDITION

Hadoop: The Definitive Guide

Tom White
foreword by Doug Cutting

O’REILLY*

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Hadoop: The Definitive Guide, Second Edition
by Tom White

Copyright © 2011 Tom White. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Jay Book Services
Production Editor: Adam Zaremba Cover Designer: Karen Montgomery
Proofreader: Diane Il Grande Interior Designer: David Futato

lllustrator: Robert Romano

Printing History:
June 2009: First Edition.
October 2010: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Hadoop: The Definitive Guide, the image of an African elephant, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38973-4
[LSI] [2011-4-1]
1303498034

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

For Eliane, Emilia, and Lottie

Table of Contents

Forewordoooiii Xv
Preface ... Xvii
1. MeetHadoop ...cvvviniiiiiiiiii ittt it iieietieieneenrneenanans 1
Data! 1
Data Storage and Analysis 3
Comparison with Other Systems 4
RDBMS 4

Grid Computing 6
Volunteer Computing 8

A Brief History of Hadoop 9
Apache Hadoop and the Hadoop Ecosystem 12

2. MapRedUCe . ..oviiiii ittt i i i it it e e e 15
A Weather Dataset 15
Data Format 15
Analyzing the Data with Unix Tools 17
Analyzing the Data with Hadoop 18
Map and Reduce 18

Java MapReduce 20
Scaling Out 27
Data Flow 28
Combiner Functions 30
Running a Distributed MapReduce Job 33
Hadoop Streaming 33
Ruby 33
Python 36
Hadoop Pipes 37
Compiling and Running 38

3. The Hadoop Distributed Filesystemcovviiiiiiiiiiiiiiiinnnn... 41

The Design of HDFS 41
HDFEFS Concepts 43
Blocks 43
Namenodes and Datanodes 44
The Command-Line Interface 45
Basic Filesystem Operations 46
Hadoop Filesystems 47
Interfaces 49
The Java Interface 51
Reading Data from a Hadoop URL 51
Reading Data Using the FileSystem API 52
Writing Data 55
Directories 57
Querying the Filesystem 57
Deleting Data 62
Data Flow 62
Anatomy of a File Read 62
Anatomy of a File Write 65
Coherency Model 68
Parallel Copying with distcp 70
Keeping an HDFS Cluster Balanced 71
Hadoop Archives 71
Using Hadoop Archives 72
Limitations 73

L 1 T 1410 T 75
Data Integrity 75
Data Integrity in HDFS 75
LocalFileSystem 76
ChecksumFileSystem 77
Compression 77
Codecs 78
Compression and Input Splits 83
Using Compression in MapReduce 84
Serialization 86
The Writable Interface 87
Writable Classes 89
Implementing a Custom Writable 96
Serialization Frameworks 101
Avro 103
File-Based Data Structures 116
SequenceFile 116

vi | Table of Contents

MapFile 123

5. Developing a MapReduce Applicationccovviiiiiiiniiiinnnn.. 129
The Configuration API 130
Combining Resources 131
Variable Expansion 132
Configuring the Development Environment 132
Managing Configuration 132
GenericOptionsParser, Tool, and ToolRunner 135
Writing a Unit Test 138
Mapper 138
Reducer 140
Running Locally on Test Data 141
Running a Job in a Local Job Runner 141
Testing the Driver 145
Running on a Cluster 146
Packaging 146
Launching a Job 146
The MapReduce Web Ul 148
Retrieving the Results 151
Debugging a Job 153
Using a Remote Debugger 158
Tuning a Job 160
Profiling Tasks 160
MapReduce Workflows 163
Decomposing a Problem into MapReduce Jobs 163
Running Dependent Jobs 165

6. HowMapReduce Worksccoviriiiiiiiiiiiiiiiiii i ieeaenns 167
Anatomy of a MapReduce Job Run 167
Job Submission 167
Job Initialization 169
Task Assignment 169
Task Execution 170
Progress and Status Updates 170
Job Completion 172
Failures 173
Task Failure 173
Tasktracker Failure 175
Jobtracker Failure 175
Job Scheduling 175
The Fair Scheduler 176
The Capacity Scheduler 177

Table of Contents | vii

Shuffle and Sort
The Map Side
The Reduce Side
Configuration Tuning
Task Execution
Speculative Execution
Task JVM Reuse
Skipping Bad Records
The Task Execution Environment

MapReduce Typesand Formatscovvueen.

MapReduce Types

The Default MapReduce Job
Input Formats

Input Splits and Records

Text Input

Binary Input

Multiple Inputs

Database Input (and Output)
Output Formats

Text Output

Binary Output

Multiple Outputs

Lazy Output

Database Output

MapReduce Featurescccvviiiiiiiiiinnnnt.

Counters
Built-in Counters
User-Defined Java Counters
User-Defined Streaming Counters
Sorting
Preparation
Partial Sort
Total Sort
Secondary Sort
Joins
Map-Side Joins
Reduce-Side Joins
Side Data Distribution
Using the Job Configuration
Distributed Cache
MapReduce Library Classes

ooooooooooooooooo

ooooooooooooooooo

177
177
179
180
183
183
184
185
186

189
189
191
198
198
209
213
214
215
215
216
216
217
224
224

225
225
225
227
232
232
232
233
237
241
247
247
249
252
252
253
257

viii | Table of Contents

10.

1.

Setting UpaHadoop Clustercovviiiiniiiiiiiiiiiiiinineenennnn,
Cluster Specification
Network Topology
Cluster Setup and Installation
Installing Java
Creating a Hadoop User
Installing Hadoop
Testing the Installation
SSH Configuration
Hadoop Configuration
Configuration Management
Environment Settings
Important Hadoop Daemon Properties
Hadoop Daemon Addresses and Ports
Other Hadoop Properties
User Account Creation
Security
Kerberos and Hadoop
Delegation Tokens
Other Security Enhancements
Benchmarking a Hadoop Cluster
Hadoop Benchmarks
User Jobs
Hadoop in the Cloud
Hadoop on Amazon EC2

Administering Hadoopc.ciiiiiiiiiiiii it
HDES
Persistent Data Structures
Safe Mode
Audit Logging
Tools
Monitoring
Logging
Metrics
Java Management Extensions
Maintenance
Routine Administration Procedures
Commissioning and Decommissioning Nodes
Upgrades

Installing and Running Pig

259
261
263
264
264
264
265
265
266
267
269
273
278
279
280
281
282
284
285
286
287
289
289
290

293
293
293
298
300
300
305
305
306
309
312
312
313
316

321
322

Table of Contents

| ix

Execution Types 322

Running Pig Programs 324
Grunt 324
Pig Latin Editors 325
An Example 325
Generating Examples 327
Comparison with Databases 328
Pig Latin 330
Structure 330
Statements 331
Expressions 335
Types 336
Schemas 338
Functions 342
User-Defined Functions 343
A Filter UDF 343
An Eval UDF 347

A Load UDF 348
Data Processing Operators 351
Loading and Storing Data 351
Filtering Data 352
Grouping and Joining Data 354
Sorting Data 359
Combining and Splitting Data 360
Pig in Practice 361
Parallelism 361
Parameter Substitution 362
12 Hive o 365
Installing Hive 366
The Hive Shell 367
An Example 368
Running Hive 369
Configuring Hive 369
Hive Services 371
The Metastore 373
Comparison with Traditional Databases 375
Schema on Read Versus Schema on Write 376
Updates, Transactions, and Indexes 376
HiveQL 377
Data Types 378
Operators and Functions 380
Tables 381

X | Table of Contents

13.

Managed Tables and External Tables

Partitions and Buckets
Storage Formats
Importing Data
Altering Tables
Dropping Tables
Querying Data
Sorting and Aggregating
MapReduce Scripts
Joins
Subqueries
Views
User-Detined Functions
Writing a UDF
Writing a UDAF

HBasics
Backdrop
Concepts
Whirlwind Tour of the Data Model
Implementation
Installation
Test Drive
Clients
Java
Avro, REST, and Thrift
Example
Schemas
Loading Data
Web Queries
HBase Versus RDBMS
Successful Service
HBase
Use Case: HBase at Streamy.com
Praxis
Versions
HDEFES
Ul
Metrics
Schema Design
Counters
Bulk Load

381
383
387
392
394
395
395
395
396
397
400
401
402
403
405

....................... an

411
412
412
412
413
416
417
419
419
422
423
424
425
428
431
432
433
433
435
435
436
437
437
438
438
439

Table of Contents | xi

B T (T
Installing and Running ZooKeeper
An Example
Group Membership in ZooKeeper
Creating the Group
Joining a Group
Listing Members in a Group
Deleting a Group
The ZooKeeper Service
Data Model
Operations
Implementation
Consistency
Sessions
States
Building Applications with ZooKeeper
A Configuration Service
The Resilient ZooKeeper Application
A Lock Service
More Distributed Data Structures and Protocols
ZooKeeper in Production
Resilience and Performance
Configuration

TR 11T
Getting Sqoop
A Sample Import
Generated Code
Additional Serialization Systems
Database Imports: A Deeper Look
Controlling the Import
Imports and Consistency
Direct-mode Imports
Working with Imported Data
Imported Data and Hive
Importing Large Objects
Performing an Export
Exports: A Deeper Look
Exports and Transactionality
Exports and SequenceFiles

16. QaseStudiesoiiiiiiiiiiiii
Hadoop Usage at Last.fm

442
443
444
444
447
448
450
451
451
453
457
458
460
462
463
463
466
470
472
473
473
474

477
477
479
482
482
483
485
485
485
486
487
489
491
493
494
494

497
497

xii | Table of Contents

A.

B.

C

Last.tm: The Social Music Revolution
Hadoop at Last.fm
Generating Charts with Hadoop
The Track Statistics Program
Summary
Hadoop and Hive at Facebook
Introduction
Hadoop at Facebook
Hypothetical Use Case Studies
Hive
Problems and Future Work
Nutch Search Engine
Background
Data Structures
Selected Examples of Hadoop Data Processing in Nutch
Summary
Log Processing at Rackspace
Requirements/The Problem
Brief History
Choosing Hadoop
Collection and Storage
MapReduce for Logs
Cascading
Fields, Tuples, and Pipes
Operations
Taps, Schemes, and Flows
Cascading in Practice
Flexibility
Hadoop and Cascading at ShareThis
Summary
TeraByte Sort on Apache Hadoop
Using Pig and Wukong to Explore Billion-edge Network Graphs
Measuring Community
Everybody’s Talkin” at Me: The Twitter Reply Graph
Symmetric Links
Community Extraction

Installing Apache Hadoopccovvviiiiiiiiiiiii ittt
Cloudera’s Distribution for Hadoopc.ccoviiiiiiiiiininnt,

Preparing the NC(DCWeatherDatacovvvviiiiniinann,

497
497
498
499
506
506
506
506
509
512
516
517
517
518
521
530
531
531
532
532
532
533
539
540
542
544
545
548
549
552
553
556
558
558
561
562

Table of Contents | xiii

xiv | Table of Contents

Foreword

Hadoop got its start in Nutch. A few of us were attempting to build an open source
web search engine and having trouble managing computations running on even a
handful of computers. Once Google published its GFS and MapReduce papers, the
route became clear. They’d devised systems to solve precisely the problems we were
having with Nutch. So we started, two of us, half-time, to try to re-create these systems
as a part of Nutch.

We managed to get Nutch limping along on 20 machines, but it soon became clear that
to handle the Web’s massive scale, we’d need to run it on thousands of machines and,
moreover, that the job was bigger than two half-time developers could handle.

Around that time, Yahoo! got interested, and quickly put together a team that I joined.
We split off the distributed computing part of Nutch, naming it Hadoop. With the help
of Yahoo!, Hadoop soon grew into a technology that could truly scale to the Web.

In 2006, Tom White started contributing to Hadoop. I already knew Tom through an
excellent article he’d written about Nutch, so I knew he could present complex ideas
in clear prose. I soon learned that he could also develop software that was as pleasant
to read as his prose.

From the beginning, Tom’s contributions to Hadoop showed his concern for users and
for the project. Unlike most open source contributors, Tom is not primarily interested
in tweaking the system to better meet his own needs, but rather in making it easier for
anyone to use.

Initially, Tom specialized in making Hadoop run well on Amazon’s EC2 and S3 serv-
ices. Then he moved on to tackle a wide variety of problems, including improving the
MapReduce APIs, enhancing the website, and devising an object serialization frame-
work. In all cases, Tom presented his ideas precisely. In short order, Tom earned the
role of Hadoop committer and soon thereafter became a member of the Hadoop Project
Management Committee.

Tom is now a respected senior member of the Hadoop developer community. Though
he’s an expert in many technical corners of the project, his specialty is making Hadoop
easier to use and understand.

XV

Given this, I was very pleased when I learned that Tom intended to write a book about
Hadoop. Who could be better qualified? Now you have the opportunity to learn about
Hadoop from a master—not only of the technology, but also of common sense and
plain talk.

—Doug Cutting
Shed in the Yard, California

xvi | Foreword

Preface

Martin Gardner, the mathematics and science writer, once said in an interview:

Beyond calculus, I am lost. That was the secret of my column’s success. It took me so
long to understand what I was writing about that I knew how to write in a way most
readers would understand.”

In many ways, this is how I feel about Hadoop. Its inner workings are complex, resting
as they do on a mixture of distributed systems theory, practical engineering, and com-
mon sense. And to the uninitiated, Hadoop can appear alien.

But it doesn’t need to be like this. Stripped to its core, the tools that Hadoop provides
for building distributed systems—for data storage, data analysis, and coordination—
are simple. If there’s a common theme, it is about raising the level of abstraction—to
create building blocks for programmers who just happen to have lots of data to store,
or lots of data to analyze, or lots of machines to coordinate, and who don’t have the
time, the skill, or the inclination to become distributed systems experts to build the
infrastructure to handle it.

With such a simple and generally applicable feature set, it seemed obvious to me when
[started using it that Hadoop deserved to be widely used. However, at the time (in
early 2006), setting up, configuring, and writing programs to use Hadoop was an art.
Things have certainly improved since then: there is more documentation, there are
more examples, and there are thriving mailing lists to go to when you have questions.
And yet the biggest hurdle for newcomers is understanding what this technology is
capable of, where it excels, and how to use it. That is why I wrote this book.

The Apache Hadoop community has come a long way. Over the course of three years,
the Hadoop project has blossomed and spun off half a dozen subprojects. In this time,
the software has made great leaps in performance, reliability, scalability, and manage-
ability. To gain even wider adoption, however, I believe we need to make Hadoop even
easier to use. This will involve writing more tools; integrating with more systems; and

* “The science of fun,” Alex Bellos, The Guardian, May 31, 2008, http://www.guardian.co.uk/science/
2008/may/31/maths.science.

Xvii

http://www.guardian.co.uk/science/2008/may/31/maths.science
http://www.guardian.co.uk/science/2008/may/31/maths.science

writing new, improved APIs. I'm looking forward to being a part of this, and I hope
this book will encourage and enable others to do so, too.

Administrative Notes

During discussion of a particular Java class in the text, I often omit its package name,
to reduce clutter. If you need to know which package a class is in, you can easily look
it up in Hadoop’s Java API documentation for the relevant subproject, linked to from
the Apache Hadoop home page at http://hadoop.apache.org/. Or if you’re using an IDE,
it can help using its auto-complete mechanism.

Similarly, although it deviates from usual style guidelines, program listings that import
multiple classes from the same package may use the asterisk wildcard character to save
space (for example: import org.apache.hadoop.io.*).

The sample programs in this book are available for download from the website that
accompanies this book: http://www.hadoopbook.com/. You will also find instructions
there for obtaining the datasets that are used in examples throughout the book, as well
as further notes for running the programs in the book, and links to updates, additional
resources, and my blog.

What's in This Book?

The rest of this book is organized as follows. Chapter 1 emphasizes the need for Hadoop
and sketches the history of the project. Chapter 2 provides an introduction to
MapReduce. Chapter 3 looks at Hadoop filesystems, and in particular HDFS, in depth.
Chapter 4 covers the fundamentals of I/O in Hadoop: data integrity, compression,
serialization, and file-based data structures.

The next four chapters cover MapReduce in depth. Chapter 5 goes through the practical
steps needed to develop a MapReduce application. Chapter 6 looks at how MapReduce
is implemented in Hadoop, from the point of view of a user. Chapter 7 is about the
MapReduce programming model, and the various data formats that MapReduce can
work with. Chapter 8 is on advanced MapReduce topics, including sorting and joining
data.

Chapters 9 and 10 are for Hadoop administrators, and describe how to set up and
maintain a Hadoop cluster running HDFS and MapReduce.

Later chapters are dedicated to projects that build on Hadoop or are related to it.
Chapters 11 and 12 present Pig and Hive, which are analytics platforms built on HDFS
and MapReduce, whereas Chapters 13, 14, and 15 cover HBase, ZooKeeper, and
Sqoop, respectively.

Finally, Chapter 16 is a collection of case studies contributed by members of the Apache
Hadoop community.

xviii | Preface

http://hadoop.apache.org/
http://www.hadoopbook.com/

What's New in the Second Edition?

The second edition has two new chapters on Hive and Sqoop (Chapters 12 and 15), a
new section covering Avro (in Chapter 4), an introduction to the new security features
in Hadoop (in Chapter 9), and a new case study on analyzing massive network graphs
using Hadoop (in Chapter 16).

This edition continues to describe the 0.20 release series of Apache Hadoop, since this
was the latest stable release at the time of writing. New features from later releases are
occasionally mentioned in the text, however, with reference to the version that they
were introduced in.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W
\
o This icon signifies a tip, suggestion, or general note.
LA
'\‘t“ o
15N

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

Preface | xix

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop: The Definitive Guide, Second
Edition, by Tom White. Copyright 2011 Tom White, 978-1-449-38973-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Saf Safari Books Online is an on-demand digital library that lets you easily
ararl ch over 7,500 technology and creative reference books and videos to

find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920010388/
The author also has a site for this book at:

http://www.hadoopbook.com/

xx | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/0636920010388/
http://www.hadoopbook.com/

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments

[have relied on many people, both directly and indirectly, in writing this book. I would
like to thank the Hadoop community, from whom I have learned, and continue to learn,
a great deal.

In particular, I would like to thank Michael Stack and Jonathan Gray for writing the
chapter on HBase. Also thanks go to Adrian Woodhead, Marc de Palol, Joydeep Sen
Sarma, Ashish Thusoo, Andrzej Biatecki, Stu Hood, Chris K. Wensel, and Owen
O’Malley for contributing case studies for Chapter 16.

Iwould like to thank the following reviewers who contributed many helpful suggestions
and improvements to my drafts: Raghu Angadi, Matt Biddulph, Christophe Bisciglia,
Ryan Cox, Devaraj Das, Alex Dorman, Chris Douglas, Alan Gates, Lars George, Patrick
Hunt, Aaron Kimball, Peter Krey, Hairong Kuang, Simon Maxen, Olga Natkovich,
Benjamin Reed, Konstantin Shvachko, Allen Wittenauer, Matei Zaharia, and Philip
Zeyliger. Ajay Anand kept the review process flowing smoothly. Philip (“flip”) Kromer
kindly helped me with the NCDC weather dataset featured in the examples in this book.
Special thanks to Owen O’Malley and Arun C. Murthy for explaining the intricacies of
the MapReduce shuffle to me. Any errors that remain are, of course, to be laid at my
door.

For the second edition, I owe a debt of gratitude for the detailed review and feedback
from Jeff Bean, Doug Cutting, Glynn Durham, Alan Gates, Jeff Hammerbacher, Alex
Kozlov, Ken Krugler, Jimmy Lin, Todd Lipcon, Sarah Sproehnle, Vinithra Varadhara-
jan, and Ian Wrigley, as well as all the readers who submitted errata for the first edition.
I would also like to thank Aaron Kimball for contributing the chapter on Sqoop, and
Philip (“flip”) Kromer for the case study on graph processing.

[am particularly grateful to Doug Cutting for his encouragement, support, and friend-
ship, and for contributing the foreword.

Thanks also go to the many others with whom I have had conversations or email
discussions over the course of writing the book.

Halfway through writing this book, I joined Cloudera, and I want to thank my
colleagues for being incredibly supportive in allowing me the time to write, and to get
it finished promptly.

Preface | xxi

mailto:bookquestions@oreilly.com
http://www.oreilly.com

[am grateful to my editor, Mike Loukides, and his colleagues at O’Reilly for their help
in the preparation of this book. Mike has been there throughout to answer my ques-
tions, to read my first drafts, and to keep me on schedule.

Finally, the writing of this book has been a great deal of work, and I couldn’t have done
it without the constant support of my family. My wife, Eliane, not only kept the home
going, but also stepped in to help review, edit, and chase case studies. My daughters,
Emilia and Lottie, have been very understanding, and I'm looking forward to spending
lots more time with all of them.

xxii | Preface

CHAPTER1
Meet Hadoop

In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log,
they didn’t try to grow a larger ox. We shouldn’t be trying for bigger computers, but for
more systems of computers.

—Grace Hopper

Data!

We live in the data age. It’s not easy to measure the total volume of data stored elec-
tronically, but an IDC estimate put the size of the “digital universe” at 0.18 zettabytes
in 2006, and is forecasting a tenfold growth by 2011 to 1.8 zettabytes.” A zettabyte is
10%! bytes, or equivalently one thousand exabytes, one million petabytes, or one billion
terabytes. That’s roughly the same order of magnitude as one disk drive for every person
in the world.

This flood of data is coming from many sources. Consider the following:*
* The New York Stock Exchange generates about one terabyte of new trade data per
day.
* Facebook hosts approximately 10 billion photos, taking up one petabyte of storage.
* Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.

* The Internet Archive stores around 2 petabytes of data, and is growing at a rate of
20 terabytes per month.

* The Large Hadron Collider near Geneva, Switzerland, will produce about 15
petabytes of data per year.

*

From Gantz et al., “The Diverse and Exploding Digital Universe,” March 2008 (http://www.emc.com/
collateral/analyst-reports/diverse-exploding-digital-universe.pdf).

T http://lwww.intelligententerprise.com/showArticle.jhtml?articleID=207800705, http://mashable.com/2008/10/
15/facebook-10-billion-photos/, http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret
+Data+Center.aspx, and http://www.archive.org/about/faqs.php, http://www.interactions.org/cms/?pid=
1027032.

http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.intelligententerprise.com/showArticle.jhtml?articleID=207800705
http://mashable.com/2008/10/15/facebook-10-billion-photos/
http://mashable.com/2008/10/15/facebook-10-billion-photos/
http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret+Data+Center.aspx
http://blog.familytreemagazine.com/insider/Inside+Ancestrycoms+TopSecret+Data+Center.aspx
http://www.archive.org/about/faqs.php
http://www.interactions.org/cms/?pid=1027032
http://www.interactions.org/cms/?pid=1027032

So there’s a lot of data out there. But you are probably wondering how it affects you.
Most of the data is locked up in the largest web properties (like search engines), or
scientific or financial institutions, isn’t it? Does the advent of “Big Data,” as it is being
called, affect smaller organizations or individuals?

[argue that it does. Take photos, for example. My wife’s grandfather was an avid
photographer, and took photographs throughout his adult life. His entire corpus of
medium format, slide, and 35mm film, when scanned in at high-resolution, occupies
around 10 gigabytes. Compare this to the digital photos that my family took in 2008,
which take up about 5 gigabytes of space. My family is producing photographic data
at 35 times the rate my wife’s grandfather’s did, and the rate is increasing every year as
it becomes easier to take more and more photos.

More generally, the digital streams that individuals are producing are growing apace.
Microsoft Research’s MyLifeBits project gives a glimpse of archiving of personal infor-
mation that may become commonplace in the near future. MyLifeBits was an experi-
ment where an individual’s interactions—phone calls, emails, documents—were cap-
tured electronically and stored for later access. The data gathered included a photo
taken every minute, which resulted in an overall data volume of one gigabyte a month.
When storage costs come down enough to make it feasible to store continuous audio
and video, the data volume for a future MyLifeBits service will be many times that.

The trend is for every individual’s data footprint to grow, but perhaps more important,
the amount of data generated by machines will be even greater than that generated by
people. Machine logs, RFID readers, sensor networks, vehicle GPS traces, retail
transactions—all of these contribute to the growing mountain of data.

The volume of data being made publicly available increases every year, too. Organiza-
tions no longer have to merely manage their own data: success in the future will be
dictated to a large extent by their ability to extract value from other organizations’ data.

Initiatives such as Public Data Sets on Amazon Web Services, Infochimps.org, and
theinfo.org exist to foster the “information commons,” where data can be freely (or in
the case of AWS, for a modest price) shared for anyone to download and analyze.
Mashups between different information sources make for unexpected and hitherto
unimaginable applications.

Take, for example, the Astrometry.net project, which watches the Astrometry group
on Flickr for new photos of the night sky. It analyzes each image and identifies which
part of the sky it is from, as well as any interesting celestial bodies, such as stars or
galaxies. This project shows the kind of things that are possible when data (in this case,
tagged photographic images) is made available and used for something (image analysis)
that was not anticipated by the creator.

It has been said that “More data usually beats better algorithms,” which is to say that
for some problems (such as recommending movies or music based on past preferences),

2 | Chapter1: Meet Hadoop

http://research.microsoft.com/en-us/projects/mylifebits/default.aspx
http://aws.amazon.com/publicdatasets/
http://infochimps.org/
http://theinfo.org/
http://astrometry.net/

however fiendish your algorithms are, they can often be beaten simply by having more
data (and a less sophisticated algorithm).*

The good news is that Big Data is here. The bad news is that we are struggling to store
and analyze it.

Data Storage and Analysis

The problem is simple: while the storage capacities of hard drives have increased mas-
sively over the years, access speeds—the rate at which data can be read from drives—
have not kept up. One typical drive from 1990 could store 1,370 MB of data and had
a transfer speed of 4.4 MB/s,8 so you could read all the data from a full drive in around
five minutes. Over 20 years later, one terabyte drives are the norm, but the transfer

speed is around 100 MB/s, so it takes more than two and a half hours to read all the
data off the disk.

This is a long time to read all data on a single drive—and writing is even slower. The
obvious way to reduce the time is to read from multiple disks at once. Imagine if we
had 100 drives, each holding one hundredth of the data. Working in parallel, we could
read the data in under two minutes.

Only using one hundredth of a disk may seem wasteful. But we can store one hundred
datasets, each of which is one terabyte, and provide shared access to them. We can
imagine that the users of such a system would be happy to share access in return for
shorter analysis times, and, statistically, that their analysis jobs would be likely to be
spread over time, so they wouldn’t interfere with each other too much.

There’s more to being able to read and write data in parallel to or from multiple disks,
though.

The first problem to solve is hardware failure: as soon as you start using many pieces
of hardware, the chance that one will fail is fairly high. A common way of avoiding data
loss is through replication: redundant copies of the data are kept by the system so that
in the event of failure, there is another copy available. This is how RAID works, for
instance, although Hadoop’s filesystem, the Hadoop Distributed Filesystem (HDFS),
takes a slightly different approach, as you shall see later.

The second problem is that most analysis tasks need to be able to combine the data in
some way; data read from one disk may need to be combined with the data from any
of the other 99 disks. Various distributed systems allow data to be combined from
multiple sources, but doing this correctly is notoriously challenging. MapReduce pro-
vides a programming model that abstracts the problem from disk reads and writes,

1 The quote is from Anand Rajaraman writing about the Netflix Challenge (http://anand.typepad.com/
datawocky/2008/03/more-data-usual.html). Alon Halevy, Peter Norvig, and Fernando Pereira make the same
point in “The Unreasonable Effectiveness of Data,” IEEE Intelligent Systems, March/April 2009.

§ These specifications are for the Seagate ST-41600n.

Data Storage and Analysis | 3

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

transforming it into a computation over sets of keys and values. We will look at the
details of this model in later chapters, but the important point for the present discussion
is that there are two parts to the computation, the map and the reduce, and it’s the
interface between the two where the “mixing” occurs. Like HDFS, MapReduce has
built-in reliability.

This, in a nutshell, is what Hadoop provides: a reliable shared storage and analysis
system. The storage is provided by HDFS and analysis by MapReduce. There are other
parts to Hadoop, but these capabilities are its kernel.

Comparison with Other Systems

The approach taken by MapReduce may seem like a brute-force approach. The premise
is that the entire dataset—or at least a good portion of it—is processed for each query.
But this is its power. MapReduce is a batch query processor, and the ability to run an
ad hoc query against your whole dataset and get the results in a reasonable time is
transformative. It changes the way you think about data, and unlocks data that was
previously archived on tape or disk. It gives people the opportunity to innovate with
data. Questions that took too long to get answered before can now be answered, which
in turn leads to new questions and new insights.

For example, Mailtrust, Rackspace’s mail division, used Hadoop for processing email
logs. One ad hoc query they wrote was to find the geographic distribution of their users.
In their words:

This data was so useful that we’ve scheduled the MapReduce job to run monthly and we
will be using this data to help us decide which Rackspace data centers to place new mail
servers in as we grow.

By bringing several hundred gigabytes of data together and having the tools to analyze
it, the Rackspace engineers were able to gain an understanding of the data that they
otherwise would never have had, and, furthermore, they were able to use what they
had learned to improve the service for their customers. You can read more about how
Rackspace uses Hadoop in Chapter 16.

RDBMS

Why can’t we use databases with lots of disks to do large-scale batch analysis? Why is
MapReduce needed?

4 | Chapter1: MeetHadoop

The answer to these questions comes from another trend in disk drives: seek time is
improving more slowly than transfer rate. Seeking is the process of moving the disk’s
head to a particular place on the disk to read or write data. It characterizes the latency
of a disk operation, whereas the transfer rate corresponds to a disk’s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large
portions of the dataset than streaming through it, which operates at the transfer rate.
On the other hand, for updating a small proportion of records in a database, a tradi-
tional B-Tree (the data structure used in relational databases, which is limited by the
rate it can perform seeks) works well. For updating the majority of a database, a B-Tree
is less efficient than MapReduce, which uses Sort/Merge to rebuild the database.

In many ways, MapReduce can be seen as a complement to an RDBMS. (The differences
between the two systems are shown in Table 1-1.) MapReduce is a good fit for problems
that need to analyze the whole dataset, in a batch fashion, particularly for ad hoc anal-
ysis. An RDBMS is good for point queries or updates, where the dataset has been in-
dexed to deliver low-latency retrieval and update times of a relatively small amount of
data. MapReduce suits applications where the data is written once, and read many
times, whereas a relational database is good for datasets that are continually updated.

Table 1-1. RDBMS compared to MapReduce

Traditional RDBMS MapReduce
Datasize Gigabytes Petabytes
Access Interactive and batch Batch

Updates Read and write many times ~ Write once, read many times

Structure Static schema Dynamic schema
Integrity High Low
Scaling Nonlinear Linear

Another difference between MapReduce and an RDBMS is the amount of structure in
the datasets that they operate on. Structured data is data that is organized into entities
that have a defined format, such as XML documents or database tables that conform
to a particular predefined schema. This is the realm of the RDBMS. Semi-structured
data, on the other hand, is looser, and though there may be a schema, it is often ignored,
so it may be used only as a guide to the structure of the data: for example, a spreadsheet,
in which the structure is the grid of cells, although the cells themselves may hold any
form of data. Unstructured data does not have any particular internal structure: for
example, plain text or image data. MapReduce works well on unstructured or semi-
structured data, since it is designed to interpret the data at processing time. In other
words, the input keys and values for MapReduce are not an intrinsic property of the
data, but they are chosen by the person analyzing the data.

Comparison with Other Systems | 5

Relational data is often normalized to retain its integrity and remove redundancy.
Normalization poses problems for MapReduce, since it makes reading a record a non-
local operation, and one of the central assumptions that MapReduce makes is that it
is possible to perform (high-speed) streaming reads and writes.

A web server log is a good example of a set of records that is not normalized (for ex-
ample, the client hostnames are specified in full each time, even though the same client
may appear many times), and this is one reason that logfiles of all kinds are particularly
well-suited to analysis with MapReduce.

MapReduce is a linearly scalable programming model. The programmer writes two
functions—a map function and a reduce function—each of which defines a mapping
from one set of key-value pairs to another. These functions are oblivious to the size of
the data or the cluster that they are operating on, so they can be used unchanged for a
small dataset and for a massive one. More important, if you double the size of the input
data, a job will run twice as slow. But if you also double the size of the cluster, a job
will run as fast as the original one. This is not generally true of SQL queries.

Over time, however, the differences between relational databases and MapReduce sys-
tems are likely to blur—both as relational databases start incorporating some of the
ideas from MapReduce (such as Aster Data’s and Greenplum’s databases) and, from
the other direction, as higher-level query languages built on MapReduce (such as Pig
and Hive) make MapReduce systems more approachable to traditional database
programmers. |

Grid Computing

The High Performance Computing (HPC) and Grid Computing communities have
been doing large-scale data processing for years, using such APIs as Message Passing
Interface (MPI). Broadly, the approach in HPC is to distribute the work across a cluster
of machines, which access a shared filesystem, hosted by a SAN. This works well for
predominantly compute-intensive jobs, but becomes a problem when nodes need to
access larger data volumes (hundreds of gigabytes, the point at which MapReduce really
starts to shine), since the network bandwidth is the bottleneck and compute nodes
become idle.

[I'In January 2007, David J. DeWitt and Michael Stonebraker caused a stir by publishing “MapReduce: A
major step backwards” (http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step
-backwards), in which they criticized MapReduce for being a poor substitute for relational databases. Many
commentators argued that it was a false comparison (see, for example, Mark C. Chu-Carroll’s “Databases
are hammers; MapReduce is a screwdriver,” http://scienceblogs.com/goodmath/2008/01/databases_are
_hammers_mapreduc.php), and DeWitt and Stonebraker followed up with “MapReduce 117 (http://
databasecolumn.vertica.com/database-innovation/mapreduce-ii), where they addressed the main topics
brought up by others.

6 | Chapter1: MeetHadoop

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards
http://scienceblogs.com/goodmath/2008/01/databases_are_hammers_mapreduc.php
http://scienceblogs.com/goodmath/2008/01/databases_are_hammers_mapreduc.php
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii

MapReduce tries to collocate the data with the compute node, so data access is fast
since it is local.# This feature, known as data locality, is at the heart of MapReduce and
is the reason for its good performance. Recognizing that network bandwidth is the most
precious resource in a data center environment (it is easy to saturate network links by
copying data around), MapReduce implementations go to great lengths to conserve it
by explicitly modelling network topology. Notice that this arrangement does not pre-
clude high-CPU analyses in MapReduce.

MPI gives great control to the programmer, but requires that he or she explicitly handle
the mechanics of the data flow, exposed via low-level C routines and constructs, such
as sockets, as well as the higher-level algorithm for the analysis. MapReduce operates
only at the higher level: the programmer thinks in terms of functions of key and value
pairs, and the data flow is implicit.

Coordinating the processes in a large-scale distributed computation is a challenge. The
hardest aspect is gracefully handling partial failure—when you don’t know if a remote
process has failed or not—and still making progress with the overall computation.
MapReduce spares the programmer from having to think about failure, since the
implementation detects failed map or reduce tasks and reschedules replacements on
machines that are healthy. MapReduce is able to do this since it is a shared-nothing
architecture, meaning that tasks have no dependence on one other. (This is a slight
oversimplification, since the output from mappers is fed to the reducers, but this is
under the control of the MapReduce system; in this case, it needs to take more care
rerunning a failed reducer than rerunning a failed map, since it has to make sure it can
retrieve the necessary map outputs, and if not, regenerate them by running the relevant
maps again.) So from the programmer’s point of view, the order in which the tasks run
doesn’t matter. By contrast, MPI programs have to explicitly manage their own check-
pointing and recovery, which gives more control to the programmer, but makes them
more difficult to write.

MapReduce might sound like quite a restrictive programming model, and in a sense it
is: you are limited to key and value types that are related in specified ways, and mappers
and reducers run with very limited coordination between one another (the mappers
pass keys and values to reducers). A natural question to ask is: can you do anything
useful or nontrivial with it?

The answer is yes. MapReduce was invented by engineers at Google as a system for
building production search indexes because they found themselves solving the same
problem over and over again (and MapReduce was inspired by older ideas from the
functional programming, distributed computing, and database communities), but it
has since been used for many other applications in many other industries. Itis pleasantly
surprising to see the range of algorithms that can be expressed in MapReduce, from

#Jim Gray was an early advocate of putting the computation near the data. See “Distributed Computing
Economics,” March 2003, http://research.microsoft.com/apps/pubs/default.aspx?id=70001.

Comparison with Other Systems | 7

http://research.microsoft.com/apps/pubs/default.aspx?id=70001

image analysis, to graph-based problems, to machine learning algorithms." It can’t solve
every problem, of course, but it is a general data-processing tool.

You can see a sample of some of the applications that Hadoop has been used for in
Chapter 16.

Volunteer Computing

When people first hear about Hadoop and MapReduce, they often ask, “How is it
different from SETI@home?” SETI, the Search for Extra-Terrestrial Intelligence, runs
aproject called SETI@home in which volunteers donate CPU time from their otherwise
idle computers to analyze radio telescope data for signs of intelligent life outside earth.
SETI@home is the most well-known of many volunteer computing projects; others in-
clude the Great Internet Mersenne Prime Search (to search for large prime numbers)
and Folding@home (to understand protein folding and how it relates to disease).

Volunteer computing projects work by breaking the problem they are trying to
solve into chunks called work units, which are sent to computers around the world to
be analyzed. For example, a SETI@home work unit is about 0.35 MB of radio telescope
data, and takes hours or days to analyze on a typical home computer. When the analysis
is completed, the results are sent back to the server, and the client gets another work
unit. As a precaution to combat cheating, each work unit is sent to three different
machines and needs at least two results to agree to be accepted.

Although SETI@home may be superficially similar to MapReduce (breaking a problem
into independent pieces to be worked on in parallel), there are some significant differ-
ences. The SETI@home problem is very CPU-intensive, which makes it suitable for
running on hundreds of thousands of computers across the world,T since the time to
transfer the work unit is dwarfed by the time to run the computation on it. Volunteers
are donating CPU cycles, not bandwidth.

MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated
hardware running in a single data center with very high aggregate bandwidth inter-
connects. By contrast, SETI@home runs a perpetual computation on untrusted
machines on the Internet with highly variable connection speeds and no data locality.

* Apache Mahout (http://mahout.apache.org/) is a project to build machine learning libraries (such as
classification and clustering algorithms) that run on Hadoop.

t1In January 2008, SETI@home was reported at http://www.planetary.org/programs/projects/setiathome/
setiathome_20080115.html to be processing 300 gigabytes a day, using 320,000 computers (most of which
are not dedicated to SETI@home; they are used for other things, too).

8 | Chapter1: Meet Hadoop

http://setiathome.berkeley.edu/
http://mahout.apache.org/
http://www.planetary.org/programs/projects/setiathome/setiathome_20080115.html
http://www.planetary.org/programs/projects/setiathome/setiathome_20080115.html

A Brief History of Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used
text search library. Hadoop has its origins in Apache Nutch, an open source web search
engine, itself a part of the Lucene project.

The Origin of the Name “Hadoop”

The name Hadoop is not an acronym; it’s a made-up name. The project’s creator, Doug
Cutting, explains how the name came about:

The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and
pronounce, meaningless, and not used elsewhere: those are my naming criteria.
Kids are good at generating such. Googol is a kid’s term.

Subprojects and “contrib” modules in Hadoop also tend to have names that are unre-
lated to their function, often with an elephant or other animal theme (“Pig,” for
example). Smaller components are given more descriptive (and therefore more mun-
dane) names. This is a good principle, as it means you can generally work out what
something does from its name. For example, the jobtrackert keeps track of MapReduce
jobs.

Building a web search engine from scratch was an ambitious goal, for not only is the
software required to crawl and index websites complex to write, butitis also a challenge
to run without a dedicated operations team, since there are so many moving parts. It’s
expensive, too: Mike Cafarella and Doug Cutting estimated a system supporting a
1-billion-page index would cost around half a million dollars in hardware, with a
monthly running cost of $30,000.8 Nevertheless, they believed it was a worthy goal, as
it would open up and ultimately democratize search engine algorithms.

Nutch was started in 2002, and a working crawler and search system quickly emerged.
However, they realized that their architecture wouldn’t scale to the billions of pages on
the Web. Help was at hand with the publication of a paper in 2003 that described the
architecture of Google’s distributed filesystem, called GFS, which was being used in
production at Google.l GFS, or something like it, would solve their storage needs for
the very large files generated as a part of the web crawl and indexing process. In par-
ticular, GFS would free up time being spent on administrative tasks such as managing
storage nodes. In 2004, they set about writing an open source implementation, the
Nutch Distributed Filesystem (NDFS).

1 In this book, we use the lowercase form, “jobtracker,” to denote the entity when it’s being referred to
generally, and the CamelCase form JobTracker to denote the Java class that implements it.

§ Mike Cafarella and Doug Cutting, “Building Nutch: Open Source Search,” ACM Queue, April 2004, http://
queue.acm.org/detail.cfm?id=988408.

[I' Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” October 2003, http:
/abs.google.com/papers/gfs.html.

A Brief History of Hadoop | 9

http://queue.acm.org/detail.cfm?id=988408
http://queue.acm.org/detail.cfm?id=988408
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html

In 2004, Google published the paper that introduced MapReduce to the world.# Early
in 2005, the Nutch developers had a working MapReduce implementation in Nutch,
and by the middle of that year all the major Nutch algorithms had been ported to run
using MapReduce and NDFS.

NDFS and the MapReduce implementation in Nutch were applicable beyond the realm
of search, and in February 2006 they moved out of Nutch to form an independent
subproject of Lucene called Hadoop. At around the same time, Doug Cutting joined
Yahoo!, which provided a dedicated team and the resources to turn Hadoop into a
system that ran at web scale (see sidebar). This was demonstrated in February 2008
when Yahoo! announced that its production search index was being generated by a
10,000-core Hadoop cluster.”

In January 2008, Hadoop was made its own top-level project at Apache, confirming its
success and its diverse, active community. By this time, Hadoop was being used by
many other companies besides Yahoo!, such as Last.fm, Facebook, and the New York
Times. Some applications are covered in the case studies in Chapter 16 and on the
Hadoop wiki.

In one well-publicized feat, the New York Times used Amazon’s EC2 compute cloud
to crunch through four terabytes of scanned archives from the paper converting them
to PDFs for the Web.T The processing took less than 24 hours to run using 100 ma-
chines, and the project probably wouldn’t have been embarked on without the com-
bination of Amazon’s pay-by-the-hour model (which allowed the NYT to access a large
number of machines for a short period) and Hadoop’s easy-to-use parallel program-
ming model.

In April 2008, Hadoop broke a world record to become the fastest system to sort a
terabyte of data. Running on a 910-node cluster, Hadoop sorted one terabyte in 209
seconds (just under 3% minutes), beating the previous year’s winner of 297 seconds
(described in detail in “TeraByte Sort on Apache Hadoop” on page 553). In November
of the same year, Google reported that its MapReduce implementation sorted one ter-
abyte in 68 seconds.t As the first edition of this book was going to press (May 2009),
it was announced that a team at Yahoo! used Hadoop to sort one terabyte in 62 seconds.

#Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters ,” December
2004, http://labs.google.com/papers/mapreduce.html.

* “Yahoo! Launches World’s Largest Hadoop Production Application,” 19 February 2008, http://developer
.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html.

1 Derek Gottfrid, “Self-service, Prorated Super Computing Fun!” 1 November 2007, http://open.blogs.nytimes
.com/2007/11/01/self-service-prorated-super-computing-fun/.

1 “Sorting 1PB with MapReduce,” 21 November 2008, http://googleblog.blogspot.com/2008/11/sorting-1pb
-with-mapreduce.html.

10 | Chapter1: Meet Hadoop

http://wiki.apache.org/hadoop/PoweredBy
http://labs.google.com/papers/mapreduce.html
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://developer.yahoo.net/blogs/hadoop/2008/02/yahoo-worlds-largest-production-hadoop.html
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

Hadoop at Yahoo!

Building Internet-scale search engines requires huge amounts of data and therefore
large numbers of machines to process it. Yahoo! Search consists of four primary com-
ponents: the Crawler, which downloads pages from web servers; the WebMap, which
builds a graph of the known Web; the Indexer, which builds a reverse index to the best
pages; and the Runtime, which answers users’ queries. The WebMap is a graph that
consists of roughly 1 trillion (10'2) edges each representing a web link and 100 billion
(1011 nodes each representing distinct URLs. Creating and analyzing such a large graph
requires a large number of computers running for many days. In early 2005, the infra-
structure for the WebMap, named Dreadnaught, needed to be redesigned to scale up
to more nodes. Dreadnaught had successfully scaled from 20 to 600 nodes, but required
a complete redesign to scale out further. Dreadnaught is similar to MapReduce in many
ways, but provides more flexibility and less structure. In particular, each fragment in a
Dreadnaught job can send output to each of the fragments in the next stage of the job,
but the sort was all done in library code. In practice, most of the WebMap phases were
pairs that corresponded to MapReduce. Therefore, the WebMap applications would
not require extensive refactoring to fit into MapReduce.

Eric Baldeschwieler (Eric14) created a small team and we started designing and
prototyping a new framework written in C++ modeled after GFS and MapReduce to
replace Dreadnaught. Although the immediate need was for a new framework for
WebMap, it was clear that standardization of the batch platform across Yahoo! Search
was critical and by making the framework general enough to support other users, we
could better leverage investment in the new platform.

At the same time, we were watching Hadoop, which was part of Nutch, and its progress.
In January 2006, Yahoo! hired Doug Cutting, and a month later we decided to abandon
our prototype and adopt Hadoop. The advantage of Hadoop over our prototype and
design was that it was already working with a real application (Nutch) on 20 nodes.
That allowed us to bring up a research cluster two months later and start helping real
customers use the new framework much sooner than we could have otherwise. Another
advantage, of course, was that since Hadoop was already open source, it was easier
(although far from easy!) to get permission from Yahoo!’s legal department to work in
open source. So we set up a 200-node cluster for the researchers in early 2006 and put
the WebMap conversion plans on hold while we supported and improved Hadoop for
the research users.

Here’s a quick timeline of how things have progressed:
* 2004—Initial versions of what is now Hadoop Distributed Filesystem and Map-
Reduce implemented by Doug Cutting and Mike Cafarella.

¢ December 2005—Nutch ported to the new framework. Hadoop runs reliably on
20 nodes.

* January 2006—Doug Cutting joins Yahoo!.

* February 2006—Apache Hadoop project officially started to support the stand-
alone development of MapReduce and HDFS.

A Brief History of Hadoop | 11

* February 2006—Adoption of Hadoop by Yahoo! Grid team.
* April 2006—Sort benchmark (10 GB/node) run on 188 nodes in 47.9 hours.
* May 2006—Yahoo! set up a Hadoop research cluster—300 nodes.

* May 2006—Sort benchmark run on 500 nodes in 42 hours (better hardware than
April benchmark).

¢ QOctober 2006—Research cluster reaches 600 nodes.

¢ December 2006—Sort benchmark run on 20 nodes in 1.8 hours, 100 nodes in 3.3
hours, 500 nodes in 5.2 hours, 900 nodes in 7.8 hours.

* January 2007—Research cluster reaches 900 nodes.

e April 2007—Research clusters—2 clusters of 1000 nodes.

* April 2008—Won the 1 terabyte sort benchmark in 209 seconds on 900 nodes.

* October 2008—Loading 10 terabytes of data per day on to research clusters.

e March 2009—17 clusters with a total of 24,000 nodes.

* April 2009—Won the minute sort by sorting 500 GB in 59 seconds (on 1,400
nodes) and the 100 terabyte sort in 173 minutes (on 3,400 nodes).

—Owen O’Malley

Apache Hadoop and the Hadoop Ecosystem

Although Hadoop is best known for MapReduce and its distributed filesystem (HDFS,
renamed from NDFS), the term is also used for a family of related projects that fall
under the umbrella of infrastructure for distributed computing and large-scale data
processing.

Most of the core projects covered in this book are hosted by the Apache Software
Foundation, which provides support for acommunity of open source software projects,
including the original HTTP Server from which it gets its name. As the Hadoop eco-
system grows, more projects are appearing, not necessarily hosted at Apache, which
provide complementary services to Hadoop, or build on the core to add higher-level
abstractions.

The Hadoop projects that are covered in this book are described briefly here:

Common
A set of components and interfaces for distributed filesystems and general /0
(serialization, Java RPC, persistent data structures).

Avro
A serialization system for efficient, cross-language RPC, and persistent data
storage.

MapReduce

A distributed data processing model and execution environment that runs on large
clusters of commodity machines.

12 | Chapter1: Meet Hadoop

http://hadoop.apache.org/
http://hadoop.apache.org/

HDEFS
A distributed filesystem that runs on large clusters of commodity machines.

Pig
A data flow language and execution environment for exploring very large datasets.
Pig runs on HDFS and MapReduce clusters.

Hive
A distributed data warehouse. Hive manages data stored in HDFS and provides a
query language based on SQL (and which is translated by the runtime engine to
MapReduce jobs) for querying the data.

HBase
A distributed, column-oriented database. HBase uses HDFS for its underlying
storage, and supports both batch-style computations using MapReduce and point
queries (random reads).

ZooKeeper
A distributed, highly available coordination service. ZooKeeper provides primitives
such as distributed locks that can be used for building distributed applications.
Sqoop
A tool for efficiently moving data between relational databases and HDFS.

Apache Hadoop and the Hadoop Ecosystem | 13

CHAPTER 2
MapReduce

MapReduce is a programming model for data processing. The model is simple, yet not
too simple to express useful programs in. Hadoop can run MapReduce programs writ-
ten in various languages; in this chapter, we shall look at the same program expressed
in Java, Ruby, Python, and C++. Most important, MapReduce programs are inherently
parallel, thus putting very large-scale data analysis into the hands of anyone with
enough machines at their disposal. MapReduce comes into its own for large datasets,
so let’s start by looking at one.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors
collecting data every hour at many locations across the globe gather a large volume of
log data, which is a good candidate for analysis with MapReduce, since it is semi-
structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center (NCDC, http://www
.ncde.noaa.gov/). The data is stored using a line-oriented ASCII format, in which each
line is a record. The format supports a rich set of meteorological elements, many of
which are optional or with variable data lengths. For simplicity, we shall focus on the
basic elements, such as temperature, which are always present and are of fixed width.

Example 2-1 shows a sample line with some of the salient fields highlighted. The line
has been split into multiple lines to show each field: in the real file, fields are packed
into one line with no delimiters.

15

http://www.ncdc.noaa.gov/
http://www.ncdc.noaa.gov/

Example 2-1. Format of a National Climate Data Center record

0057
332130
99999
19500101
0300

4
+51317
+028783
FM-12
+0171
99999
V020
320

1

N

0072

1
00450
1

C

N
010000
1

N

9
-0128
1
-0139
1
10268
1

Data files are organized by date and weather station. There is a directory for each year
from 1901 to 2001, each containing a gzipped file for each weather station with its
readings for that year. For example, here are the first entries for 1990:

H H H R

#

#

oM o o O

USAF weather station identifier
WBAN weather station identifier
observation date
observation time

latitude (degrees x 1000)
longitude (degrees x 1000)

elevation (meters)

wind direction (degrees)
quality code

sky ceiling height (meters)
quality code

visibility distance (meters)
quality code

air temperature (degrees Celsius x 10)
quality code

dew point temperature (degrees Celsius x 10)
quality code

atmospheric pressure (hectopascals x 10)
quality code

% 1s raw/1990 | head
010010-99999-1990. g2
010014-99999-1990.gz
010015-99999-1990. gz
010016-99999-1990. g2
010017-99999-1990. gz
010030-99999-1990. g2
010040-99999-1990. g2
010080-99999-1990. g2
010100-99999-1990. g2
010150-99999-1990. g2

Since there are tens of thousands of weather stations, the whole dataset is made up of
alarge number of relatively small files. It’s generally easier and more efficient to process
a smaller number of relatively large files, so the data was preprocessed so that each

16 | Chapter2: MapReduce

year’s readings were concatenated into a single file. (The means by which this was
carried out is described in Appendix C.)

Analyzing the Data with Unix Tools

What's the highest recorded global temperature for each year in the dataset? We will
answer this first without using Hadoop, as this information will provide a performance
baseline, as well as a useful means to check our results.

The classic tool for processing line-oriented data is awk. Example 2-2 is a small script
to calculate the maximum temperature for each year.

Example 2-2. A program for finding the maximum recorded temperature by year from NCDC weather
records

#!/usr/bin/env bash
for year in all/*
do
echo -ne “basename $year .gz "\t"
gunzip -c $year | \
awk '{ temp = substr($o, 88, 5) + 0;
q = substr($0, 93, 1);
if (temp !=9999 & q ~ /[01459]/ &3 temp > max) max = temp }
END { print max }'
done

The script loops through the compressed year files, first printing the year, and then
processing each file using awk. The awk script extracts two fields from the data: the air
temperature and the quality code. The air temperature value is turned into an integer
by adding 0. Next, a test is applied to see if the temperature is valid (the value 9999
signifies a missing value in the NCDC dataset) and if the quality code indicates that the
reading is not suspect or erroneous. If the reading is OK, the value is compared with
the maximum value seen so far, which is updated if a new maximum is found. The
END block is executed after all the lines in the file have been processed, and it prints the
maximum value.

Here is the beginning of a run:

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256

1905 283

The temperature values in the source file are scaled by a factor of 10, so this works out
as a maximum temperature of 31.7°C for 1901 (there were very few readings at the
beginning of the century, so this is plausible). The complete run for the century took
42 minutes in one run on a single EC2 High-CPU Extra Large Instance.

Analyzing the Data with Unix Tools | 17

To speed up the processing, we need to run parts of the program in parallel. In theory,
this is straightforward: we could process different years in different processes, using all
the available hardware threads on a machine. There are a few problems with this,
however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case,
the file size for different years varies widely, so some processes will finish much earlier
than others. Even if they pick up further work, the whole run is dominated by the
longest file. A better approach, although one that requires more work, is to split the
input into fixed-size chunks and assign each chunk to a process.

Second, combining the results from independent processes may need further process-
ing. In this case, the result for each year is independent of other years and may be
combined by concatenating all the results, and sorting by year. If using the fixed-size
chunk approach, the combination is more delicate. For this example, data for a par-
ticular year will typically be split into several chunks, each processed independently.
We'll end up with the maximum temperature for each chunk, so the final step is to
look for the highest of these maximums, for each year.

Third, you are still limited by the processing capacity of a single machine. If the best
time you can achieve is 20 minutes with the number of processors you have, then that’s
it. You can’t make it go faster. Also, some datasets grow beyond the capacity of a single
machine. When we start using multiple machines, a whole host of other factors come
into play, mainly falling in the category of coordination and reliability. Who runs the
overall job? How do we deal with failed processes?

So, though it’s feasible to parallelize the processing, in practice it’s messy. Using a
framework like Hadoop to take care of these issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express
our query as a MapReduce job. After some local, small-scale testing, we will be able to
run it on a cluster of machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the
reduce phase. Each phase has key-value pairs as input and output, the types of which
may be chosen by the programmer. The programmer also specifies two functions: the
map function and the reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that
gives us each line in the dataset as a text value. The key is the offset of the beginning
of the line from the beginning of the file, but as we have no need for this, we ignore it.

18 | Chapter2: MapReduce

Our map function is simple. We pull out the year and the air temperature, since these
are the only fields we are interested in. In this case, the map function is just a data
preparation phase, setting up the data in such a way that the reducer function can do
its work on it: finding the maximum temperature for each year. The map function is
also a good place to drop bad records: here we filter out temperatures that are missing,
suspect, Or erroneous.

To visualize the way the map works, consider the following sample lines of input data
(some unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004. . . 9999999N9+00001+99999999999. . .
0043011990999991950051512004. . . 9999999N9+00221+99999999999. . .
0043011990999991950051518004. . . 9999999N9-00111+99999999999. . .
0043012650999991949032412004. . . 0500001N9+01111+99999999999. . .
0043012650999991949032418004. . . 0500001N9+00781+99999999999. . .

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004. . .9999999N9+00001+99999999999. . .)

(106, 0043011990999991950051512004. ..9999999N9+00221+99999999999. . .
(212, 0043011990999991950051518004. ..9999999N9-00111+99999999999. . .
(318, 0043012650999991949032412004. . .0500001N9+01111+99999999999. . .
(424, 0043012650999991949032418004. . .0500001N9+00781+99999999999. . .

~—

The keys are the line offsets within the file, which we ignore in our map function. The
map function merely extracts the year and the air temperature (indicated in bold text),
and emits them as its output (the temperature values have been interpreted as
integers):

(1950, 0)

(1950, 22)

(1950, -11)

(1949, 111)

(1949, 78)

The output from the map function is processed by the MapReduce framework before
being sent to the reduce function. This processing sorts and groups the key-value pairs
by key. So, continuing the example, our reduce function sees the following input:
(1949, [111, 78])
(1950, [0, 22, -11])
Each year appears with a list of all its air temperature readings. All the reduce function
has to do now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix
pipeline, which mimics the whole MapReduce flow, and which we will see again later
in the chapter when we look at Hadoop Streaming.

Analyzing the Data with Hadoop | 19

input map | shuffle | reduce > output
0067011990.. (0, 0067011990..) (1950, 0)
0043011990.. (106, 0043011990..) (1950, 22)
0043011990 |---p| (212, 0043011990.) b--pf (1950, -11) - 8323’ o g;“iﬂg - 8323 1;3 - ig‘s‘g'gl
0043012650.. (318, 0043012650..) (1949, 111) » 10, 22, : :
0043012650. (424, 0043012650..) (1949, 78)

cat * | map.xb | sort | reduce.rb > output

Figure 2-1. MapReduce logical data flow

Java MapReduce

Having run through how the MapReduce program works, the next step is to express it
in code. We need three things: a map function, a reduce function, and some code to
run the job. The map function is represented by an implementation of the Mapper
interface, which declares a map() method. Example 2-3 shows the implementation of

our map function.

Example 2-3. Mapper for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.longhiritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {
output.collect(new Text(year), new IntWritable(airTemperature));

}

}
}

20 | Chapter2: MapReduce

The Mapper interface is a generic type, with four formal type parameters that specify the
input key, input value, output key, and output value types of the map function. For the
present example, the input key is a long integer offset, the input value is a line of text,
the output key is a year, and the output value is an air temperature (an integer). Rather
than use built-in Java types, Hadoop provides its own set of basic types that are opti-
mized for network serialization. These are found in the org.apache.hadoop.io package.
Here we use LongWritable, which corresponds to a Java Long, Text (like Java String),
and IntWritable (like Java Integer).

The map() method is passed a key and a value. We convert the Text value containing
the line of input into a Java String, then use its substring() method to extract the
columns we are interested in.

The map() method also provides an instance of QutputCollector to write the output to.
In this case, we write the year as a Text object (since we are just using it as a key), and
the temperature is wrapped in an IntWritable. We write an output record only if the
temperature is present and the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for maximum temperature example

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int maxValue = Integer.MIN VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());

output.collect(key, new IntWritable(maxValue));
}
}

Again, four formal type parameters are used to specify the input and output types, this
time for the reduce function. The input types of the reduce function must match the
output types of the map function: Text and IntWritable. And in this case, the output
types of the reduce function are Text and IntWritable, for a year and its maximum

Analyzing the Data with Hadoop | 21

temperature, which we find by iterating through the temperatures and comparing each
with a record of the highest found so far.

The third piece of code runs the MapReduce job (see Example 2-5).

Example 2-5. Application to find the maximum temperature in the weather dataset

import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

public class MaxTemperature {

public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);

}

JobConf conf = new JobConf(MaxTemperature.class);
conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(MaxTemperatureMapper.class);
conf.setReducerClass(MaxTemperatureReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);
}
}

A JobConf object forms the specification of the job. It gives you control over how the
job is run. When we run this job on a Hadoop cluster, we will package the code into a
JAR file (which Hadoop will distribute around the cluster). Rather than explicitly spec-
ify the name of the JAR file, we can pass a class in the JobConf constructor, which
Hadoop will use to locate the relevant JAR file by looking for the JAR file containing
this class.

Having constructed a JobConf object, we specify the input and output paths. An input
path is specified by calling the static addInputPath() method on FileInputFormat, and
it can be a single file, a directory (in which case, the input forms all the files in that
directory), or a file pattern. As the name suggests, addInputPath() can be called more
than once to use input from multiple paths.

22 | Chapter2: MapReduce

The output path (of which there is only one) is specified by the static setOutput
Path() method on FileOutputFormat. It specifies a directory where the output files from
the reducer functions are written. The directory shouldn’t exist before running the job,
as Hadoop will complain and not run the job. This precaution is to prevent data loss
(it can be very annoying to accidentally overwrite the output of a long job with
another).

Next, we specify the map and reduce types to use via the setMapperClass() and
setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control the output types
for the map and the reduce functions, which are often the same, as they are in our case.
If they are different, then the map output types can be set using the methods
setMapOutputKeyClass() and setMapOutputValueClass().

The input types are controlled via the input format, which we have not explicitly set
since we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run
the job. The static runJob() method on JobClient submits the job and waits for it to
finish, writing information about its progress to the console.

Atestrun

After writing a MapReduce job, it’s normal to try it out on a small dataset to flush out
any immediate problems with the code. First install Hadoop in standalone mode—
there are instructions for how to do this in Appendix A. This is the mode in which
Hadoop runs using the local filesystem with a local job runner. Let’s test it on the five-
line sample discussed earlier (the output has been slightly reformatted to fit the page):

% export HADOOP_CLASSPATH=build/classes

% hadoop MaxTemperature input/ncdc/sample.txt output

09/04/07 12:34:35 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=Job
Tracker, sessionld=

09/04/07 12:34:35 WARN mapred.JobClient: Use GenericOptionsParser for parsing the
arguments. Applications should implement Tool for the same.

09/04/07 12:34:35 WARN mapred.JobClient: No job jar file set. User classes may not
be found. See JobConf(Class) or JobConf#setJar(String).

09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.JobClient: Running job: job_local 0001

09/04/07 12:34:35 INFO mapred.FileInputFormat: Total input paths to process : 1
09/04/07 12:34:35 INFO mapred.MapTask: numReduceTasks: 1

09/04/07 12:34:35 INFO mapred.MapTask: io.sort.mb = 100

09/04/07 12:34:35 INFO mapred.MapTask: data buffer = 79691776/99614720

09/04/07 12:34:35 INFO mapred.MapTask: record buffer = 262144/327680

09/04/07 12:34:35 INFO mapred.MapTask: Starting flush of map output

09/04/07 12:34:36 INFO mapred.MapTask: Finished spill o

09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt local 0001_m_000000 O is
done. And is in the process of commiting

09/04/07 12:34:36 INFO mapred.lLocalJobRunner: file:/Users/tom/workspace/htdg/input/n
cdc/sample.txt:0+529

09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt local 0001_m 000000 0' done.

Analyzing the Data with Hadoop | 23

09/04/07 12:34:36 INFO mapred.LocalJobRunner:

09/04/07 12:34:36 INFO mapred.Merger: Merging 1 sorted segments

09/04/07 12:34:36 INFO mapred.Merger: Down to the last merge-pass, with 1 segments
left of total size: 57 bytes

09/04/07 12:34:36 INFO mapred.LocalJobRunner:

09/04/07 12:34:36 INFO mapred.TaskRunner: Task:attempt local 0001_r 000000 0 is done.
And is in the process of commiting

09/04/07 12:34:36 INFO mapred.LocallobRunner:

09/04/07 12:34:36 INFO mapred.TaskRunner: Task attempt local 0001_r 000000 O is
allowed to commit now

09/04/07 12:34:36 INFO mapred.FileOutputCommitter: Saved output of task
"attempt_local_0001_r_ 000000 0' to file:/Users/tom/workspace/htdg/output

09/04/07 12:34:36 INFO mapred.LocalJobRunner: reduce > reduce

09/04/07 12:34:36 INFO mapred.TaskRunner: Task 'attempt local 0001_r 000000 0' done.
09/04/07 12:34:36 INFO mapred.JobClient: map 100% reduce 100%

09/04/07 12:34:36 INFO mapred.JobClient: Job complete: job local 0001

09/04/07 12:34:36 INFO mapred.JobClient: Counters: 13

09/04/07 12:34:36 INFO mapred.JobClient: FileSystemCounters

09/04/07 12:34:36 INFO mapred.JobClient: FILE BYTES READ=27571
09/04/07 12:34:36 INFO mapred.JobClient: FILE_BYTES WRITTEN=53907
09/04/07 12:34:36 INFO mapred.JobClient: Map-Reduce Framework
09/04/07 12:34:36 INFO mapred.JobClient: Reduce input groups=2
09/04/07 12:34:36 INFO mapred.JobClient: Combine output records=0
09/04/07 12:34:36 INFO mapred.JobClient: Map input records=5
09/04/07 12:34:36 INFO mapred.JobClient: Reduce shuffle bytes=0
09/04/07 12:34:36 INFO mapred.JobClient: Reduce output records=2
09/04/07 12:34:36 INFO mapred.JobClient: Spilled Records=10
09/04/07 12:34:36 INFO mapred.JobClient: Map output bytes=45
09/04/07 12:34:36 INFO mapred.JobClient: Map input bytes=529
09/04/07 12:34:36 INFO mapred.JobClient: Combine input records=0
09/04/07 12:34:36 INFO mapred.JobClient: Map output records=5
09/04/07 12:34:36 INFO mapred.JobClient: Reduce input records=5

When the hadoop command is invoked with a classname as the first argument, it
launches a JVM to run the class. It is more convenient to use hadoop than straight
java since the former adds the Hadoop libraries (and their dependencies) to the class-
path and picks up the Hadoop configuration, too. To add the application classes to the
classpath, we’ve defined an environment variable called HADOOP_CLASSPATH, which the
hadoop script picks up.

When running in local (standalone) mode, the programs in this book
all assume that you have set the HADOOP_CLASSPATH in this way. The com-
tis: mands should be run from the directory that the example code is
installed in.

The output from running the job provides some useful information. (The warning
about the job JAR file not being found is expected, since we are running in local mode
without a JAR. We won’t see this warning when we run on a cluster.) For example,
we can see that the job was given an ID of job_local 0001, and it ran one map task
and one reduce task (with the IDs attempt local 0001 _m 000000 0 and

24 | Chapter2: MapReduce

attempt local 0001 r 000000 0). Knowing thejoband task IDs can be very useful when
debugging MapReduce jobs.

The last section of the output, titled “Counters,” shows the statistics that Hadoop
generates for each job it runs. These are very useful for checking whether the amount
of data processed is what you expected. For example, we can follow the number of
records that went through the system: five map inputs produced five map outputs, then
five reduce inputs in two groups produced two reduce outputs.

The output was written to the output directory, which contains one output file per
reducer. The job had a single reducer, so we find a single file, named part-00000:
% cat output/part-00000

1949 111
1950 22

This result is the same as when we went through it by hand earlier. We interpret this
as saying that the maximum temperature recorded in 1949 was 11.1°C, and in 1950 it
was 2.2°C.

The new Java MapReduce API

Release 0.20.0 of Hadoop included a new Java MapReduce API, sometimes referred to
as “Context Objects,” designed to make the API easier to evolve in the future. The new
API is type-incompatible with the old, however, so applications need to be rewritten
to take advantage of it.”

There are several notable differences between the two APIs:

¢ The new API favors abstract classes over interfaces, since these are easier to evolve.
For example, you can add a method (with a default implementation) to an abstract
class without breaking old implementations of the class. In the new API, the
Mapper and Reducer interfaces are now abstract classes.

* The new APl is in the org.apache.hadoop.mapreduce package (and subpackages).
The old API can still be found in org.apache.hadoop.mapred.

* The new API makes extensive use of context objects that allow the user code to
communicate with the MapReduce system. The MapContext, for example, essen-
tially unifies the role of the JobConf, the OutputCollector, and the Reporter.

* The new API supports both a “push” and a “pull” style of iteration. In both APIs,
key-value record pairs are pushed to the mapper, but in addition, the new API
allows a mapper to pull records from within the map() method. The same goes for
the reducer. An example of how the “pull” style can be useful is processing records
in batches, rather than one by one.

*

The new API is not complete (or stable) in the 0.20 release series (the latest available at the time of writing).
This book uses the old API for this reason. However, a copy of all of the examples in this book, rewritten to
use the new API (for releases 0.21.0 and later), will be made available on the book’s website.

Analyzing the Data with Hadoop | 25

* Configuration has been unified. The old API has a special JobConf object for job
configuration, which is an extension of Hadoop’s vanilla Configuration object
(used for configuring daemons; see “The Configuration API” on page 130). In the
new API, this distinction is dropped, so job configuration is done through a
Configuration.

* Job control is performed through the Job class, rather than JobClient, which no
longer exists in the new API.

* Output files are named slightly differently: part-m-nnnnn for map outputs, and part-
r-nnnnn for reduce outputs (where nnnnn is an integer designating the part number,
starting from zero).

Example 2-6 shows the MaxTemperature application rewritten to use the new API. The
differences are highlighted in bold.

When converting your Mapper and Reducer classes to the new API, don’t
:ﬁ% forget to change the signature of the map() and reduce() methods to the
new form. Just changing your class to extend the new Mapper or
Reducer classes will not produce a compilation error or warning, since
these classes provide an identity form of the map() or reduce() method

(respectively). Your mapper or reducer code, however, will not be in-
voked, which can lead to some hard-to-diagnose errors.

Example 2-6. Application to find the maximum temperature in the weather dataset using the new
context objects MapReduce API

public class NewMaxTemperature {

static class NewMaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private static final int MISSING = 9999;

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parselnt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));

} else {
airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING &3 quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));

}

}
}

26 | Chapter2: MapReduce

static class NewMaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}
}

public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: NewMaxTemperature <input path> <output path>");
System.exit(-1);
}

Job job = new Job();
job.setJarByClass(NewMaxTemperature.class);

FileInputFormat.addInputPath(job, new Path(args[o]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(NewMaxTemperatureMapper.class);
job.setReducerClass(NewMaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

Scaling Out

You’ve seen how MapReduce works for small inputs; now it’s time to take a bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity, the
examples so far have used files on the local filesystem. However, to scale out, we need
to store the data in a distributed filesystem, typically HDFS (which you’ll learn about
in the next chapter), to allow Hadoop to move the MapReduce computation to each
machine hosting a part of the data. Let’s see how this works.

Scaling Out | 27

Data Flow

First, some terminology. A MapReduce job is a unit of work that the client wants to be
performed: it consists of the input data, the MapReduce program, and configuration
information. Hadoop runs the job by dividing it into tasks, of which there are two types:
map tasks and reduce tasks.

There are two types of nodes that control the job execution process: a jobtracker and
a number of tasktrackers. The jobtracker coordinates all the jobs run on the system by
scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress
reports to the jobtracker, which keeps a record of the overall progress of each job. If a
task fails, the jobtracker can reschedule it on a different tasktracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input
splits, or just splits. Hadoop creates one map task for each split, which runs the user-
defined map function for each record in the split.

Having many splits means the time taken to process each split is small compared to the
time to process the whole input. So if we are processing the splits in parallel, the pro-
cessing is better load-balanced if the splits are small, since a faster machine will be able
to process proportionally more splits over the course of the job than a slower machine.
Even if the machines are identical, failed processes or other jobs running concurrently
make load balancing desirable, and the quality of the load balancing increases as the
splits become more fine-grained.

On the other hand, if splits are too small, then the overhead of managing the splits and
of map task creation begins to dominate the total job execution time. For most jobs, a
good split size tends to be the size of an HDFS block, 64 MB by default, although this
can be changed for the cluster (for all newly created files), or specified when each file
is created.

Hadoop does its best to run the map task on a node where the input data resides in
HDFS. This is called the data locality optimization. It should now be clear why the
optimal split size is the same as the block size: it is the largest size of input that can
be guaranteed to be stored on a single node. If the split spanned two blocks, it would
be unlikely that any HDFS node stored both blocks, so some of the split would have
to be transferred across the network to the node running the map task, which is clearly
less efficient than running the whole map task using local data.

Map tasks write their output to the local disk, not to HDFS. Why is this? Map output
is intermediate output: it’s processed by reduce tasks to produce the final output, and
once the job is complete the map output can be thrown away. So storing it in HDFS,
with replication, would be overkill. If the node running the map task fails before the
map output has been consumed by the reduce task, then Hadoop will automatically
rerun the map task on another node to re-create the map output.

28 | Chapter2: MapReduce

Reduce tasks don’t have the advantage of data locality—the input to a single reduce
task is normally the output from all mappers. In the present example, we have a single
reduce task that is fed by all of the map tasks. Therefore, the sorted map outputs have
to be transferred across the network to the node where the reduce task is running, where
they are merged and then passed to the user-defined reduce function. The output of
the reduce is normally stored in HDFS for reliability. As explained in Chapter 3, for
each HDFS block of the reduce output, the first replica is stored on the local node, with
other replicas being stored on off-rack nodes. Thus, writing the reduce output does
consume network bandwidth, but only as much as a normal HDFS write pipeline
consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-2. The dotted
boxes indicate nodes, the light arrows show data transfers on a node, and the heavy
arrows show data transfers between nodes.

» HDFS
replication

Figure 2-2. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the input, but is specified
independently. In “The Default MapReduce Job” on page 191, you will see how to
choose the number of reduce tasks for a given job.

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

Scaling Out | 29

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-3.
This diagram makes it clear why the data flow between map and reduce tasks is collo-
quially known as “the shuffle,” as each reduce task is fed by many map tasks. The
shuffle is more complicated than this diagram suggests, and tuning it can have a big
impact on job execution time, as you will see in “Shuffle and Sort” on page 177.

input
HDFS
: output
Poplitd §- SRS ... S
-pl part0 E——p HDFS
& replication
split
part 1 » HDFS
replication
split2

Figure 2-3. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you
don’t need the shulffle since the processing can be carried out entirely in parallel (a few
examples are discussed in “NLinelnputFormat” on page 211). In this case, the only
off-node data transfer is when the map tasks write to HDFS (see Figure 2-4).

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the
user to specify a combiner function to be run on the map output—the combiner func-
tion’s output forms the input to the reduce function. Since the combiner function is an
optimization, Hadoop does not provide a guarantee of how many times it will call it
for a particular map output record, if at all. In other words, calling the combiner func-
tion zero, one, or many times should produce the same output from the reducer.

30 | Chapter2: MapReduce

input output
HDFS HDFS
P HDFS
replication
P HDFS
replication
e
tosplit2 } --------- S map »| part2 P HDFS
fammcconnas replication

Figure 2-4. MapReduce data flow with no reduce tasks

The contract for the combiner function constrains the type of function that may be
used. This is best illustrated with an example. Suppose that for the maximum temper-
ature example, readings for the year 1950 were processed by two maps (because they
were in different splits). Imagine the first map produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

And the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])
with output:
(1950, 25)
since 25 is the maximum value in the list. We could use a combiner function that, just

like the reduce function, finds the maximum temperature for each map output. The
reduce would then be called with:

(1950, [20, 25])
and the reduce would produce the same output as before. More succinctly, we may
express the function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Scaling Out | 31

Not all functions possess this property.t For example, if we were calculating mean
temperatures, then we couldn’t use the mean as our combiner function, since:

mean(0, 20, 10, 25, 15) = 14

but:

mean(mean (0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. (How could it? The reduce
function is still needed to process records with the same key from different maps.) But
it can help cut down the amount of data shuffled between the maps and the reduces,
and for this reason alone it is always worth considering whether you can use a combiner
function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using
the Reducer interface, and for this application, it is the same implementation as the
reducer function in MaxTemperatureReducer. The only change we need to make is to set
the combiner class on the JobConf (see Example 2-7).

Example 2-7. Application to find the maximum temperature, using a combiner function for efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCombiner <input path>
"<output path>");
System.exit(-1);

+

JobConf conf = new JobConf(MaxTemperatureWithCombiner.class);
conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setMapperClass(MaxTemperatureMapper.class);
conf.setCombinerClass(MaxTemperatureReducer.class);

conf.setReducerClass(MaxTemperatureReducer.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

JobClient.runJob(conf);

T Functions with this property are called distributive in the paper “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Gray et al. (1995).

32 | Chapter2: MapReduce

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of
MapReduce: it scales to the size of your data and the size of your hardware. Here’s one
data point: on a 10-node EC2 cluster running High-CPU Extra Large Instances, the
program took six minutes to run.#

We'll go through the mechanics of running programs on a cluster in Chapter 5.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams
as the interface between Hadoop and your program, so you can use any language that
can read standard input and write to standard output to write your MapReduce
program.

Streaming is naturally suited for text processing (although, as of version 0.21.0, it can
handle binary streams, too), and when used in text mode, it has a line-oriented view of
data. Map input data is passed over standard input to your map function, which pro-
cesses it line by line and writes lines to standard output. A map output key-value pair
is written as a single tab-delimited line. Input to the reduce function is in the same
format—a tab-separated key-value pair—passed over standard input. The reduce func-
tion reads lines from standard input, which the framework guarantees are sorted by
key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding maximum tem-
peratures by year in Streaming.

Ruby

The map function can be expressed in Ruby as shown in Example 2-8.

Example 2-8. Map function for maximum temperature in Ruby

#!/usr/bin/env ruby

STDIN.each_line do |line|

val = line

year, temp, q = val[15,4], val[87,5], val[92,1]

puts "#{year}\t#{temp}" if (temp != "+9999" && q =~ /[01459]/)
end

1 This is a factor of seven faster than the serial run on one machine using awk. The main reason it wasn’t
proportionately faster is because the input data wasn’t evenly partitioned. For convenience, the input files
were gzipped by year, resulting in large files for later years in the dataset, when the number of weather records
was much higher.

Hadoop Streaming | 33

The program iterates over lines from standard input by executing a block for each line
from STDIN (a global constant of type 10). The block pulls out the relevant fields from
each input line, and, if the temperature is valid, writes the year and the temperature
separated by a tab character \t to standard output (using puts).

W

It’s worth drawing out a design difference between Streaming and the
Java MapReduce API. The Java API is geared toward processing your
map function one record at a time. The framework calls the map()
method on your Mapper for each record in the input, whereas with
Streaming the map program can decide how to process the input—for
example, it could easily read and process multiple lines at a time since
it’s in control of the reading. The user’s Java map implementation is
“pushed” records, but it’s still possible to consider multiple lines at a
time by accumulating previous lines in an instance variable in the
Mapper.$ In this case, you need to implement the close() method so that
you know when the last record has been read, so you can finish pro-
cessing the last group of lines.

oy

Since the script just operates on standard input and output, it’s trivial to test the script
without using Hadoop, simply using Unix pipes:
% cat input/ncdc/sample.txt | cho2/src/main/ruby/max_temperature_map.rb

1950 +0000
1950 +0022

1950 -0011
1949 +0111
1949 +0078

The reduce function shown in Example 2-9 is a little more complex.

Example 2-9. Reduce function for maximum temperature in Ruby

#!/usr/bin/env ruby

last_key, max_val = nil, o
STDIN.each_line do |line|
key, val = line.split("\t")
if last_key 8&& last_key != key
puts "#{last_key}\t#{max_val}"
last_key, max_val = key, val.to_i
else
last_key, max_val = key, [max_val, val.to_i].max
end
end
puts "#{last_key}\t#{max_val}" if last_key

§ Alternatively, you could use “pull” style processing in the new MapReduce APIl—see “The new
Java MapReduce API” on page 25.

34 | Chapter2: MapReduce

Again, the program iterates over lines from standard input, but this time we have to
store some state as we process each key group. In this case, the keys are weather station
identifiers, and we store the last key seen and the maximum temperature seen so far
for that key. The MapReduce framework ensures that the keys are ordered, so we know
that if a key is different from the previous one, we have moved into a new key group.
In contrast to the Java API, where you are provided an iterator over each key group, in
Streaming you have to find key group boundaries in your program.

Foreach line, we pull out the key and value, then if we’ve just finished a group (last_key
88 last_key != key), we write the key and the maximum temperature for that group,
separated by a tab character, before resetting the maximum temperature for the new
key. If we haven’t just finished a group, we just update the maximum temperature for
the current key.

The last line of the program ensures that a line is written for the last key group in the
input.

We can now simulate the whole MapReduce pipeline with a Unix pipeline (which is
equivalent to the Unix pipeline shown in Figure 2-1):
% cat input/ncdc/sample.txt | ch02/src/main/ruby/max_temperature_map.rb | \
sort | cho2/src/main/ruby/max_temperature_reduce.rb

1949 111
1950 22

The output is the same as the Java program, so the next step is to run it using Hadoop
itself.

The hadoop command doesn’t support a Streaming option; instead, you specify the
Streaming JAR file along with the jar option. Options to the Streaming program specify
the input and output paths, and the map and reduce scripts. This is what it looks like:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
-input input/ncdc/sample.txt \
-output output \

-mapper ch02/src/main/ruby/max_temperature_map.rb \
-reducer cho2/src/main/ruby/max_temperature_reduce.rb

When running on a large dataset on a cluster, we should set the combiner, using the
-combiner option.

From release 0.21.0, the combiner can be any Streaming command. For earlier releases,
the combiner had to be written in Java, so as a workaround it was common to do manual
combining in the mapper, without having to resort to Java. In this case, we could change
the mapper to be a pipeline:

% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
-input input/ncdc/all \
-output output \
-mapper "cho2/src/main/ruby/max_temperature_map.rb | sort |
cho2/src/main/ruby/max_temperature_reduce.rb" \
-reducer cho2/src/main/ruby/max_temperature_reduce.rb \

Hadoop Streaming | 35

-file cho2/src/main/ruby/max_temperature_map.rb \
-file cho2/src/main/ruby/max_temperature_reduce.rb

Note also the use of -file, which we use when running Streaming programs on the
cluster to ship the scripts to the cluster.

Python

Streaming supports any programming language that can read from standard input, and
write to standard output, so for readers more familiar with Python, here’s the same
example again.! The map script is in Example 2-10, and the reduce script is in Exam-
ple 2-11.

Example 2-10. Map function for maximum temperature in Python

#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
val = line.strip()
(year, temp, q) = (val[15:19], val[87:92], val[92:93])
if (temp != "+9999" and re.match("[01459]", q)):
print "%s\t%s" % (year, temp)

Example 2-11. Reduce function for maximum temperature in Python

#!/usr/bin/env python
import sys

(last_key, max_val) = (None, 0)
for line in sys.stdin:
(key, val) = line.strip().split("\t")
if last key and last key != key:
print "%s\t%s" % (last _key, max val)
(last_key, max_val) = (key, int(val))
else:
(last_key, max val) = (key, max(max_val, int(val)))

if last key:
print "%s\t%s" % (last_key, max_val)

[I'As an alternative to Streaming, Python programmers should consider Dumbo (http://www.last.fm/dumbo),
which makes the Streaming MapReduce interface more Pythonic and easier to use.

36 | Chapter2: MapReduce

http://www.last.fm/dumbo

We can test the programs and run the job in the same way we did in Ruby. For example,
to run a test:

% cat input/ncdc/sample.txt | cho2/src/main/python/max_temperature_map.py | \
sort | cho2/src/main/python/max_temperature_reduce.py

1949 111

1950 22

Hadoop Pipes

Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. Unlike Stream-
ing, which uses standard input and output to communicate with the map and reduce
code, Pipes uses sockets as the channel over which the tasktracker communicates with
the process running the C++ map or reduce function. JNT is not used.

We'll rewrite the example running through the chapter in C++, and then we’ll see how
to run it using Pipes. Example 2-12 shows the source code for the map and reduce
functions in C++.

Example 2-12. Maximum temperature in C++

#include <algorithm>
#include <limits>
#include <stdint.h>
#include <string>

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class MaxTemperatureMapper : public HadoopPipes::Mapper {
public:
MaxTemperatureMapper (HadoopPipes: :TaskContext& context) {

void map(HadoopPipes::MapContext& context) {
std::string line = context.getInputValue();
std::string year = line.substr(15, 4);
std::string airTemperature = line.substr(87, 5);
std::string q = line.substr(92, 1);
if (airTemperature != "+9999" &&

(q=="0" [l q=="1" || q=="4" || q = "5" || q = "9")) {
context.emit(year, airTemperature);

}

}

b

class MapTemperatureReducer : public HadoopPipes::Reducer {
public:
MapTemperatureReducer (HadoopPipes: : TaskContext8 context) {

void reduce(HadoopPipes: :ReduceContextd context) {
int maxValue = INT_MIN;
while (context.nextValue()) {

Hadoop Pipes | 37

maxValue = std::max(maxValue, HadoopUtils::toInt(context.getInputValue()));

}
context.emit(context.getInputKey(), HadoopUtils::toString(maxValue));

}
|5

int main(int argc, char *argv[]) {
return HadoopPipes::runTask(HadoopPipes::TemplateFactory<MaxTemperatureMapper,
MapTemperatureReducer>());
}

The application links against the Hadoop C++ library, which is a thin wrapper for
communicating with the tasktracker child process. The map and reduce functions are
defined by extending the Mapper and Reducer classes defined in the HadoopPipes name-
space and providing implementations of the map() and reduce() methods in each case.
These methods take a context object (of type MapContext or ReduceContext), which
provides the means for reading input and writing output, as well as accessing job con-
figuration information via the JobConf class. The processing in this example is very
similar to the Java equivalent.

Unlike the Java interface, keys and values in the C++ interface are byte buffers, repre-
sented as Standard Template Library (STL) strings. This makes the interface simpler,
although it does put a slightly greater burden on the application developer, who has to
convert to and from richer domain-level types. This is evident in MapTempera
tureReducer where we have to convert the input value into an integer (using a conven-
ience method in HadoopUtils) and then the maximum value back into a string before
it’s written out. In some cases, we can save on doing the conversion, such as in MaxTem
peratureMapper where the airTemperature value is never converted to an integer since
it is never processed as a number in the map() method.

The main() method is the application entry point. It calls HadoopPipes: : runTask, which
connects to the Java parent process and marshals data to and from the Mapper or
Reducer. The runTask() method is passed a Factory so that it can create instances of the
Mapper or Reducer. Which one it creates is controlled by the Java parent over the socket
connection. There are overloaded template factory methods for setting a combiner,
partitioner, record reader, or record writer.

Compiling and Running
Now we can compile and link our program using the Makefile in Example 2-13.

Example 2-13. Makefile for C++ MapReduce program

CC = g++
CPPFLAGS = -m32 -I$(HADOOP_INSTALL)/c++/$(PLATFORM)/include

max_temperature: max_temperature.cpp
$(CC) $(CPPFLAGS) $< -Wall -L$(HADOOP_INSTALL)/c++/$(PLATFORM)/1ib -lhadooppipes \
-lhadooputils -lpthread -g -02 -o $@

38 | Chapter2: MapReduce

The Makefile expects a couple of environment variables to be set. Apart from
HADOOP_INSTALL (which you should already have set if you followed the installation
instructions in Appendix A), you need to define PLATFORM, which specifies the operating
system, architecture, and data model (e.g., 32- or 64-bit). I ran it on a 32-bit Linux
system with the following:

% export PLATFORM=Linux-1i386-32
% make

On successful completion, you’ll find the max_temperature executable in the current
directory.

To run a Pipes job, we need to run Hadoop in pseudo-distributed mode (where all the
daemons run on the local machine), for which there are setup instructions in Appen-
dix A. Pipes doesn’t run in standalone (local) mode, since it relies on Hadoop’s
distributed cache mechanism, which works only when HDFS is running.

With the Hadoop daemons now running, the first step is to copy the executable to
HDFES so that it can be picked up by tasktrackers when they launch map and reduce
tasks:

% hadoop fs -put max_temperature bin/max_temperature

The sample data also needs to be copied from the local filesystem into HDFS:
% hadoop fs -put input/ncdc/sample.txt sample.txt

Now we can run the job. For this, we use the Hadoop pipes command, passing the URI
of the executable in HDFS using the -program argument:
% hadoop pipes \
-D hadoop.pipes.java.recordreader=true \
-D hadoop.pipes.java.recordwriter=true \
-input sample.txt \

-output output \
-program bin/max_temperature

We specify two properties using the -D option: hadoop.pipes.java.recordreader and
hadoop.pipes.java.recordwriter, setting both to true to say that we have not specified
a C++ record reader or writer, but that we want to use the default Java ones (which are
for text input and output). Pipes also allows you to set a Java mapper, reducer,
combiner, or partitioner. In fact, you can have a mixture of Java or C++ classes within
any one job.

The result is the same as the other versions of the same program that we ran.

Hadoop Pipes | 39

CHAPTER 3
The Hadoop Distributed Filesystem

When a dataset outgrows the storage capacity of a single physical machine, it becomes
necessary to partition it across a number of separate machines. Filesystems that manage
the storage across a network of machines are called distributed filesystems. Since they
are network-based, all the complications of network programming kick in, thus making
distributed filesystems more complex than regular disk filesystems. For example, one
of the biggest challenges is making the filesystem tolerate node failure without suffering
data loss.

Hadoop comes with a distributed filesystem called HDFS, which stands for Hadoop
Distributed Filesystem. (You may sometimes see references to “DFS”—informally or in
older documentation or configurations—which is the same thing.) HDFS is Hadoop’s
flagship filesystem and is the focus of this chapter, but Hadoop actually has a general-
purpose filesystem abstraction, so we’ll see along the way how Hadoop integrates with
other storage systems (such as the local filesystem and Amazon S3).

The Design of HDFS

HDFS is a filesystem designed for storing very large files with streaming data access
patterns, running on clusters of commodity hardware.” Let’s examine this statement in
more detail:

Very large files
“Very large” in this context means files that are hundreds of megabytes, gigabytes,

or terabytes in size. There are Hadoop clusters running today that store petabytes
of data.t

* The architecture of HDFS is described in “The Hadoop Distributed File System” by Konstantin Shvachko,
Hairong Kuang, Sanjay Radia, and Robert Chansler (Proceedings of MSST2010, May 2010, http:/
storageconference.org/2010/Papers/MSST/Shvachko.pdf).

T “Scaling Hadoop to 4000 nodes at Yahoo!,” http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop
_to_4000_nodes_a.html.

41

http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html
http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html

Streaming data access
HDFS is built around the idea that the most efficient data processing pattern is a
write-once, read-many-times pattern. A dataset is typically generated or copied
from source, then various analyses are performed on that dataset over time. Each
analysis will involve a large proportion, if not all, of the dataset, so the time to read
the whole dataset is more important than the latency in reading the first record.

Commodity hardware
Hadoop doesn’t require expensive, highly reliable hardware to run on. It’s designed
to run on clusters of commodity hardware (commonly available hardware available
from multiple vendors¥) for which the chance of node failure across the cluster is
high, at least for large clusters. HDEFS is designed to carry on working without a
noticeable interruption to the user in the face of such failure.

It is also worth examining the applications for which using HDFS does not work so
well. While this may change in the future, these are areas where HDFS is not a good fit
today:

Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency. HBase
(Chapter 13) is currently a better choice for low-latency access.

Lots of small files
Since the namenode holds filesystem metadata in memory, the limit to the number
of files in a filesystem is governed by the amount of memory on the namenode. As
a rule of thumb, each file, directory, and block takes about 150 bytes. So, for
example, if you had one million files, each taking one block, you would need at
least 300 MB of memory. While storing millions of files is feasible, billions is be-
yond the capability of current hardware.$

Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the
end of the file. There is no support for multiple writers, or for modifications at
arbitrary offsets in the file. (These might be supported in the future, but they are
likely to be relatively inefficient.)

1 See Chapter 9 for a typical machine specification.

§ For an in-depth exposition of the scalability limits of HDFS, see Konstantin V. Shvachko’s “Scalability of the
Hadoop Distributed File System,” (http://developer.yahoo.net/blogs/hadoop/2010/05/scalability_of _the
_hadoop_dist.html) and the companion paper “HDFS Scalability: The limits to growth,” (April 2010, pp. 6—
16. http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf) by the same author.

42 | Chapter3: The Hadoop Distributed Filesystem

http://developer.yahoo.net/blogs/hadoop/2010/05/scalability_of_the_hadoop_dist.html
http://developer.yahoo.net/blogs/hadoop/2010/05/scalability_of_the_hadoop_dist.html
http://www.usenix.org/publications/login/2010-04/openpdfs/shvachko.pdf

HDFS Concepts

Blocks

A disk has a block size, which is the minimum amount of data that it can read or write.
Filesystems for a single disk build on this by dealing with data in blocks, which are an
integral multiple of the disk block size. Filesystem blocks are typically a few kilobytes
in size, while disk blocks are normally 512 bytes. This is generally transparent to the
filesystem user who is simply reading or writing a file—of whatever length. However,
there are tools to perform filesystem maintenance, such as df and fsck, that operate on
the filesystem block level.

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default.
Like in a filesystem for a single disk, files in HDFS are broken into block-sized chunks,
which are stored as independent units. Unlike a filesystem for a single disk, a file in
HDFS that is smaller than a single block does not occupy a full block’s worth of un-
derlying storage. When unqualified, the term “block” in this book refers to a block in
HDFS.

Why Is a Block in HDFS So Large?

HDFS blocks are large compared to disk blocks, and the reason is to minimize the cost
of seeks. By making a block large enough, the time to transfer the data from the disk
can be made to be significantly larger than the time to seek to the start of the block.
Thus the time to transfer a large file made of multiple blocks operates at the disk transfer
rate.

A quick calculation shows that if the seek time is around 10 ms, and the transfer rate
is 100 MB/s, then to make the seek time 1% of the transfer time, we need to make the
block size around 100 MB. The default is actually 64 MB, although many HDFS in-
stallations use 128 MB blocks. This figure will continue to be revised upward as transfer
speeds grow with new generations of disk drives.

This argument shouldn’t be taken too far, however. Map tasks in MapReduce normally
operate on one block at a time, so if you have too few tasks (fewer than nodes in the
cluster), your jobs will run slower than they could otherwise.

Having a block abstraction for a distributed filesystem brings several benefits. The first
benefit is the most obvious: a file can be larger than any single disk in the network.
There’s nothing that requires the blocks from a file to be stored on the same disk, so
they can take advantage of any of the disks in the cluster. In fact, it would be possible,
if unusual, to store a single file on an HDFS cluster whose blocks filled all the disks in
the cluster.

HDFS Concepts | 43

Second, making the unit of abstraction a block rather than a file simplifies the storage
subsystem. Simplicity is something to strive for all in all systems, but is especially
important for a distributed system in which the failure modes are so varied. The storage
subsystem deals with blocks, simplifying storage management (since blocks are a fixed
size, it is easy to calculate how many can be stored on a given disk) and eliminating
metadata concerns (blocks are just a chunk of data to be stored—file metadata such as
permissions information does not need to be stored with the blocks, so another system
can handle metadata separately).

Furthermore, blocks fit well with replication for providing fault tolerance and availa-
bility. To insure against corrupted blocks and disk and machine failure, each block is
replicated to a small number of physically separate machines (typically three). If a block
becomes unavailable, a copy can be read from another location in a way that is trans-
parent to the client. A block that is no longer available due to corruption or machine
failure can be replicated from its alternative locations to other live machines to bring
the replication factor back to the normal level. (See “Data Integrity” on page 75 for
more on guarding against corrupt data.) Similarly, some applications may choose to
set a high replication factor for the blocks in a popular file to spread the read load on
the cluster.

Like its disk filesystem cousin, HDFS’s fsck command understands blocks. For exam-
ple, running;:

% hadoop fsck / -files -blocks

will list the blocks that make up each file in the filesystem. (See also “Filesystem check
(fsck)” on page 301.)

Namenodes and Datanodes

An HDFS cluster has two types of node operating in a master-worker pattern: a name-
node (the master) and a number of datanodes (workers). The namenode manages the
filesystem namespace. It maintains the filesystem tree and the metadata for all the files
and directories in the tree. This information is stored persistently on the local disk in
the form of two files: the namespace image and the edit log. The namenode also knows
the datanodes on which all the blocks for a given file are located, however, it does
not store block locations persistently, since this information is reconstructed from
datanodes when the system starts.

A client accesses the filesystem on behalf of the user by communicating with the name-
node and datanodes. The client presents a POSIX-like filesystem interface, so the user
code does not need to know about the namenode and datanode to function.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when
they are told to (by clients or the namenode), and they report back to the namenode
periodically with lists of blocks that they are storing.

44 | Chapter3: The Hadoop Distributed Filesystem

Without the namenode, the filesystem cannot be used. In fact, if the machine running
the namenode were obliterated, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and Hadoop provides two mechanisms for this.

The first way is to back up the files that make up the persistent state of the filesystem
metadata. Hadoop can be configured so that the namenode writes its persistent state
to multiple filesystems. These writes are synchronous and atomic. The usual configu-
ration choice is to write to local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as
a namenode. Its main role is to periodically merge the namespace image with the edit
log to prevent the edit log from becoming too large. The secondary namenode usually
runs on a separate physical machine, since it requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged name-
space image, which can be used in the event of the namenode failing. However, the
state of the secondary namenode lags that of the primary, so in the event of total failure
of the primary, data loss is almost certain. The usual course of action in this case is to
copy the namenode’s metadata files that are on NFS to the secondary and run it as the
new primary.

See “The filesystem image and edit log” on page 294 for more details.

The Command-Line Interface

We’re going to have a look at HDFS by interacting with it from the command line.
There are many other interfaces to HDFS, but the command line is one of the simplest
and, to many developers, the most familiar.

We are going to run HDFS on one machine, so first follow the instructions for setting
up Hadoop in pseudo-distributed mode in Appendix A. Later you’ll see how to run on
a cluster of machines to give us scalability and fault tolerance.

There are two properties that we set in the pseudo-distributed configuration that de-
serve further explanation. The first is fs.default.name, set to hdfs://localhost/, which is
used to set a default filesystem for Hadoop. Filesystems are specified by a URI, and
here we have used an hdfs URI to configure Hadoop to use HDFS by default. The HDFS
daemons will use this property to determine the host and port for the HDFS namenode.
We'll be running it on localhost, on the default HDFS port, 8020. And HDFS clients
will use this property to work out where the namenode is running so they can connect
to it.

The Command-Line Interface | 45

We set the second property, dfs.replication, to 1 so that HDFS doesn’t replicate
filesystem blocks by the default factor of three. When running with a single datanode,
HDFS can’t replicate blocks to three datanodes, so it would perpetually warn about
blocks being under-replicated. This setting solves that problem.

Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the usual filesystem operations
such as reading files, creating directories, moving files, deleting data, and listing direc-
tories. You can type hadoop fs -help to get detailed help on every command.

Start by copying a file from the local filesystem to HDFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt hdfs://localhost/user/tom/
quangle.txt

This command invokes Hadoop’s filesystem shell command fs, which supports a
number of subcommands—in this case, we are running -copyFromLocal. The local file
quangle.txt is copied to the file /user/tom/quangle.txt on the HDFS instance running on
localhost. In fact, we could have omitted the scheme and host of the URI and picked
up the default, hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

We could also have used a relative path and copied the file to our home directory in
HDES, which in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyTolLocal quangle.txt quangle.copy.txt

% mds5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = a16f231da6bo5e2ba7a339320e7dacd9
MD5 (quangle.copy.txt) = a16f231da6bo5e2ba7a339320e7dacd9

The MD5 digests are the same, showing that the file survived its trip to HDFS and is
back intact.

Finally, let’s look at an HDFS file listing. We create a directory first just to see how it
is displayed in the listing:

% hadoop fs -mkdir books

% hadoop fs -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command 1s -1, with a few minor
differences. The first column shows the file mode. The second column is the replication
factor of the file (something a traditional Unix filesystem does not have). Remember
we set the default replication factor in the site-wide configuration to be 1, which is why
we see the same value here. The entry in this column is empty for directories since the

46 | Chapter3: The Hadoop Distributed Filesystem

concept of replication does not apply to them—directories are treated as metadata and
stored by the namenode, not the datanodes. The third and fourth columns show the
file owner and group. The fifth column is the size of the file in bytes, or zero for direc-
tories. The sixth and seventh columns are the last modified date and time. Finally, the
eighth column is the absolute name of the file or directory.

File Permissions in HDFS
HDFS has a permissions model for files and directories that is much like POSIX.

There are three types of permission: the read permission (r), the write permission (),
and the execute permission (x). The read permission is required to read files or list the
contents of a directory. The write permission is required to write a file, or for a directory,
to create or delete files or directories in it. The execute permission is ignored for a file
since you can’t execute a file on HDFS (unlike POSIX), and for a directory it is required
to access its children.

Each file and directory has an owner, a group, and a mode. The mode is made up of the
permissions for the user who is the owner, the permissions for the users who are
members of the group, and the permissions for users who are neither the owners nor
members of the group.

By default, a client’s identity is determined by the username and groups of the process
itis running in. Because clients are remote, this makes it possible to become an arbitrary
user, simply by creating an account of that name on the remote system. Thus, permis-
sions should be used only in a cooperative community of users, as a mechanism for
sharing filesystem resources and for avoiding accidental data loss, and not for securing
resources in a hostile environment. (Note, however, that the latest versions of Hadoop
support Kerberos authentication, which removes these restrictions, see “Secur-
ity” on page 281.) Despite these limitations, it is worthwhile having permissions ena-
bled (as it is by default; see the dfs.permissions property), to avoid accidental modifi-
cation or deletion of substantial parts of the filesystem, either by users or by automated
tools or programs.

When permissions checking is enabled, the owner permissions are checked if the cli-
ent’s username matches the owner, and the group permissions are checked if the client
is a member of the group; otherwise, the other permissions are checked.

There is a concept of a super-user, which is the identity of the namenode process.
Permissions checks are not performed for the super-user.

Hadoop Filesystems

Hadoop has an abstract notion of filesystem, of which HDFS is just one implementa-
tion. The Java abstract class org.apache.hadoop.fs.FileSystem represents a filesystem
in Hadoop, and there are several concrete implementations, which are described in
Table 3-1.

Hadoop Filesystems | 47

Table 3-1. Hadoop filesystems

Filesystem

Local

HDFS

HFTP

HSFTP

HAR

KFS (Cloud-
Store)

FTP

S3 (native)

S3 (block-
based)

URI scheme

file

hdfs

hftp

hsftp

har

kfs

fip

s3n

s3

Java implementation
(all under org.apache.hadoop)

fs.LocalFileSystem

hdfs.
DistributedFileSystem

hdfs.HftpFileSystem

hdfs.HsftpFileSystem

fs.HarFileSystem

fs.kfs.
KosmosFileSystem

fs.ftp.FTPFileSystem

fs.s3native.
NativeS3FileSystem

fs.s3.53FileSystem

Description

Afilesystem for a locally connected disk with client-
side checksums. Use RawLocalFileSystemfora
local filesystem with no checksums. See “LocalFileSys-
tem” on page 76.

Hadoop's distributed filesystem. HDFS is designed to
work efficiently in conjunction with MapReduce.

A filesystem providing read-only access to HDFS over
HTTP. (Despite its name, HFTP has no connection with
FTP.) Often used with distcp (see “Parallel Copying with
distcp” on page 70) to copy data between HDFS
clusters running different versions.

Afilesystem providing read-only access to HDFS over
HTTPS. (Again, this has no connection with FTP.)

Afilesystem layered on another filesystem for archiving
files. Hadoop Archives are typically used for archiving
files in HDFS to reduce the namenode’s memory usage.
See “Hadoop Archives” on page 71.

(loudStore (formerly Kosmos filesystem) is a dis-
tributed filesystem like HDFS or Google’s GFS, written in
(++. Find more information about it at
http://kosmosfs.sourceforge.net/.

Afilesystem backed by an FTP server.

Afilesystem backed by Amazon S3. See http.//wiki
.apache.org/hadoop/Amazon$3.

A filesystem backed by Amazon S3, which stores files
in blocks (much like HDFS) to overcome S3's 5 GB file
size limit.

Hadoop provides many interfaces to its filesystems, and it generally uses the URI
scheme to pick the correct filesystem instance to communicate with. For example, the
filesystem shell that we met in the previous section operates with all Hadoop filesys-
tems. To list the files in the root directory of the local filesystem, type:

% hadoop fs -1s file:///

Although it is possible (and sometimes very convenient) to run MapReduce programs
that access any of these filesystems, when you are processing large volumes of data,
you should choose a distributed filesystem that has the data locality optimization, such
as HDFS or KFS (see “Scaling Out” on page 27).

48 | Chapter3: The Hadoop Distributed Filesystem

http://kosmosfs.sourceforge.net/
http://wiki.apache.org/hadoop/AmazonS3
http://wiki.apache.org/hadoop/AmazonS3

Interfaces

Hadoop is written in Java, and all Hadoop filesystem interactions are mediated through
the Java APLI The filesystem shell, for example, is a Java application that uses the Java
FileSystem class to provide filesystem operations. The other filesystem interfaces are
discussed briefly in this section. These interfaces are most commonly used with HDFS,
since the other filesystems in Hadoop typically have existing tools to access the under-
lying filesystem (FTP clients for FTP, S3 tools for S3, etc.), but many of them will work
with any Hadoop filesystem.

Thrift

By exposing its filesystem interface as a Java API, Hadoop makes it awkward for non-
Java applications to access Hadoop filesystems. The Thrift APl in the “thriftfs” contrib
module remedies this deficiency by exposing Hadoop filesystems as an Apache Thrift
service, making it easy for any language that has Thrift bindings to interact with a
Hadoop filesystem, such as HDFS.

To use the Thrift AP, run a Java server that exposes the Thrift service and acts as a
proxy to the Hadoop filesystem. Your application accesses the Thrift service, which is
typically running on the same machine as your application.

The Thrift API comes with a number of pregenerated stubs for a variety of languages,
including C++, Perl, PHP, Python, and Ruby. Thrift has support for versioning, so it’s
a good choice if you want to access different versions of a Hadoop filesystem from the
same client code (you will need to run a proxy for each version of Hadoop to achieve
this, however).

For installation and usage instructions, please refer to the documentation in the
src/contrib/thriftfs directory of the Hadoop distribution.

C

Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface
(it was written as a C library for accessing HDFS, but despite its name it can be used
to access any Hadoop filesystem). It works using the Java Native Interface (JNI) to call
a Java filesystem client.

The C APIL is very similar to the Java one, but it typically lags the Java one, so newer
features may not be supported. You can find the generated documentation for the C
APT in the libhdfs/docs/api directory of the Hadoop distribution.

[I' The RPC interfaces in Hadoop are based on Hadoop’s Writable interface, which is Java-centric. In the future,
Hadoop will adopt Avro, a cross-language, RPC framework, which will allow native HDFS clients to be
written in languages other than Java.

Hadoop Filesystems | 49

Hadoop comes with prebuilt libhdfs binaries for 32-bit Linux, but for other platforms,
you will need to build them yourself using the instructions at http://wiki.apache.org/
hadoop/LibHDEFS.

FUSE

Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space
to be integrated as a Unix filesystem. Hadoop’s Fuse-DFS contrib module allows any
Hadoop filesystem (but typically HDFS) to be mounted as a standard filesystem. You
can then use Unix utilities (such as 1s and cat) to interact with the filesystem, as well
as POSIX libraries to access the filesystem from any programming language.

Fuse-DFS is implemented in C using libhdfs as the interface to HDFS. Documentation
for compiling and running Fuse-DFS is located in the src/contrib/fuse-dfs directory of
the Hadoop distribution.

WebDAV

WebDAVis aset of extensions to HT TP to support editing and updating files. WebDAV
shares can be mounted as filesystems on most operating systems, so by exposing HDFS
(or other Hadoop filesystems) over WebDAV, it’s possible to access HDFS as a standard
filesystem.

At the time of this writing, WebDAV support in Hadoop (which is implemented by
calling the Java API to Hadoop) is still under development, and can be tracked at https:
/lissues.apache.orgljira/browse/HADOOP-496.

Other HDFS Interfaces
There are two interfaces that are specific to HDFS:

HTTP
HDEFS defines a read-only interface for retrieving directory listings and data over
HTTP. Directory listings are served by the namenode’s embedded web server
(which runs on port 50070) in XML format, while file data is streamed from
datanodes by their web servers (running on port 50075). This protocol is not tied
to a specific HDFS version, making it possible to write clients that can use HTTP
to read data from HDFS clusters that run different versions of Hadoop. HftpFile
System is a such a client: it is a Hadoop filesystem that talks to HDFS over HTTP
(HsftpFileSystem is the HTTPS variant).

FTP
Although not complete at the time of this writing (https://issues.apache.org/jira/
browse/HADOOP-3199), there is an FTP interface to HDFS, which permits the use
of the FTP protocol to interact with HDFS. This interface is a convenient way to
transfer data into and out of HDFS using existing FTP clients.

50 | Chapter3: The Hadoop Distributed Filesystem

http://wiki.apache.org/hadoop/LibHDFS
http://wiki.apache.org/hadoop/LibHDFS
https://issues.apache.org/jira/browse/HADOOP-496
https://issues.apache.org/jira/browse/HADOOP-496
https://issues.apache.org/jira/browse/HADOOP-3199
https://issues.apache.org/jira/browse/HADOOP-3199

The FTP interface to HDFS is not to be confused with FTPFileSystem, which ex-
poses any FTP server as a Hadoop filesystem.

The Java Interface

In this section, we dig into the Hadoop’s FileSystem class: the API for interacting with
one of Hadoop’s filesystems.# While we focus mainly on the HDFS implementation,
DistributedFileSystem, in general you should strive to write your code against the
FileSystem abstract class, to retain portability across filesystems. This is very useful
when testing your program, for example, since you can rapidly run tests using data
stored on the local filesystem.

Reading Data from a Hadoop URL

One of the simplest ways to read a file from a Hadoop filesystem is by using a
java.net.URL object to open a stream to read the data from. The general idiom is:

InputStream in = null;

try {
in = new URL("hdfs://host/path").openStream();
// process in

} finally {
I0Utils.closeStream(in);

}

There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL
scheme. This is achieved by calling the setURLStreamHandlerFactory method on URL
with an instance of FsUrlStreamHandlerFactory. This method can only be called once
per JVM, so it is typically executed in a static block. This limitation means that if some
other part of your program——perhaps a third-party component outside your control—
sets a URLStreamHandlerFactory, you won’t be able to use this approach for reading data
from Hadoop. The next section discusses an alternative.

Example 3-1 shows a program for displaying files from Hadoop filesystems on standard
output, like the Unix cat command.

Example 3-1. Displaying files from a Hadoop filesystem on standard output using a
URLStreamHandler

public class URLCat {

static {
URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());
}

#From release 0.21.0, there is a new filesystem interface called FileContext with better handling of multiple
filesystems (so a single FileContext can resolve multiple filesystem schemes, for example) and a cleaner, more
consistent interface.

The Java Interface | 51

public static void main(String[] args) throws Exception {
InputStream in = null;

try {
in = new URL(args[0]).openStream();
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);

}
}
}

We make use of the handy I0Utils class that comes with Hadoop for closing the stream
in the finally clause, and also for copying bytes between the input stream and the
output stream (System.out in this case). The last two arguments to the copyBytes
method are the buffer size used for copying and whether to close the streams when the
copy is complete. We close the input stream ourselves, and System.out doesn’t need to
be closed.

Here’s a sample run:’

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

Reading Data Using the FileSystem API

As the previous section explained, sometimes it is impossible to set a URLStreamHand
lerFactory for your application. In this case, you will need to use the FileSystem API
to open an input stream for a file.

A file in a Hadoop filesystem is represented by a Hadoop Path object (and not
a java.io.File object, since its semantics are too closely tied to the local filesystem).
You can think of a Path as a Hadoop filesystem URI, such as hdfs://localhost/user/tom/
quangle.txt.

FileSystem is a general filesystem API, so the first step is to retrieve an instance for the
filesystem we want to use—HDFS in this case. There are two static factory methods
for getting a FileSystem instance:

public static FileSystem get(Configuration conf) throws IOException
public static FileSystem get(URI uri, Configuration conf) throws IOException

A Configuration object encapsulates a client or server’s configuration, which is set using
configuration files read from the classpath, such as conf/core-site.xml. The first method
returns the default filesystem (as specified in the file conf/core-site.xml, or the default
local filesystem if not specified there). The second uses the given URI’s scheme and

* The text is from The Quangle Wangle’s Hat by Edward Lear.

52 | Chapter3: The Hadoop Distributed Filesystem

authority to determine the filesystem to use, falling back to the default filesystem if no
scheme is specified in the given URI.

With a FileSysteminstance in hand, we invoke an open() method to get the input stream
for a file:

public FSDataInputStream open(Path f) throws IOException
public abstract FSDataInputStream open(Path f, int bufferSize) throws IOException

The first method uses a default buffer size of 4 K.

Putting this together, we can rewrite Example 3-1 as shown in Example 3-2.

Example 3-2. Displaying files from a Hadoop filesystem on standard output by using the FileSystem
directly

public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[o];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
InputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

The program runs as follows:

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDatalnputStream

The open() method on FileSystem actually returns a FSDataInputStream rather than a
standard java.io class. This class is a specialization of java.io.DataInputStream with
support for random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;
public class FSDataInputStream extends DataInputStream

implements Seekable, PositionedReadable {
// implementation elided

The Java Interface | 53

The Seekable interface permits seeking to a position in the file and a query method for
the current offset from the start of the file (getPos()):

public interface Seekable {
void seek(long pos) throws IOException;
long getPos() throws IOException;

Calling seek() with a position that is greater than the length of the file will result in an
I0Exception. Unlike the skip() method of java.io.InputStream that positions the
stream at a point later than the current position, seek() can move to an arbitrary, ab-
solute position in the file.

Example 3-3 is a simple extension of Example 3-2 that writes a file to standard out
twice: after writing it once, it seeks to the start of the file and streams through it once
again.

Example 3-3. Displaying files from a Hadoop filesystem on standard output twice, by using seck
public class FileSystemDoubleCat {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
FSDataInputStream in = null;
try {
in = fs.open(new Path(uri));
I0Utils.copyBytes(in, System.out, 4096, false);
in.seek(0); // go back to the start of the file
I0Utils.copyBytes(in, System.out, 4096, false);
} finally {
I0Utils.closeStream(in);
}
}
}

Here’s the result of running it on a small file:

% hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txt
On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

FSDataInputStream also implements the PositionedReadable interface for reading parts
of a file at a given offset:

public interface PositionedReadable {

public int read(long position, byte[] buffer, int offset, int length)

54 | Chapter3: The Hadoop Distributed Filesystem

throws IOException;

public void readFully(long position, byte[] buffer, int offset, int length)
throws IOException;

public void readFully(long position, byte[] buffer) throws IOException;
}

The read() method reads up to length bytes from the given position in the file into the
buffer at the given offset in the buffer. The return value is the number of bytes actually
read: callers should check this value as it may be less than length. The readFully()
methods will read length bytes into the buffer (or buffer.length bytes for the version
that just takes a byte array buffer), unless the end of the file is reached, in which case
an EOFException is thrown.

All of these methods preserve the current offset in the file and are thread-safe, so they
provide a convenient way to access another part of the file—metadata perhaps—while
reading the main body of the file. In fact, they are just implemented using the
Seekable interface using the following pattern:

long oldPos = getPos();
try {
seek(position);
// read data
} finally {
seek(oldPos);
}

Finally, bear in mind that calling seek() is a relatively expensive operation and should
be used sparingly. You should structure your application access patterns to rely on
streaming data, (by using MapReduce, for example) rather than performing a large
number of seeks.

Writing Data

The FileSystem class has a number of methods for creating a file. The simplest is the
method that takes a Path object for the file to be created and returns an output stream
to write to:

public FSDataOutputStream create(Path f) throws IOException

There are overloaded versions of this method that allow you to specify whether to
forcibly overwrite existing files, the replication factor of the file, the buffer size to use
when writing the file, the block size for the file, and file permissions.

The create() methods create any parent directories of the file to be
written that don’t already exist. Though convenient, this behavior may
be unexpected. If you want the write to fail if the parent directory doesn’t

exist, then you should check for the existence of the parent directory
first by calling the exists() method.

The Java Interface | 55

There’s also an overloaded method for passing a callback interface, Progressable, so
your application can be notified of the progress of the data being written to the
datanodes:

package org.apache.hadoop.util;

public interface Progressable {
public void progress();

}

As an alternative to creating a new file, you can append to an existing file using the
append() method (there are also some other overloaded versions):

public FSDataOutputStream append(Path) throws IOException

The append operation allows a single writer to modify an already written file by opening
it and writing data from the final offset in the file. With this API, applications that
produce unbounded files, such as logfiles, can write to an existing file after a restart,
for example. The append operation is optional and not implemented by all Hadoop
filesystems. For example, HDFS supports append, but S3 filesystems don’t.

Example 3-4 shows how to copy a local file to a Hadoop filesystem. We illustrate pro-
gress by printing a period every time the progress () method is called by Hadoop, which
is after each 64 K packet of data is written to the datanode pipeline. (Note that this
particular behavior is not specified by the API, so it is subject to change in later versions
of Hadoop. The API merely allows you to infer that “something is happening.”)

Example 3-4. Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {
public static void main(String[] args) throws Exception {
String localSrc = args[0];
String dst = args[1];

InputStream in = new BufferedInputStream(new FileInputStream(localSrc));

Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst), new Progressable() {
public void progress() {
System.out.print(".");
}
b;

I0Utils.copyBytes(in, out, 4096, true);
}
}

Typical usage:

% hadoop FileCopyWithProgress input/docs/1400-8.txt hdfs://localhost/user/tom/
1400-8.txt

56 | Chapter3: The Hadoop Distributed Filesystem

Currently, none of the other Hadoop filesystems call progress () during writes. Progress
is important in MapReduce applications, as you will see in later chapters.

FSDataOutputStream

The create() method on FileSystem returns an FSDataOutputStream, which, like
FSDataInputStream, has a method for querying the current position in the file:

package org.apache.hadoop.fs;
public class FSDataOutputStream extends DataOutputStream implements Syncable {

public long getPos() throws IOException {
// implementation elided
}

// implementation elided

}

However, unlike FSDataInputStream, FSDataOutputStream does not permit seeking. This
is because HDFS allows only sequential writes to an open file or appends to an already
written file. In other words, there is no support for writing to anywhere other than the
end of the file, so there is no value in being able to seek while writing.

Directories

FileSystem provides a method to create a directory:
public boolean mkdirs(Path f) throws IOException
This method creates all of the necessary parent directories if they don’t already exist,

just like the java.io.File’s mkdirs() method. It returns true if the directory (and all
parent directories) was (were) successfully created.

Often, you don’t need to explicitly create a directory, since writing a file, by calling
create(), will automatically create any parent directories.

Querying the Filesystem

File metadata: FileStatus

An important feature of any filesystem is the ability to navigate its directory structure
and retrieve information about the files and directories that it stores. The FileStatus
class encapsulates filesystem metadata for files and directories, including file length,
block size, replication, modification time, ownership, and permission information.

The method getFileStatus() on FileSystem provides a way of getting a FileStatus
object for a single file or directory. Example 3-5 shows an example of its use.

The Java Interface | 57

Example 3-5. Demonstrating file status information

public class ShowFileStatusTest {

private MiniDFSCluster cluster; // use an in-process HDFS cluster for testing
private FileSystem fs;

@Before
public void setUp() throws IOException {
Configuration conf = new Configuration();
if (System.getProperty("test.build.data") == null) {
System.setProperty("test.build.data", "/tmp");
}
cluster = new MiniDFSCluster(conf, 1, true, null);
fs = cluster.getFileSystem();
OutputStream out = fs.create(new Path("/dir/file"));
out.write("content".getBytes("UTF-8"));
out.close();

}

@After
public void tearDown() throws IOException {

if (fs !'= null) { fs.close(); }

if (cluster != null) { cluster.shutdown(); }
}

@Test(expected = FileNotFoundException.class)
public void throwsFileNotFoundForNonExistentFile() throws IOException {
fs.getFileStatus(new Path("no-such-file"));

}

@Test

public void fileStatusForFile() throws IOException {
Path file = new Path("/dir/file");
FileStatus stat = fs.getFileStatus(file);
assertThat(stat.getPath().toUri().getPath(), is("/dir/file"));
assertThat(stat.isDir(), is(false));
assertThat(stat.getLen(), is(7L));
assertThat(stat.getModificationTime(),

is(lessThanOrEqualTo(System.currentTimeMillis())));

assertThat(stat.getReplication(), is((short) 1));
assertThat(stat.getBlockSize(), is(64 * 1024 * 1024L));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rw-r--r--"));

}

@Test

public void fileStatusForDirectory() throws IOException {
Path dir = new Path("/dir");
FileStatus stat = fs.getFileStatus(dir);
assertThat(stat.getPath().toUri().getPath(), is("/dir"));
assertThat(stat.isDir(), is(true));
assertThat(stat.getLen(), is(oL));
assertThat(stat.getModificationTime(),

is(lessThanOrEqualTo(System.currentTimeMillis())));

58 | Chapter3: The Hadoop Distributed Filesystem

assertThat(stat.getReplication(), is((short) 0));
assertThat(stat.getBlockSize(), is(oL));
assertThat(stat.getOwner(), is("tom"));
assertThat(stat.getGroup(), is("supergroup"));
assertThat(stat.getPermission().toString(), is("rwxr-xr-x"));

}

If no file or directory exists, a FileNotFoundException is thrown. However, if you are
interested only in the existence of a file or directory, then the exists() method on
FileSystem is more convenient:

public boolean exists(Path f) throws IOException

Listing files

Finding information on a single file or directory is useful, but you also often need to be
able to list the contents of a directory. That’s what FileSystem’s listStatus() methods
are for:
public FileStatus[
public FileStatus[

public FileStatus[
public FileStatus[

listStatus(Path f) throws IOException

listStatus(Path f, PathFilter filter) throws IOException
listStatus(Path[] files) throws IOException

listStatus(Path[] files, PathFilter filter) throws IOException

[—

When the argument is a file, the simplest variant returns an array of FileStatus objects
oflength 1. When the argument is a directory, it returns zero or more FileStatus objects
representing the files and directories contained in the directory.

Overloaded variants allow a PathFilter to be supplied to restrict the files and directories
to match—you will see an example in section “PathFilter” on page 61. Finally, if you
specify an array of paths, the result is a shortcut for calling the equivalent single-path
listStatus method for each path in turn and accumulating the FileStatus object arrays
in a single array. This can be useful for building up lists of input files to process from
distinct parts of the filesystem tree. Example 3-6 is a simple demonstration of this idea.
Note the use of stat2Paths() in FileUtil for turning an array of FileStatus objects to
an array of Path objects.

Example 3-6. Showing the file statuses for a collection of paths in a Hadoop filesystem

public class ListStatus {

public static void main(String[] args) throws Exception {
String uri = args[o];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

Path[] paths = new Path[args.length];
for (int i = 0; i < paths.length; i++) {
paths[i] = new Path(args[i]);

The Java Interface | 59

FileStatus[] status = fs.listStatus(paths);
Path[] listedPaths = FileUtil.stat2Paths(status);
for (Path p : listedPaths) {
System.out.println(p);
}
}
}

We can use this program to find the union of directory listings for a collection of paths:

% hadoop ListStatus hdfs://localhost/ hdfs://localhost/user/tom
hdfs://localhost/user

hdfs://localhost/user/tom/books
hdfs://localhost/user/tom/quangle.txt

File patterns

It is a common requirement to process sets of files in a single operation. For example,
a MapReduce job for log processing might analyze a month’s worth of files contained
in a number of directories. Rather than having to enumerate each file and directory to
specify the input, it is convenient to use wildcard characters to match multiple files
with a single expression, an operation that is known as globbing. Hadoop provides
two FileSystem method for processing globs:

public FileStatus[] globStatus(Path pathPattern) throws IOException

public FileStatus[] globStatus(Path pathPattern, PathFilter filter) throws
IOException

The globStatus() method returns an array of FileStatus objects whose paths match
the supplied pattern, sorted by path. An optional PathFilter can be specified to restrict
the matches further.

Hadoop supports the same set of glob characters as Unix bash (see Table 3-2).

Table 3-2. Glob characters and their meanings

Glob Name Matches

* asterisk Matches zero or more characters

? question mark Matches a single character

[ab] character class Matches a single character in the set {a, b}

[~ab] negated character class ~ Matches a single character thatis not in the set {a, b}

[a-b] character range Matches a single character in the (closed) range [a, b], where a is lexicographically
less than or equal to b

[*a-b] negated characterrange ~ Matches a single character that is not in the (closed) range [a, b], where ais
lexicographically less than or equal to b

{a,b} alternation Matches either expression a or b

\c escaped character Matches character c when it is a metacharacter

60 | Chapter3: The Hadoop Distributed Filesystem

Imagine that logfiles are stored in a directory structure organized hierarchically by
date. So, for example, logfiles for the last day of 2007 would go in a directory
named /2007/12/31. Suppose that the full file listing is:

* /2007/12/30

* /2007/12/31

* /2008/01/01

* /2008/01/02

Here are some file globs and their expansions:

Glob Expansion

/* /2007 /2008

[*/* /2007/12 /2008/01
[*/12/* /2007/12/30 /2007/12/31
/200? /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008
/200["01234569] /2007 /2008
/*/*/{31,01} /2007/12/31/2008/01/01
/*/*/3{0,1} /2007/12/30/2007/12/31

/*/{12/31,01/01} /2007/12/31 /2008/01/01

PathFilter

Glob patterns are not always powerful enough to describe a set of files you want to
access. For example, it is not generally possible to exclude a particular file using a glob
pattern. The listStatus() and globStatus() methods of FileSystem take an optional
PathFilter, which allows programmatic control over matching:

package org.apache.hadoop.fs;

public interface PathFilter {
boolean accept(Path path);
}

PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File
objects.

Example 3-7 shows a PathFilter for excluding paths that match a regular expression.

The Java Interface | 61

Example 3-7. A PathFilter for excluding paths that match a regular expression

public class RegexExcludePathFilter implements PathFilter {
private final String regex;

public RegexExcludePathFilter(String regex) {
this.regex = regex;

}

public boolean accept(Path path) {
return !path.toString().matches(regex);
}
}

The filter passes only files that don’t match the regular expression. We use the filter in
conjunction with a glob that picks out an initial set of files to include: the filter is used
to refine the results. For example:

fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("~.*/2007/12/31$"))
will expand to /2007/12/30.

Filters can only act on a file’s name, as represented by a Path. They can’t use a file’s
properties, such as creation time, as the basis of the filter. Nevertheless, they can per-
form matching that neither glob patterns nor regular expressions can achieve. For ex-
ample, if you store files in a directory structure that is laid out by date (like in the
previous section), then you can write a PathFilter to pick out files that fall in a given
date range.

Deleting Data

Use the delete() method on FileSystem to permanently remove files or directories:

public boolean delete(Path f, boolean recursive) throws IOException

If f is a file or an empty directory, then the value of recursive is ignored. A nonempty
directory is only deleted, along with its contents, if recursive is true (otherwise an
IOException is thrown).

Data Flow

Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDFS, the name-
node and the datanodes, consider Figure 3-1, which shows the main sequence of events
when reading a file.

62 | Chapter3: The Hadoop Distributed Filesystem

2: get block locations

: Distributed B — N
» FileSyst > [EEI
client

HDFS
, -y FSData namenode
- InputStream —_—
client JUM
dient node I
4:read 5 read

datanode datanode datanode

Figure 3-1. A client reading data from HDFS

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-1).
DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2). For each block, the namenode
returns the addresses of the datanodes that have a copy of that block. Furthermore, the
datanodes are sorted according to their proximity to the client (according to the top-
ology of the cluster’s network; see “Network Topology and Hadoop” on page 64). If
the client is itself a datanode (in the case of a MapReduce task, for instance), then it
will read from the local datanode, if it hosts a copy of the block.

The DistributedFileSystem returns an FSDataInputStream (an input stream that sup-
ports file seeks) to the client for it to read data from. FSDataInputStream in turn wraps
a DFSInputStream, which manages the datanode and namenode 1/0O.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
(closest) datanode for the first block in the file. Data is streamed from the datanode
back to the client, which calls read() repeatedly on the stream (step 4). When the end
of the block is reached, DFSInputStream will close the connection to the datanode, then
find the best datanode for the next block (step 5). This happens transparently to the
client, which from its point of view is just reading a continuous stream.

Blocks are read in order with the DFSInputStream opening new connections to datanodes
as the client reads through the stream. It will also call the namenode to retrieve the
datanode locations for the next batch of blocks as needed. When the client has finished
reading, it calls close() on the FSDataInputStream (step 6).

DataFlow | 63

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, then it will try the next closest one for that block. It will also remember
datanodes that have failed so that it doesn’t needlessly retry them for later blocks. The
DFSInputStream also verifies checksums for the data transferred to it from the datanode.
If a corrupted block is found, it is reported to the namenode before the DFSInput
Stream attempts to read a replica of the block from another datanode.

One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDFS to scale to a large number of concurrent clients, since the data
trafficis spread across all the datanodes in the cluster. The namenode meanwhile merely
has to service block location requests (which it stores in memory, making them very
efficient) and does not, for example, serve data, which would quickly become a bot-
tleneck as the number of clients grew.

Network Topology and Hadoop

What does it mean for two nodes in a local network to be “close” to each other? In the
context of high-volume data processing, the limiting factor is the rate at which we can
transfer data between nodes—bandwidth is a scarce commodity. The idea is to use the
bandwidth between two nodes as a measure of distance.

Rather than measuring bandwidth between nodes, which can be difficult to do in prac-
tice (it requires a quiet cluster, and the number of pairs of nodes in a cluster grows as
the square of the number of nodes), Hadoop takes a simple approach in which the
network is represented as a tree and the distance between two nodes is the sum of their
distances to their closest common ancestor. Levels in the tree are not predefined, but
it is common to have levels that correspond to the data center, the rack, and the node
that a process is running on. The idea is that the bandwidth available for each of the
following scenarios becomes progressively less:

¢ Processes on the same node

* Different nodes on the same rack

¢ Nodes on different racks in the same data center

¢ Nodes in different data centers’
For example, imagine a node n1 on rack r1 in data center d1. This can be represented
as /d1/r1/nl. Using this notation, here are the distances for the four scenarios:

* distance(/d1/r1/nl, /d1/r1/n1) = O (processes on the same node)

e distance(/d1/r1/nl, /d1/r1/n2) = 2 (different nodes on the same rack)

e distance(/d1/r1/nl,/d1/r2/n3) =4 (nodes on different racks in the same data center)

e distance(/d1/r1/nl, /d2/r3/n4) = 6 (nodes in different data centers)

T At the time of this writing, Hadoop is not suited for running across data centers.

64 | Chapter3: The Hadoop Distributed Filesystem

This is illustrated schematically in Figure 3-2. (Mathematically inclined readers will
notice that this is an example of a distance metric.)

Finally, it is important to realize that Hadoop cannot divine your network topology for
you. It needs some help; we’ll cover how to configure topology in “Network Topol-
ogy” on page 261. By default though, it assumes that the network is flat—a single-level
hierarchy—or in other words, that all nodes are on a single rack in a single data center.
For small clusters, this may actually be the case, and no further configuration is
required.

............................ d=5

,,,,,,,,,,,, d=4 N
B | |E =mr |l
| 2T | |1 | | [{1 |
1 1| | I | | 1| |1 |
= n [| I | [|
| I | | I | | I
| | | | I | | |
[| [| I | [|
| | | | I | | |

1 2 3 rack
d1 d2 data center

Figure 3-2. Network distance in Hadoop

Anatomy of a File Write

Next we’ll look at how files are written to HDFS. Although quite detailed, it is instruc-
tive to understand the data flow since it clarifies HDFS’s coherency model.

The case we’re going to consider is the case of creating a new file, writing data to it,
then closing the file. See Figure 3-3.

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-3). DistributedFileSystem makes an RPC call to the namenode to create a new
file in the filesystem’s namespace, with no blocks associated with it (step 2). The name-
node performs various checks to make sure the file doesn’t already exist, and that the
client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
IOException. The DistributedFileSystem returns an FSDataOutputStream for the client

DataFlow | 65

to start writing data to. Just as in the read case, FSDataOutputStream wraps a DFSOutput
Stream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), DFSOutputStreanm splits it into packets, which it writes
to an internal queue, called the data queue. The data queue is consumed by the Data
Streamer, whose responsibility it is to ask the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline—we’ll assume the replication level is three, so there are three nodes in the
pipeline. The DataStreamer streams the packets to the first datanode in the pipeline,
which stores the packet and forwards it to the second datanode in the pipeline. Simi-
larly, the second datanode stores the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

2: create
1: Distributed noBlees sannns sunsannanas snnnna snuns >
HDFS My FileSystem 7: complete szl
dient . T . S —— ’
: FSData namenode
- OutputStream —_—
dient JVM

A

client node

4:write packet 5: ack packet

Pipeline of DataNode [JJld DataNode DataNode
datanodes
datanode datanode datanode
4

Figure 3-3. A client writing data to HDFS

DFSOutputStream also maintains an internal queue of packets that are waiting to be
acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).

If a datanode fails while data is being written to it, then the following actions are taken,
which are transparent to the client writing the data. First the pipeline is closed, and any
packets in the ack queue are added to the front of the data queue so that datanodes
that are downstream from the failed node will not miss any packets. The current block
on the good datanodes is given a new identity, which is communicated to the name-
node, so that the partial block on the failed datanode will be deleted if the failed

66 | Chapter3: TheHadoop Distributed Filesystem

datanode recovers later on. The failed datanode is removed from the pipeline and the
remainder of the block’s data is written to the two good datanodes in the pipeline. The
namenode notices that the block is under-replicated, and it arranges for a further replica
to be created on another node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, that multiple datanodes fail while a block is being written.
Aslongasdfs.replication.minreplicas (default one) are written, the write will succeed,
and the block will be asynchronously replicated across the cluster until its target rep-
lication factor is reached (dfs.replication, which defaults to three).

When the client has finished writing data, it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac-
knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (via Data
Streamer asking for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.

Replica Placement

How does the namenode choose which datanodes to store replicas on? There’s a trade-
off between reliability and write bandwidth and read bandwidth here. For example,
placing all replicas on a single node incurs the lowest write bandwidth penalty since
the replication pipeline runs on a single node, but this offers no real redundancy (if the
node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack
reads. At the other extreme, placing replicas in different data centers may maximize
redundancy, but at the cost of bandwidth. Even in the same data center (which is what
all Hadoop clusters to date have run in), there are a variety of placement strategies.
Indeed, Hadoop changed its placement strategy in release 0.17.0 to one that helps keep
a fairly even distribution of blocks across the cluster. (See “balancer” on page 304 for
details on keeping a cluster balanced.) And from 0.21.0, block placement policies are

pluggable.

Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes on the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topol-
ogy into account. For a replication factor of 3, the pipeline might look like Figure 3-4.

Overall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

DataFlow | 67

I | [node |
[| I |
I | I |
[Eos{-piE
] Ii:I
[| I |
I | I J
rack
data center

Figure 3-4. A typical replica pipeline

Coherency Model

A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));

However, any content written to the file is not guaranteed to be visible, even if the
stream is flushed. So the file appears to have a length of zero:

Path p = new Path("p");

OutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.flush();
assertThat(fs.getFileStatus(p).getlen(), is(oL));

Once more than a block’s worth of data has been written, the first block will be visible
to new readers. This is true of subsequent blocks, too: it is always the current block
being written that is not visible to other readers.

68 | Chapter3: The Hadoop Distributed Filesystem

HDFS provides a method for forcing all buffers to be synchronized to the datanodes
via the sync() method on FSDataOutputStream. After a successful return from sync(),
HDFS guarantees that the data written up to that point in the file is persisted and visible
to all new readers:*

Path p = new Path("p");

FSDataOutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.flush();

out.sync();
assertThat(fs.getFileStatus(p).getlen(), is(((long) "content".length())));

This behavior is similar to the fsync system call in POSIX that commits buffered data
for a file descriptor. For example, using the standard Java API to write a local file, we
are guaranteed to see the content after flushing the stream and synchronizing:
FileOutputStream out = new FileOutputStream(localFile);
out.write("content".getBytes("UTF-8"));
out.flush(); // flush to operating system

out.getFD().sync(); // sync to disk
assertThat(localFile.length(), is(((long) "content".length())));

Closing a file in HDFS performs an implicit sync(), too:

Path p = new Path("p");

OutputStream out = fs.create(p);

out.write("content".getBytes("UTF-8"));

out.close();

assertThat(fs.getFileStatus(p).getlen(), is(((long) "content".length())));

Consequences for application design

This coherency model has implications for the way you design applications. With no
calls to sync(), you should be prepared to lose up to a block of data in the event of
client or system failure. For many applications, this is unacceptable, so you should call
sync() at suitable points, such as after writing a certain number of records or number
of bytes. Though the sync() operation is designed to not unduly tax HDFS, it does have
some overhead, so there is a trade-off between data robustness and throughput. What
is an acceptable trade-off is application-dependent, and suitable values can be selected
after measuring your application’s performance with different sync() frequencies.

1 Releases of Hadoop up to and including 0.20 do not have a working implementation of sync(); however, this
has been remedied from 0.21.0 onward. Also, from that version, sync() is deprecated in favor of hflush(),
which only guarantees that new readers will see all data written to that point, and hsync(), which makes a
stronger guarantee that the operating system has flushed the data to disk (like POSIX fsync), although data
may still be in the disk cache.

DataFlow | 69

Parallel Copying with distcp

The HDFS access patterns that we have seen so far focus on single-threaded access. It’s
possible to act on a collection of files, by specifying file globs, for example, but for
efficient, parallel processing of these files you would have to write a program yourself.
Hadoop comes with a useful program called distcp for copying large amounts of data
to and from Hadoop filesystems in parallel.

The canonical use case for distcp is for transferring data between two HDFS clusters.
If the clusters are running identical versions of Hadoop, the hdfs scheme is
appropriate:

% hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar

This will copy the /foo directory (and its contents) from the first cluster to the /bar
directory on the second cluster, so the second cluster ends up with the directory struc-
ture /bar/foo. If /bar doesn’t exist, it will be created first. You can specify multiple source
paths, and all will be copied to the destination. Source paths must be absolute.

By default, distcp will skip files that already exist in the destination, but they can be
overwritten by supplying the -overwrite option. You can also update only files that
have changed using the -update option.

Using either (or both) of -overwrite or -update changes how the source
g and destination paths are interpreted. This is best shown with an ex-
ample. If we changed a file in the /foo subtree on the first cluster from

the previous example, then we could synchronize the change with the
second cluster by running;:

% hadoop distcp -update hdfs://namenode1/foo hdfs://namenode2/bar/foo

The extra trailing /foo subdirectory is needed on the destination, as now
the contents of the source directory are copied to the contents of the
destination directory. (If you are familiar with rsync, you can think of
the -overwrite or -update options as adding an implicit trailing slash to
the source.)

If you are unsure of the effect of a distcp operation, it is a good idea to
try it out on a small test directory tree first.

There are more options to control the behavior of distcp, including ones to preserve file
attributes, ignore failures, and limit the number of files or total data copied. Run it with
no options to see the usage instructions.

distcp is implemented as a MapReduce job where the work of copying is done by the
maps that run in parallel across the cluster. There are no reducers. Each file is copied
by a single map, and distcp tries to give each map approximately the same amount of
data, by bucketing files into roughly equal allocations.

70 | Chapter3: The Hadoop Distributed Filesystem

The number of maps is decided as follows. Since it’s a good idea to get each map to
copy a reasonable amount of data to minimize overheads in task setup, each map copies
at least 256 MB (unless the total size of the input is less, in which case one map handles
it all). For example, 1 GB of files will be given four map tasks. When the data size is
very large, it becomes necessary to limit the number of maps in order to limit bandwidth
and cluster utilization. By default, the maximum number of maps is 20 per (tasktracker)
cluster node. For example, copying 1,000 GB of files to a 100-node cluster will allocate
2,000 maps (20 per node), so each will copy 512 MB on average. This can be reduced
by specifying the -m argument to distcp. For example, -m 1000 would allocate 1,000
maps, each copying 1 GB on average.

If you try to use distcp between two HDFS clusters that are running different versions,
the copy will fail if you use the hdfs protocol, since the RPC systems are incompatible.
To remedy this, you can use the read-only HTTP-based HF TP filesystem to read from
the source. The job must run on the destination cluster so that the HDFS RPC versions
are compatible. To repeat the previous example using HFTP:

% hadoop distcp hftp://namenode1:50070/foo hdfs://namenode2/bar

Note that you need to specify the namenode’s web port in the source URI. This is
determined by the dfs.http.address property, which defaults to 50070.

Keeping an HDFS Cluster Balanced

When copying data into HDFS, it’s important to consider cluster balance. HDFS works
best when the file blocks are evenly spread across the cluster, so you want to ensure
that distcp doesn’t disrupt this. Going back to the 1,000 GB example, by specifying -m
1 a single map would do the copy, which—apart from being slow and not using the
cluster resources efficiently—would mean that the first replica of each block would
reside on the node running the map (until the disk filled up). The second and third
replicas would be spread across the cluster, but this one node would be unbalanced.
By having more maps than nodes in the cluster, this problem is avoided—for this rea-
son, it’s best to start by running distcp with the default of 20 maps per node.

However, it’s not always possible to prevent a cluster from becoming unbalanced. Per-
haps you want to limit the number of maps so that some of the nodes can be used by
other jobs. In this case, you can use the balancer tool (see “balancer” on page 304) to
subsequently even out the block distribution across the cluster.

Hadoop Archives

HDFEFS stores small files inefficiently, since each file is stored in a block, and block
metadata is held in memory by the namenode. Thus, a large number of small files can
eat up a lot of memory on the namenode. (Note, however, that small files do not take
up any more disk space than is required to store the raw contents of the file. For

Hadoop Archives | 71

example, a 1 MB file stored with a block size of 128 MB uses 1 MB of disk space, not
128 MB.)

Hadoop Archives, or HAR files, are a file archiving facility that packs files into HDFS
blocks more efficiently, thereby reducing namenode memory usage while still allowing
transparent access to files. In particular, Hadoop Archives can be used as input to
MapReduce.

Using Hadoop Archives

A Hadoop Archive is created from a collection of files using the archive tool. The tool
runs a MapReduce job to process the input files in parallel, so to run it, you need a
MapReduce cluster running to use it. Here are some files in HDFS that we would like
to archive:

% hadoop fs -1sr /my/files

-rw-r--r-- 1 tom supergroup 1 2009-04-09 19:13 /my/files/a
drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/files/dir
-rw-r--r-- 1 tom supergroup 1 2009-04-09 19:13 /my/files/dir/b

Now we can run the archive command:

%
hadoop archive -archiveName files.har /my/files /my

The first option is the name of the archive, here files.har. HAR files always have
a.har extension, which is mandatory for reasons we shall see later. Next comes the files
to put in the archive. Here we are archiving only one source tree, the files in /my/files
in HDFS, but the tool accepts multiple source trees. The final argument is the output
directory for the HAR file. Let’s see what the archive has created:

% hadoop fs -1s /my

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/files

drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/files.har

% hadoop fs -1s /my/files.har
Found 3 items

-rw-r--r-- 10 tom supergroup 165 2009-04-09 19:13 /my/files.har/_index
-rw-r--r-- 10 tom supergroup 23 2009-04-09 19:13 /my/-Files.har/_mas‘terindex
-rw-r--r-- 1 tom supergroup 2 2009-04-09 19:13 /my/-Files.har/part—O

The directory listing shows what a HAR file is made of: two index files and a collection
of part files—just one in this example. The part files contain the contents of a number
of the original files concatenated together, and the indexes make it possible to look up
the part file that an archived file is contained in, and its offset and length. All these
details are hidden from the application, however, which uses the har URI scheme to
interact with HAR files, using a HAR filesystem that is layered on top of the underlying
filesystem (HDFS in this case). The following command recursively lists the files in the
archive:

72 | Chapter3: The Hadoop Distributed Filesystem

% hadoop fs -1sr har:///my/files.har

drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my

drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my/files
-Iw-r--r-- 10 tom supergroup 1 2009-04-09 19:13 /my/files.har/my/files/a
drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my/files/dir
-Iw-r--r-- 10 tom supergroup 1 2009-04-09 19:13 /my/files.har/my/files/dir/b

This is quite straightforward if the filesystem that the HAR file is on is the default
filesystem. On the other hand, if you want to refer to a HAR file on a different filesystem,
then you need to use a different form of the path URI to normal. These two commands
have the same effect, for example:

% hadoop fs -1sr har:///my/files.har/my/files/dir
% hadoop fs -1sr har://hdfs-localhost:8020/my/files.har/my/files/dir

Notice in the second form that the scheme is still har to signify a HAR filesystem, but
the authority is hdfs to specify the underlying filesystem’s scheme, followed by a dash
and the HDFS host (localhost) and port (8020). We can now see why HAR files have
to have a .har extension. The HAR filesystem translates the har URI into a URI for the
underlying filesystem, by looking at the authority and path up to and including the
component with the .har extension. In this case, it is hdfs://localhost:8020/myl/files
.har. The remaining part of the path is the path of the file in the archive: /my/files/dir.

To delete a HAR file, you need to use the recursive form of delete, since from the
underlying filesystem’s point of view the HAR file is a directory:

%
hadoop fs -rmr /my/files.har

Limitations

There are a few limitations to be aware of with HAR files. Creating an archive creates
a copy of the original files, so you need as much disk space as the files you are archiving
to create the archive (although you can delete the originals once you have created the
archive). There is currently no support for archive compression, although the files that
go into the archive can be compressed (HAR files are like tar files in this respect).

Archives are immutable once they have been created. To add or remove files, you must
re-create the archive. In practice, this is not a problem for files that don’t change after
being written, since they can be archived in batches on a regular basis, such as daily or
weekly.

As noted earlier, HAR files can be used as input to MapReduce. However, there is no
archive-aware InputFormat that can pack multiple files into a single MapReduce split,
so processing lots of small files, even in a HAR file, can still be inefficient. “Small files
and CombineFileInputFormat” on page 203 discusses another approach to this
problem.

Hadoop Archives | 73

CHAPTER 4

Hadoop 1/0

Hadoop comes with a set of primitives for data I/O. Some of these are techniques that
are more general than Hadoop, such as data integrity and compression, but deserve
special consideration when dealing with multiterabyte datasets. Others are Hadoop
tools or APIs that form the building blocks for developing distributed systems, such as
serialization frameworks and on-disk data structures.

Data Integrity

Users of Hadoop rightly expect that no data will be lost or corrupted during storage or
processing. However, since every I/O operation on the disk or network carries with it
a small chance of introducing errors into the data that it is reading or writing, when the
volumes of data flowing through the system are as large as the ones Hadoop is capable
of handling, the chance of data corruption occurring is high.

The usual way of detecting corrupted data is by computing a checksum for the data
when it first enters the system, and again whenever it is transmitted across a channel
that is unreliable and hence capable of corrupting the data. The data is deemed to be
corrupt if the newly generated checksum doesn’t exactly match the original. This tech-
nique doesn’t offer any way to fix the data—merely error detection. (And thisis a reason
for not using low-end hardware; in particular, be sure to use ECC memory.) Note that
itis possible that it’s the checksum that is corrupt, not the data, but this is very unlikely,
since the checksum is much smaller than the data.

A commonly used error-detecting code is CRC-32 (cyclic redundancy check), which
computes a 32-bit integer checksum for input of any size.

Data Integrity in HDFS

HDFS transparently checksums all data written to it and by default verifies checksums
when reading data. A separate checksum is created for every io.bytes.per.checksum

75

bytes of data. The default is 512 bytes, and since a CRC-32 checksum is 4 bytes long,
the storage overhead is less than 1%.

Datanodes are responsible for verifying the data they receive before storing the data
and its checksum. This applies to data that they receive from clients and from other
datanodes during replication. A client writing data sends it to a pipeline of datanodes
(as explained in Chapter 3), and the last datanode in the pipeline verifies the checksum.
If it detects an error, the client receives a ChecksumException, a subclass of IOExcep
tion, which it should handle in an application-specific manner, by retrying the opera-
tion, for example.

When clients read data from datanodes, they verify checksums as well, comparing them
with the ones stored at the datanode. Each datanode keeps a persistent log of checksum
verifications, so it knows the last time each of its blocks was verified. When a client
successfully verifies a block, it tells the datanode, which updates its log. Keeping sta-
tistics such as these is valuable in detecting bad disks.

Aside from block verification on client reads, each datanode runs a DataBlockScanner
in a background thread that periodically verifies all the blocks stored on the datanode.
This is to guard against corruption due to “bit rot” in the physical storage media. See
“Datanode block scanner” on page 303 for details on how to access the scanner
reports.

Since HDFS stores replicas of blocks, it can “heal” corrupted blocks by copying one of
the good replicas to produce a new, uncorrupt replica. The way this works is that if a
client detects an error when reading a block, it reports the bad block and the datanode
it was trying to read from to the namenode before throwing a ChecksumException. The
namenode marks the block replica as corrupt, so it doesn’t direct clients to it, or try to
copy this replica to another datanode. It then schedules a copy of the block to be re-
plicated on another datanode, so its replication factor is back at the expected level.
Once this has happened, the corrupt replica is deleted.

It is possible to disable verification of checksums by passing false to the setVerify
Checksum() method on FileSystem, before using the open() method to read a file. The
same effect is possible from the shell by using the -ignoreCrc option with the -get or
the equivalent -copyToLocal command. This feature is useful if you have a corrupt file
that you want to inspect so you can decide what to do with it. For example, you might
want to see whether it can be salvaged before you delete it.

LocalFileSystem

The Hadoop LocalFileSystem performs client-side checksumming. This means that
when you write a file called filename, the filesystem client transparently creates a hidden
file, .filename.crc, in the same directory containing the checksums for each chunk of
the file. Like HDFS, the chunk size is controlled by the i0.bytes. per.checksum property,
which defaults to 512 bytes. The chunk size is stored as metadata in the .crc file, so the

76 | Chapter4: Hadoop /0

file can be read back correctly even if the setting for the chunk size has changed.
Checksums are verified when the file is read, and if an error is detected,
LocalFileSystem throws a ChecksumException.

Checksums are fairly cheap to compute (in Java, they are implemented in native code),
typically adding a few percent overhead to the time to read or write a file. For most
applications, this is an acceptable price to pay for data integrity. It is, however, possible
to disable checksums: typically when the underlying filesystem supports checksums
natively. This is accomplished by using RawLocalFileSystem in place of Local
FileSystem. To do this globally in an application, it suffices to remap the implementa-
tion for file URIs by setting the property fs.file.impl to the value
org.apache.hadoop.fs.RawLocalFileSystem. Alternatively, you can directly create a Raw
LocalFileSystem instance, which may be useful if you want to disable checksum veri-
fication for only some reads; for example:
Configuration conf = ...

FileSystem fs = new RawLocalFileSystem();
fs.initialize(null, conf);

ChecksumFileSystem

LocalFileSystem uses ChecksumFileSystem to do its work, and this class makes it easy
to add checksumming to other (nonchecksummed) filesystems, as Checksum
FileSystem is just a wrapper around FileSystem. The general idiom is as follows:

FileSystem rawFs = ...
FileSystem checksummedFs = new ChecksumFileSystem(rawFs);

The underlying filesystem is called the raw filesystem, and may be retrieved using the
getRawFileSystem() method on ChecksumFileSystem. ChecksumFileSystem has a few
more useful methods for working with checksums, such as getChecksumFile() for get-
ting the path of a checksum file for any file. Check the documentation for the others.

If an error is detected by ChecksumFileSystem when reading a file, it will call its
reportChecksumFailure() method. The default implementation does nothing, but
LocalFileSystem moves the offending file and its checksum to a side directory on the
same device called bad_files. Administrators should periodically check for these bad
files and take action on them.

Compression

File compression brings two major benefits: it reduces the space needed to store files,
and it speeds up data transfer across the network, or to or from disk. When dealing
with large volumes of data, both of these savings can be significant, so it pays to carefully
consider how to use compression in Hadoop.

Compression | 77

There are many different compression formats, tools and algorithms, each with differ-
ent characteristics. Table 4-1 lists some of the more common ones that can be used
with Hadoop.”

Table 4-1. A summary of compression formats

Compression format Tool Algorithm Filename extension Multiplefiles Splittable

DEFLATE? N/A DEFLATE .deflate No No
gzip gzip DEFLATE .9z No No
bzip2 bzip2 bzip2 .bz2 No Yes
LZ0 lzop LZ0 Jzo No No

2 DEFLATE is a compression algorithm whose standard implementation is zlib. There is no commonly available command-line tool for
producing files in DEFLATE format, as gzip is normally used. (Note that the gzip file format is DEFLATE with extra headers and a footer.)
The .deflate filename extension is a Hadoop convention.

All compression algorithms exhibit a space/time trade-off: faster compression and de-
compression speeds usually come at the expense of smaller space savings. All of the
tools listed in Table 4-1 give some control over this trade-off at compression time by
offering nine different options: -1 means optimize for speed and -9 means optimize for
space. For example, the following command creates a compressed file file.gz using the
fastest compression method:

gzip -1 file

The different tools have very different compression characteristics. Gzip is a general-
purpose compressor, and sits in the middle of the space/time trade-off. Bzip2 com-
presses more effectively than gzip, but is slower. Bzip2’s decompression speed is faster
than its compression speed, but it is still slower than the other formats. LZO, on the
other hand, optimizes for speed: it is faster than gzip (or any other compression or
decompression toolT), but compresses slightly less effectively.

The “Splittable” column in Table 4-1 indicates whether the compression format sup-
ports splitting; that is, whether you can seek to any point in the stream and start reading
from some point further on. Splittable compression formats are especially suitable for
MapReduce; see “Compression and Input Splits” on page 83 for further discussion.

Codecs

A codec is the implementation of a compression-decompression algorithm. In Hadoop,
a codec is represented by an implementation of the CompressionCodec interface. So, for

* At the time of this writing, Hadoop does not support ZIP compression. See https://issues.apache.org/jira/
browse/MAPREDUCE-210.

T Jeff Gilchrist’s Archive Comparison Test at hitp://compression.calact/act-summary.html contains benchmarks
for compression and decompression speed, and compression ratio for a wide range of tools.

78 | Chapter4: Hadoop /0

https://issues.apache.org/jira/browse/MAPREDUCE-210
https://issues.apache.org/jira/browse/MAPREDUCE-210
http://compression.ca/act/act-summary.html

example, GzipCodec encapsulates the compression and decompression algorithm for
gzip. Table 4-2 lists the codecs that are available for Hadoop.

Table 4-2. Hadoop compression codecs

Compression format ~ Hadoop CompressionCodec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
LZ0 com.hadoop. compression.lzo.LzopCodec

The LZO libraries are GPL-licensed and may not be included in Apache distributions,
so for this reason the Hadoop codecs must be downloaded separately from http://code
.google.com/p/hadoop-gpl-compression/ (or http://github.com/kevinweil/hadoop-Izo,
which includes bugfixes and more tools). The LzopCodec is compatible with the 1zop
tool, which is essentially the LZO format with extra headers, and is the one you nor-
mally want. There is also a LzoCodec for the pure LZO format, which uses the .Izo_de-
flate filename extension (by analogy with DEFLATE, which is gzip without the
headers).

Compressing and decompressing streams with CompressionCodec

CompressionCodec has two methods that allow you to easily compress or decompress
data. To compress data being written to an output stream, use the createOutput
Stream(OutputStream out) method to create a CompressionOutputStream to which you
write your uncompressed data to have it written in compressed form to the underlying
stream. Conversely, to decompress data being read from an input stream, call
createInputStream(InputStream in) to obtain a CompressionInputStream, which allows
you to read uncompressed data from the underlying stream.

CompressionOutputStream and CompressionInputStream are similar to
java.util.zip.DeflaterOutputStreamand java.util.zip.DeflaterInputStream, except
that both of the former provide the ability to reset their underlying compressor or de-
compressor, which is important for applications that compress sections of the data
stream as separate blocks, such as SequenceFile, described in “Sequence-
File” on page 116.

Example 4-1 illustrates how to use the API to compress data read from standard input
and write it to standard output.
Example 4-1. A program to compress data read from standard input and write it to standard output
public class StreamCompressor {

public static void main(String[] args) throws Exception {

String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);

Compression | 79

http://code.google.com/p/hadoop-gpl-compression/
http://code.google.com/p/hadoop-gpl-compression/
http://github.com/kevinweil/hadoop-lzo

Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newInstance(codecClass, conf);

CompressionOutputStream out = codec.createQutputStream(System.out);
I0Utils.copyBytes(System.in, out, 4096, false);
out.finish();

}
}

The application expects the fully qualified name of the CompressionCodec implementa-
tion as the first command-line argument. We use ReflectionUtils to construct a new
instance of the codec, then obtain a compression wrapper around System.out. Then we
call the utility method copyBytes() on I0Utils to copy the input to the output, which
is compressed by the CompressionOutputStream. Finally, we call finish() on
CompressionOutputStream, which tells the compressor to finish writing to the com-
pressed stream, but doesn’t close the stream. We can try it out with the following
command line, which compresses the string “Text” using the StreamCompressor pro-
gram with the GzipCodec, then decompresses it from standard input using gunzip:

% echo "Text" | hadoop StreamCompressor org.apache.hadoop.io.compress.GzipCodec \

| gunzip -
Text

Inferring CompressionCodecs using CompressionCodecFactory

If you are reading a compressed file, you can normally infer the codec to use by looking
at its filename extension. A file ending in .gz can be read with GzipCodec, and so on.
The extension for each compression format is listed in Table 4-1.

CompressionCodecFactory provides a way of mapping a filename extension to a
CompressionCodec using its getCodec() method, which takes a Path object for the file in
question. Example 4-2 shows an application that uses this feature to decompress files.

Example 4-2. A program to decompress a compressed file using a codec inferred from the file’s
extension

public class FileDecompressor {

public static void main(String[] args) throws Exception {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

Path inputPath = new Path(uri);

CompressionCodecFactory factory = new CompressionCodecFactory(conf);

CompressionCodec codec = factory.getCodec(inputPath);

if (codec == null) {
System.err.println("No codec found for
System.exit(1);

n

+ uri);

80 | Chapter4: Hadoopl/0

String outputUri =
CompressionCodecFactory.removeSuffix(uri, codec.getDefaultExtension());

InputStream in = null;
OutputStream out = null;

try {
in = codec.createInputStream(fs.open(inputPath));

out = fs.create(new Path(outputUri));
I0Utils.copyBytes(in, out, conf);

} finally {
I0Utils.closeStream(in);
I0Utils.closeStream(out);

}
}
}

Once the codec has been found, it is used to strip off the file suffix to form the output
filename (via the removeSuffix() static method of CompressionCodecFactory). In this
way, a file named file.gz is decompressed to file by invoking the program as follows:

% hadoop FileDecompressor file.gz

CompressionCodecFactory finds codecs from a list defined by the
io.compression.codecs configuration property. By default, this lists all the codecs pro-
vided by Hadoop (see Table 4-3), so you would need to alter it only if you have a custom
codec that you wish to register (such as the externally hosted LZO codecs). Each codec
knows its default filename extension, thus permitting CompressionCodecFactory to
search through the registered codecs to find a match for a given extension (if any).

Table 4-3. Compression codec properties

Property name Type Default value Description
io.compression.codecs comma-separated org.apache.hadoop.io. Alist of the
Class names compress.DefaultCodec, CompressionCodec classes
org.apache.hadoop.io. for compression/
compress.GzipCodec, decompression.

org.apache.hadoop.io.
compress.Bzip2Codec

Native libraries

For performance, it is preferable to use a native library for compression and
decompression. For example, in one test, using the native gzip libraries reduced de-
compression times by up to 50% and compression times by around 10% (compared to
the built-in Java implementation). Table 4-4 shows the availability of Java and native
implementations for each compression format. Not all formats have native implemen-
tations (bzip2, for example), whereas others are only available as a native implemen-
tation (LZO, for example).

Compression | 81

Table 4-4. Compression library implementations

Compression format ~ Javaimplementation Native implementation

DEFLATE Yes Yes
gzip Yes Yes
bzip2 Yes No
LZ0 No Yes

Hadoop comes with prebuilt native compression libraries for 32- and 64-bit Linux,
which you can find in the lib/native directory. For other platforms, you will need to
compile the libraries yourself, following the instructions on the Hadoop wiki at http://
wiki.apache.org/hadoop/NativeHadoop.

The native libraries are picked up using the Java system property java.library.path.
The hadoop script in the bin directory sets this property for you, but if you don’t use
this script, you will need to set the property in your application.

By default, Hadoop looks for native libraries for the platform it is running on, and loads
them automatically if they are found. This means you don’t have to change any con-
figuration settings to use the native libraries. In some circumstances, however, you may
wish to disable use of native libraries, such as when you are debugging a compression-
related problem. You can achieve this by setting the property hadoop.native.lib to
false, which ensures that the built-in Java equivalents will be used (if they are available).

CodecPool. If you are using a native library and you are doing a lot of compression or
decompression in your application, consider using CodecPool, which allows you to re-
use compressors and decompressors, thereby amortizing the cost of creating these
objects.

The code in Example 4-3 shows the API, although in this program, which only creates
a single Compressor, there is really no need to use a pool.

Example 4-3. A program to compress data read from standard input and write it to standard output
using a pooled compressor

public class PooledStreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newInstance(codecClass, conf);
Compressor compressor = null;
try {
compressor = CodecPool.getCompressor(codec);
CompressionOutputStream out =
codec.createOutputStream(System.out, compressor);
I0Utils.copyBytes(System.in, out, 4096, false);
out.finish();

82 | Chapter4: Hadoopl/0

http://wiki.apache.org/hadoop/NativeHadoop
http://wiki.apache.org/hadoop/NativeHadoop

} finally {
CodecPool.returnCompressor (compressor);

}
}
}

We retrieve a Compressor instance from the pool for a given CompressionCodec, which
we use in the codec’s overloaded createOutputStream() method. By using a finally
block, we ensure that the compressor is returned to the pool even if there is an
I0Exception while copying the bytes between the streams.

Compression and Input Splits

When considering how to compress data that will be processed by MapReduce, it is
important to understand whether the compression format supports splitting. Consider
an uncompressed file stored in HDFS whose size is 1 GB. With an HDFS block size of
64 MB, the file will be stored as 16 blocks, and a MapReduce job using this file as input
will create 16 input splits, each processed independently as input to a separate map task.

Imagine now the file is a gzip-compressed file whose compressed size is 1 GB. As before,
HDFS will store the file as 16 blocks. However, creating a split for each block won’t
work since it is impossible to start reading at an arbitrary point in the gzip stream, and
therefore impossible for a map task to read its split independently of the others. The
gzip format uses DEFLATE to store the compressed data, and DEFLATE stores data
as a series of compressed blocks. The problem is that the start of each block is not
distinguished in any way that would allow a reader positioned at an arbitrary point in
the stream to advance to the beginning of the next block, thereby synchronizing itself
with the stream. For this reason, gzip does not support splitting.

In this case, MapReduce will do the right thing and not try to split the gzipped file,
since it knows that the input is gzip-compressed (by looking at the filename extension)
and that gzip does not support splitting. This will work, but at the expense of locality:
a single map will process the 16 HDFS blocks, most of which will not be local to the
map. Also, with fewer maps, the job is less granular, and so may take longer to run.

If the file in our hypothetical example were an LZO file, we would have the same
problem since the underlying compression format does not provide a way for a reader
to synchronize itself with the stream.¥ A bzip2 file, however, does provide a synchro-
nization marker between blocks (a 48-bit approximation of pi), so it does support
splitting. (Table 4-1 lists whether each compression format supports splitting.)

1 It is possible to preprocess gzip and LZO files to build an index of split points, effectively making them
splittable. See https://issues.apache.org/jira/browse/MAPREDUCE-491 for gzip. For LZO, there is an indexer
tool available with the Hadoop LZO libraries, which you can obtain from the site listed in
“Codecs” on page 78.

Compression | 83

https://issues.apache.org/jira/browse/MAPREDUCE-491

Which Compression Format Should | Use?

Which compression format you should use depends on your application. Do you want
to maximize the speed of your application or are you more concerned about keeping
storage costs down? In general, you should try different strategies for your application,
and benchmark them with representative datasets to find the best approach.

For large, unbounded files, like logfiles, the options are:

* Store the files uncompressed.
* Use a compression format that supports splitting, like bzip2.

* Split the file into chunks in the application and compress each chunk separately
using any supported compression format (it doesn’t matter whether it is splittable).
In this case, you should choose the chunk size so that the compressed chunks are
approximately the size of an HDFS block.

* Use Sequence File, which supports compression and splitting. See “Sequence-
File” on page 116.

* Usean Avro data file, which supports compression and splitting, just like Sequence
File, but has the added advantage of being readable and writable from many
languages, not just Java. See “Avro data files” on page 109.

For large files, you should not use a compression format that does not support splitting
on the whole file, since you lose locality and make MapReduce applications very
inefficient.

For archival purposes, consider the Hadoop archive format (see “Hadoop Ar-
chives” on page 71), although it does not support compression.

Using Compression in MapReduce

As described in “Inferring CompressionCodecs using CompressionCodecFac-
tory” on page 80, if your input files are compressed, they will be automatically
decompressed as they are read by MapReduce, using the filename extension to deter-
mine the codec to use.

To compress the output of a MapReduce job, in the job configuration, set the
mapred.output.compress property to true and the mapred.output.compression.codec
property to the classname of the compression codec you want to use, as shown in
Example 4-4.

Example 4-4. Application to run the maximum temperature job producing compressed output

public class MaxTemperatureWithCompression {

public static void main(String[] args) throws IOException {
if (args.length != 2) {
System.err.println("Usage: MaxTemperatureWithCompression <input path>
"<output path>");

+

84 | Chapter4: Hadoopl/0

System.exit(-1);

JobConf conf = new JobConf(MaxTemperatureWithCompression.class);
conf.setJobName("Max temperature with output compression");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setBoolean("mapred.output.compress”, true);
conf.setClass("mapred.output.compression.codec”, GzipCodec.class,
CompressionCodec.class);

conf.setMapperClass(MaxTemperatureMapper.class);
conf.setCombinerClass(MaxTemperatureReducer.class);
conf.setReducerClass(MaxTemperatureReducer.class);

JobClient.runJob(conf);
}
}

We run the program over compressed input (which doesn’t have to use the same com-
pression format as the output, although it does in this example) as follows:

% hadoop MaxTemperatureWithCompression input/ncdc/sample.txt.gz output

Each part of the final output is compressed; in this case, there is a single part:

% gunzip -c output/part-00000.gz
1949 111
1950 22

If you are emitting sequence files for your output, then you can set the mapred.out
put.compression.type property to control the type of compression to use. The default
is RECORD, which compresses individual records. Changing this to BLOCK, which
compresses groups of records, is recommended since it compresses better (see “The
SequenceFile format” on page 122).

Compressing map output

Even if your MapReduce application reads and writes uncompressed data, it may ben-
efit from compressing the intermediate output of the map phase. Since the map output
is written to disk and transferred across the network to the reducer nodes, by using a
fast compressor such as LZO, you can get performance gains simply because the volume
of data to transfer is reduced. The configuration properties to enable compression for
map outputs and to set the compression format are shown in Table 4-5.

Compression | 85

Table 4-5. Map output compression properties

Property name Type Default value Description
mapred.compress.map. output boolean false Compress map outputs.
mapred.map.output. Class org.apache.hadoop.io. The compression codec to use for
compression.codec compress.DefaultCodec map outputs.

Here are the lines to add to enable gzip map output compression in your job:

conf.setCompressMapOutput (true);
conf.setMapOutputCompressorClass(GzipCodec.class);

Serialization

Serialization is the process of turning structured objects into a byte stream for trans-
mission over a network or for writing to persistent storage. Deserialization is the reverse
process of turning a byte stream back into a series of structured objects.

Serialization appears in two quite distinct areas of distributed data processing: for
interprocess communication and for persistent storage.

In Hadoop, interprocess communication between nodes in the system is implemented
using remote procedure calls (RPCs). The RPC protocol uses serialization to render the
message into a binary stream to be sent to the remote node, which then deserializes the
binary stream into the original message. In general, it is desirable that an RPC seriali-
zation format is:

Compact
A compact format makes the best use of network bandwidth, which is the most
scarce resource in a data center.

Fast
Interprocess communication forms the backbone for a distributed system, so it is
essential that there is as little performance overhead as possible for the serialization
and deserialization process.

Extensible
Protocols change over time to meet new requirements, so it should be
straightforward to evolve the protocol in a controlled manner for clients and serv-
ers. For example, it should be possible to add a new argument to a method call,
and have the new servers accept messages in the old format (without the new ar-
gument) from old clients.

Interoperable
For some systems, it is desirable to be able to support clients that are written in
different languages to the server, so the format needs to be designed to make this
possible.

86 | Chapter4: Hadoopl/0

On the face of it, the data format chosen for persistent storage would have different
requirements from a serialization framework. After all, the lifespan of an RPC is less
than a second, whereas persistent data may be read years after it was written. As it turns
out, the four desirable properties of an RPC’s serialization format are also crucial for a
persistent storage format. We want the storage format to be compact (to make efficient
use of storage space), fast (so the overhead in reading or writing terabytes of data is
minimal), extensible (so we can transparently read data written in an older format),
and interoperable (so we can read or write persistent data using different languages).

Hadoop uses its own serialization format, Writables, which is certainly compact and
fast, but not so easy to extend or use from languages other than Java. Since Writables
are central to Hadoop (most MapReduce programs use them for their key and value
types), we look at them in some depth in the next three sections, before looking at
serialization frameworks in general, and then Avro (a serialization system that was
designed to overcome some of the limitations of Writables) in more detail.

The Writable Interface

The Writable interface defines two methods: one for writing its state to a DataOutput
binary stream, and one for reading its state from a DataInput binary stream:

package org.apache.hadoop.io;

import java.io.DataOutput;
import java.io.Datalnput;
import java.io.IOException;

public interface Writable {
void write(DataOutput out) throws IOException;
void readFields(DataInput in) throws IOException;

}

Let’s look at a particular Writable to see what we can do with it. We will use
IntWritable, a wrapper for a Java int. We can create one and set its value using the
set() method:

IntWritable writable = new IntWritable();
writable.set(163);

Equivalently, we can use the constructor that takes the integer value:

IntWritable writable = new IntWritable(163);

To examine the serialized form of the IntWritable, we write a small helper method that
wraps a java.io.ByteArrayOutputStreamin a java.io.DataOutputStream (an implemen-
tation of java.io.DataOutput) to capture the bytes in the serialized stream:

public static byte[] serialize(Writable writable) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dataOut = new DataOutputStream(out);
writable.write(dataOut);
dataOut.close();

Serialization | 87

return out.toByteArray();
}

An integer is written using four bytes (as we see using JUnit 4 assertions):

byte[] bytes = serialize(writable);

assertThat(bytes.length, is(4));
The bytes are written in big-endian order (so the most significant byte is written to the
stream first, this is dictated by the java.io.DataOutput interface), and we can see their
hexadecimal representation by using a method on Hadoop’s StringUtils:

assertThat(StringUtils.byteToHexString(bytes), is("000000a3"));

Let’s try deserialization. Again, we create a helper method to read a Writable object
from a byte array:
public static byte[] deserialize(Writable writable, byte[] bytes)
throws IOException {

ByteArrayInputStream in = new ByteArrayInputStream(bytes);

DataInputStream dataln = new DataInputStream(in);

writable.readFields(dataIn);

datalIn.close();

return bytes;

}

We construct a new, value-less, IntWritable, then call deserialize() to read from the
output data that we just wrote. Then we check that its value, retrieved using the
get() method, is the original value, 163:

IntWritable newWritable = new IntWritable();

deserialize(newWritable, bytes);
assertThat(newWritable.get(), is(163));

WritableComparable and comparators

IntWritable implements the WritableComparable interface, which is just a subinterface
of the Writable and java.lang.Comparable interfaces:

package org.apache.hadoop.io;

public interface WritableComparable<T> extends Writable, Comparable<T> {

}

Comparison of types is crucial for MapReduce, where there is a sorting phase during
which keys are compared with one another. One optimization that Hadoop provides
is the RawComparator extension of Java’s Comparator:

88 | Chapter4: Hadoop /0

package org.apache.hadoop.io;
import java.util.Comparator;
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int si, int 11, byte[] b2, int s2, int 12);

}

This interface permits implementors to compare records read from a stream without
deserializing them into objects, thereby avoiding any overhead of object creation. For
example, the comparator for IntWritables implements the raw compare() method by
reading an integer from each of the byte arrays b1 and b2 and comparing them directly,
from the given start positions (s1 and s2) and lengths (11 and 12).

WritableComparator is a general-purpose implementation of RawComparator for
WritableComparable classes. It provides two main functions. First, it provides a default
implementation of the raw compare() method that deserializes the objects to be com-
pared from the stream and invokes the object compare() method. Second, it acts as a
factory for RawComparator instances (that Writable implementations have registered).
For example, to obtain a comparator for IntWritable, we just use:

RawComparator<IntWritable> comparator = WritableComparator.get(IntWritable.class);

The comparator can be used to compare two InthWritable objects:

IntWritable wi = new IntWritable(163);
IntWritable w2 = new IntWritable(67);
assertThat(comparator.compare(wl, w2), greaterThan(0));

or their serialized representations:

byte[] bl = serialize(w1);

byte[] b2 = serialize(w2);

assertThat(comparator.compare(b1, 0, bi.length, b2, 0, b2.length),
greaterThan(0));

Writable Classes

Hadoop comes with a large selection of Writable classes in the org.apache.hadoop.io
package. They form the class hierarchy shown in Figure 4-1.

Writable wrappers for Java primitives

There are Writable wrappers for all the Java primitive types (see Table 4-6) except
short and char (both of which can be stored in an IntWritable). All have a get() and
a set() method for retrieving and storing the wrapped value.

Serialization | 89

«interfacen .
: interfacen
Writable Tt <t---
org.apache hadoop.o WritableComparable

Primitives

BooleanWritable

ByteWritable

IntWritable

VintWritable

FloatWritable

LongWritable

VLongWritable

DoubleWritable

Others

NullWritable

Text

BytesWritable

MD5Hash

ObjectWritable

GenericWritable

L L L L L T

L ArayWritable
3 TwoDArrayWritable

L AbstractMapWritable =

MapWritable

SortedMapWritable

Figure 4-1. Writable class hierarchy

Table 4-6. Writable wrapper classes for Java primitives

Javaprimitive ~ Writable implementation Serialized size (bytes)
boolean BooleanWritable 1
byte ByteWritable 1
int IntWritable 4
VIntWritable 1-5
float FloatWritable 4
long Longhritable 8
VLongWritable 1-9

90 | Chapter4: Hadoopl/0

Javaprimitive ~ Writable implementation Serialized size (bytes)

double DoubleWritable 8

When it comes to encoding integers, there is a choice between the fixed-length formats
(IntWritable and LongWritable) and the variable-length formats (VIntWritable and
VLongWritable). The variable-length formats use only a single byte to encode the value
if it is small enough (between —112 and 127, inclusive); otherwise, they use the first
byte to indicate whether the value is positive or negative, and how many bytes follow.
For example, 163 requires two bytes:

byte[] data = serialize(new VIntWritable(163));
assertThat(StringUtils.byteToHexString(data), is("8fa3"));

How do you choose between a fixed-length and a variable-length encoding? Fixed-
length encodings are good when the distribution of values is fairly uniform across the
whole value space, such as a (well-designed) hash function. Most numeric variables
tend to have nonuniform distributions, and on average the variable-length encoding
will save space. Another advantage of variable-length encodings is that you can switch
from VIntWritable to VLongWritable, since their encodings are actually the same. So by
choosing a variable-length representation, you have room to grow without committing
to an 8-byte long representation from the beginning.

Text

Text is a Writable for UTF-8 sequences. It can be thought of as the Writable equivalent
of java.lang.String. Text is a replacement for the UTF8 class, which was deprecated
because it didn’t support strings whose encoding was over 32,767 bytes, and because
it used Java’s modified UTF-8.

The Text class uses an int (with a variable-length encoding) to store the number of
bytes in the string encoding, so the maximum value is 2 GB. Furthermore, Text uses
standard UTF-8, which makes it potentially easier to interoperate with other tools that
understand UTF-8.

Indexing. Because of its emphasis on using standard UTF-8, there are some differences

between Text and the Java String class. Indexing for the Text class is in terms of position

in the encoded byte sequence, not the Unicode character in the string, or the Java

char code unit (as it is for String). For ASCII strings, these three concepts of index

position coincide. Here is an example to demonstrate the use of the charAt() method:
Text t = new Text("hadoop");

assertThat(t.getLength(), is(6));
assertThat(t.getBytes().length, is(6));

assertThat(t.charAt(2), is((int) 'd"));
assertThat("Out of bounds", t.charAt(100), is(-1));

Serialization | 91

Notice that charAt() returns an int representing a Unicode code point, unlike the
String variant that returns a char. Text also has a find() method, which is analogous
to String’s index0f():

Text t = new Text("hadoop");

assertThat("Find a substring", t.find("do"), is(2));

assertThat("Finds first 'o'", t.find("0"), is(3));

assertThat("Finds 'o' from position 4 or later", t.find("o", 4), is(4));
assertThat("No match", t.find("pig"), is(-1));

Unicode. When we start using characters that are encoded with more than a single byte,
the differences between Text and String become clear. Consider the Unicode characters
shown in Table 4-7.8

Table 4-7. Unicode characters

Unicode code point ~ U-+0041 U+00DF U+6771 U+10400

Name LATINCAPITAL ~ LATIN SMALL LETTER N/A (a unified DESERET CAPITAL LETTER
LETTER A SHARP § Han ideograph) LONG

UTF-8 code units 41 c39f e69d b1 0909080

Javarepresentation \u0041 \UOODF \u6771 \uuD801\uDC00

All but the last character in the table, U+10400, can be expressed using a single Java
char. U+10400 is a supplementary character and is represented by two Java chars,
known as a surrogate pair. The tests in Example 4-5 show the differences between
String and Text when processing a string of the four characters from Table 4-7.

Example 4-5. Tests showing the differences between the String and Text classes

public class StringTextComparisonTest {

@Test
public void string() throws UnsupportedEncodingException {

String s = "\u0041\uooDF\u6771\uD801\uDC00";
assertThat(s.length(), is(5));
assertThat(s.getBytes("UTF-8").length, is(10));

assertThat(s.index0f("\u0041"), is(0));
assertThat(s.index0f("\uooDF"), is(1));
assertThat(s.index0f("\u6771"), is(2));
assertThat(s.index0f("\uD801\uDC00"), is(3));

assertThat(s.charAt(0), is('\uoo41'));
assertThat(s.charAt(1), is('\uooDF'));
assertThat(s.charAt(2), is('\u6771'));
assertThat(s.charAt(3), is('\uD801'));
assertThat(s.charAt(4), is('\uDC00'));

§ This example is based on one from the article Supplementary Characters in the Java Platform.

92 | Chapter4: Hadoopl/0

http://java.sun.com/developer/technicalArticles/Intl/Supplementary/

assertThat(s.codePointAt(0), is(0x0041));
assertThat(s.codePointAt(1), is(0x00DF));
assertThat(s.codePointAt(2), is(0x6771));
assertThat(s.codePointAt(3), is(0x10400));

}

@Test
public void text() {

Text t = new Text("\u0041\uooDF\u6771\uD801\uDC00");
assertThat(t.getLength(), is(10));

assertThat(t.find("\uo041"), is(0));
assertThat(t.find("\uooDF"), is(1));
assertThat(t.find("\u6771"), is(3));
assertThat(t.find("\uD801\uDC00"), is(6));

assertThat(t.charAt(0), is(0x0041));
assertThat(t.charAt(1), is(0x00DF));
assertThat(t.charAt(3), is(0x6771));
assertThat(t.charAt(6), is(0x10400));

}
}

The test confirms that the length of a String is the number of char code units it contains
(5, one from each of the first three characters in the string, and a surrogate pair from
the last), whereas the length of a Text object is the number of bytes in its UTF-8 encoding
(10 = 14+2+3+4). Similarly, the index0f() method in String returns an index in char
code units, and find() for Text is a byte offset.

The charAt() method in String returns the char code unit for the given index, which
in the case of a surrogate pair will not represent a whole Unicode character. The code
PointAt() method, indexed by char code unit, is needed to retrieve a single Unicode
character represented as an int. In fact, the charAt() method in Text is more like the
codePointAt() method than its namesake in String. The only difference is that it is
indexed by byte offset.

Iteration. Iterating over the Unicode characters in Text is complicated by the use of byte
offsets for indexing, since you can’t just increment the index. The idiom for iteration
is a little obscure (see Example 4-6): turn the Text object into a java.nio.ByteBuffer,
then repeatedly call the bytesToCodePoint () static method on Text with the buffer. This
method extracts the next code point as an int and updates the position in the buffer.
The end of the string is detected when bytesToCodePoint() returns —1.

Example 4-6. Iterating over the characters in a Text object

public class TextIterator {

public static void main(String[] args) {
Text t = new Text("\u0041\uooDF\u6771\uD801\uDC00");

ByteBuffer buf = ByteBuffer.wrap(t.getBytes(), 0, t.getLength());

Serialization | 93

int cp;
while (buf.hasRemaining() 8&& (cp = Text.bytesToCodePoint(buf)) != -1) {
System.out.println(Integer.toHexString(cp));
}
}
}

Running the program prints the code points for the four characters in the string:

% hadoop TextIterator
41

df

6771

10400

Mutability. Another difference with String is that Text is mutable (like all Writable im-
plementations in Hadoop, except NullWritable, which is a singleton). You can reuse a
Text instance by calling one of the set() methods on it. For example:

Text t = new Text("hadoop");
t.set("pig");

assertThat(t.getLength(), is(3));
assertThat(t.getBytes().length, is(3));

In some situations, the byte array returned by the getBytes() method
5 may be longer than the length returned by getLength():
Text t = new Text("hadoop");
t.set(new Text("pig"));

assertThat(t.getLength(), is(3));
assertThat("Byte length not shortened", t.getBytes().length,

is(6));

This shows why it is imperative that you always call getLength() when
calling getBytes(), so you know how much of the byte array is valid data.

Resorting to String. Text doesn’t have as rich an API for manipulating strings as
java.lang.String, so in many cases, you need to convert the Text object to a String.
This is done in the usual way, using the toString() method:

assertThat(new Text("hadoop").toString(), is("hadoop"));

BytesWritable

BytesWritable is a wrapper for an array of binary data. Its serialized format is an integer
field (4 bytes) that specifies the number of bytes to follow, followed by the bytes them-
selves. For example, the byte array of length two with values 3 and 5 is serialized as a
4-byte integer (00000002) followed by the two bytes from the array (03 and 05):

BytesWritable b = new BytesWritable(new byte[] { 3, 5 });

byte[] bytes = serialize(b);

assertThat(StringUtils.byteToHexString(bytes), is("000000020305"));

94 | Chapter4: Hadoop /0

BytesWritable is mutable, and its value may be changed by calling its set() method.
As with Text, the size of the byte array returned from the getBytes() method for Byte
sWritable—the capacity—may not reflect the actual size of the data stored in the
BytesWritable. You can determine the size of the BytesWritable by calling get
Length(). To demonstrate:

b.setCapacity(11);

assertThat(b.getLength(), is(2));
assertThat(b.getBytes().length, is(11));

NullWritable

NullWritable is a special type of Writable, as it has a zero-length serialization. No bytes
are written to, or read from, the stream. It is used as a placeholder; for example, in
MapReduce, a key or a value can be declared as a NullWritable when you don’t need
to use that position—it effectively stores a constant empty value. NullWritable can also
be useful as a key in SequenceFile when you want to store a list of values, as opposed
to key-value pairs. It is an immutable singleton: the instance can be retrieved by calling
NullWritable.get().

ObjectWritable and GenericWritable

ObjectWritable is a general-purpose wrapper for the following: Java primitives, String,
enum, Writable, null, orarrays of any of these types. Itis used in Hadoop RPC to marshal
and unmarshal method arguments and return types.

ObjectWritable is useful when a field can be of more than one type: for example, if the
values in a SequenceFile have multiple types, then you can declare the value type as an
ObjectWritable and wrap each type in an ObjectWritable. Being a general-purpose
mechanism, it’s fairly wasteful of space since it writes the classname of the wrapped
type every time it is serialized. In cases where the number of types is small and known
ahead of time, this can be improved by having a static array of types, and using the
index into the array as the serialized reference to the type. This is the approach that
GenericWritable takes, and you have to subclass it to specify the types to support.

Writable collections

There are four Writable collection types in the org.apache.hadoop.io package: Array
Writable, TwoDArrayWritable, MapWritable, and SortedMapWritable.

ArrayWritable and TwoDArrayWritable are Writable implementations for arrays and
two-dimensional arrays (array of arrays) of Writable instances. All the elements of an
ArrayWritable or a TwoDArrayWritable must be instances of the same class, which is
specified at construction, as follows:

ArrayWritable writable = new ArrayWritable(Text.class);

Serialization | 95

In contexts where the Writable is defined by type, such as in SequenceFile keys or
values, or as input to MapReduce in general, you need to subclass ArrayWritable (or
TwoDArrayWritable, as appropriate) to set the type statically. For example:

public class TextArrayWritable extends ArrayWritable {

public TextArrayWritable() {
super(Text.class);

}

ArrayWritable and TwoDArrayWritable both have get() and set() methods, as well as a
toArray() method, which creates a shallow copy of the array (or 2D array).

MapWritable and SortedMapWritable are implementations of java.util.Map<Writable,
Writable> and java.util.SortedMap<WritableComparable, Writable>, respectively. The
type of each key and value field is a part of the serialization format for that field. The
type is stored as a single byte that acts as an index into an array of types. The array is
populated with the standard types in the org.apache.hadoop.io package, but custom
Writable types are accommodated, too, by writing a header that encodes the type array
for nonstandard types. As they are implemented, MapWritable and SortedMapWritable
use positive byte values for custom types, so a maximum of 127 distinct nonstandard
Writable classes can be used in any particular MapWritable or SortedMapWritable in-
stance. Here’s a demonstration of using a MapWritable with different types for keys and
values:
MapWritable src = new MapWritable();

src.put(new IntWritable(1), new Text("cat"));
src.put(new VIntWritable(2), new LongWritable(163));

MapWritable dest = new MapWritable();

WritableUtils.cloneInto(dest, src);

assertThat((Text) dest.get(new IntWritable(1)), is(new Text("cat")));

assertThat((LongWritable) dest.get(new VIntWritable(2)), is(new
LongWritable(163)));

Conspicuous by their absence are Writable collection implementations for sets and
lists. A set can be emulated by using a MapWritable (or a SortedMapWritable for a sorted
set), with NullWritable values. For lists of a single type of Writable, ArrayWritable is
adequate, but to store different types of Writable in a single list, you can use
GenericWritable to wrap the elements in an ArrayWritable. Alternatively, you could
write a general ListWritable using the ideas from MapWritable.

Implementing a Custom Writable

Hadoop comes with a useful set of Writable implementations that serve most purposes;
however, on occasion, you may need to write your own custom implementation. With
a custom Writable, you have full control over the binary representation and the sort
order. Because Writables are at the heart of the MapReduce data path, tuning the binary
representation can have a significant effect on performance. The stock Writable

96 | Chapter4: Hadoop /0

implementations that come with Hadoop are well-tuned, but for more elaborate struc-
tures, it is often better to create a new Writable type, rather than compose the stock

types.

To demonstrate how to create a custom Writable, we shall write an implementation
that represents a pair of strings, called TextPair. The basic implementation is shown
in Example 4-7.

Example 4-7. A Writable implementation that stores a pair of Text objects

import java.io.*;
import org.apache.hadoop.io.*;
public class TextPair implements WritableComparable<TextPair> {

private Text first;
private Text second;

public TextPair() {
set(new Text(), new Text());

public TextPair(String first, String second) {
set(new Text(first), new Text(second));

}

public TextPair(Text first, Text second) {
set(first, second);

}

public void set(Text first, Text second) {
this.first = first;
this.second = second;

}

public Text getFirst() {
return first;

}

public Text getSecond() {
return second;

}

@0verride

public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);

}

@0verride

public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);

Serialization | 97

}

@0verride
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();

}

@0verride
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) 8& second.equals(tp.second);

return false;

}

@0verride
public String toString() {
return first + "\t" + second;

}

@0verride
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (emp !'= 0) {
return cmp;

}

return second.compareTo(tp.second);
}
}

The first part of the implementation is straightforward: there are two Text instance
variables, first and second, and associated constructors, getters, and setters. All
Writable implementations must have a default constructor so that the MapReduce
framework can instantiate them, then populate their fields by calling readFields().
Writable instances are mutable and often reused, so you should take care to avoid
allocating objects in the write() or readFields() methods.

TextPair’s write() method serializes each Text object in turn to the output stream, by
delegating to the Text objects themselves. Similarly, readFields() deserializes the bytes
from the input stream by delegating to each Text object. The DataOutput and
DataInput interfaces have a rich set of methods for serializing and deserializing Java
primitives, so, in general, you have complete control over the wire format of your
Writable object.

Just as you would for any value object you write in Java, you should override the
hashCode(), equals(), and toString() methods from java.lang.Object. The hash
Code() method is used by the HashPartitioner (the default partitioner in MapReduce)
to choose a reduce partition, so you should make sure that you write a good hash
function that mixes well to ensure reduce partitions are of a similar size.

98 | Chapter4: Hadoop /0

If you ever plan to use your custom Writable with TextOutputFormat,
then you mustimplementits toString() method. TextOutputFormat calls
toString() on keys and values for their output representation. For Text

Pair, we write the underlying Text objects as strings separated by a tab
character.

TextPair is an implementation of WritableComparable, so it provides an implementation
of the compareTo() method that imposes the ordering you would expect: it sorts by the
first string followed by the second. Notice that TextPair differs from TextArrayWrita
ble from the previous section (apart from the number of Text objects it can store), since
TextArrayWritable is only a Writable, not a WritableComparable.

Implementing a RawComparator for speed

The code for TextPair in Example 4-7 will work as it stands; however, there is a further
optimization we can make. As explained in “WritableComparable and compara-
tors” on page 88, when TextPair is being used as a key in MapReduce, it will have to
be deserialized into an object for the compareTo() method to be invoked. What if it were
possible to compare two TextPair objects just by looking at their serialized
representations?

It turns out that we can do this, since TextPair is the concatenation of two Text objects,
and the binary representation of a Text object is a variable-length integer containing
the number of bytes in the UTF-8 representation of the string, followed by the UTF-8
bytes themselves. The trick is to read the initial length, so we know how long the first
Text object’s byte representation is; then we can delegate to Text’s RawComparator, and
invoke it with the appropriate offsets for the first or second string. Example 4-8 gives
the details (note that this code is nested in the TextPair class).

Example 4-8. A RawComparator for comparing TextPair byte representations

public static class Comparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();

public Comparator() {
super(TextPair.class);

@0verride
public int compare(byte[] b1, int s1, int 11,
byte[] b2, int s2, int 12) {

try {
int firstll = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, si1);
int firstl2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
int cmp = TEXT_COMPARATOR.compare(b1, si1, firstL1, b2, s2, firstlL2);
if (cmp != 0) {
return cmp;

}

Serialization | 99

return TEXT_COMPARATOR.compare(b1, s1 + firstL1, 11 - firstLi,
b2, s2 + firstl2, 12 - firstl2);
} catch (IOException e) {
throw new IllegalArgumentException(e);

}
}
}

static {
WritableComparator.define(TextPair.class, new Comparator());

}

We actually subclass WritableComparator rather than implement RawComparator di-
rectly, since it provides some convenience methods and default implementations. The
subtle part of this code is calculating firstlL1 and firstlL2, the lengths of the first
Text field in each byte stream. Each is made up of the length of the variable-length
integer (returned by decodeVIntSize() on WritableUtils) and the value it is encoding
(returned by readvInt()).

The static block registers the raw comparator so that whenever MapReduce sees the
TextPair class, it knows to use the raw comparator as its default comparator.

Custom comparators

As we can see with TextPair, writing raw comparators takes some care, since you have
to deal with details at the byte level. It is worth looking at some of the implementations
of Writable in the org.apache.hadoop.io package for further ideas, if you need to write
your own. The utility methods on WritableUtils are very handy, too.

Custom comparators should also be written to be RawComparators, if possible. These
are comparators that implement a different sort order to the natural sort order defined
by the default comparator. Example 4-9 shows a comparator for TextPair, called First
Comparator, that considers only the first string of the pair. Note that we override the
compare() method that takes objects so both compare() methods have the same
semantics.

We will make use of this comparator in Chapter 8, when we look at joins and secondary
sorting in MapReduce (see “Joins” on page 247).

Example 4-9. A custom RawComparator for comparing the first field of TextPair byte representations
public static class FirstComparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();
public FirstComparator() {

super(TextPair.class);

@0verride
public int compare(byte[] b1, int s1, int 11,
byte[] b2, int s2, int 12) {

100 | Chapter4: Hadoop /0

try {
int firstll = WritableUtils.decodeVIntSize(bi[s1]) + readVInt(bi, si1);

int firstl2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
return TEXT_COMPARATOR.compare(b1, si, firstlLi, b2, s2, firstl2);

} catch (IOException e) {
throw new IllegalArgumentException(e);

}
}

@0verride
public int compare(WritableComparable a, WritableComparable b) {
if (a instanceof TextPair 8& b instanceof TextPair) {
return ((TextPair) a).first.compareTo(((TextPair) b).first);

}

return super.compare(a, b);

}
}

Serialization Frameworks

Although most MapReduce programs use Writable key and value types, this isn’t man-
dated by the MapReduce API. In fact, any types can be used; the only requirement is
that there be a mechanism that translates to and from a binary representation of each

type.

To support this, Hadoop has an API for pluggable serialization frameworks. A seriali-
zation framework is represented by an implementation of Serialization (in the
org.apache.hadoop.io.serializer package). WritableSerialization, for example, is
the implementation of Serialization for Writable types.

A Serialization defines a mapping from types to Serializer instances (for turning an
object into a byte stream) and Deserializer instances (for turning a byte stream into
an object).

Set the io.serializations property to a comma-separated list of classnames to register
Serialization implementations. Its default value is org.apache.hadoop.io.serial
izer.WritableSerialization, which means that only Writable objects can be serialized
or deserialized out of the box.

Hadoop includes a class called JavaSerialization that uses Java Object Serialization.
Although it makes it convenient to be able to use standard Java types in MapReduce
programs, like Integer or String, Java Object Serialization is not as efficient as Writa-
bles, so it’s not worth making this trade-off (see the sidebar on the next page).

Serialization | 101

Why Not Use Java Object Serialization?

Java comes with its own serialization mechanism, called Java Object Serialization (often
referred to simply as “Java Serialization”), that is tightly integrated with the language,
so it’s natural to ask why this wasn’t used in Hadoop. Here’s what Doug Cutting said
in response to that question:

Why didn’t I use Serialization when we first started Hadoop? Because it looked
big and hairy and I thought we needed something lean and mean, where we had
precise control over exactly how objects are written and read, since that is central
to Hadoop. With Serialization you can get some control, but you have to fight for
1t.

The logic for not using RMI was similar. Effective, high-performance inter-process
communications are critical to Hadoop. I felt like we’d need to precisely control
how things like connections, timeouts and buffers are handled, and RMI gives you
little control over those.

The problem is that Java Serialization doesn’t meet the criteria for a serialization format
listed earlier: compact, fast, extensible, and interoperable.

Java Serialization is not compact: it writes the classname of each object being written
to the stream—this is true of classes that implement java.io.Serializable or
java.io.Externalizable. Subsequent instances of the same class write a reference han-
dle to the first occurrence, which occupies only 5 bytes. However, reference handles
don’t work well with random access, since the referent class may occur at any point in
the preceding stream—that is, there is state stored in the stream. Even worse, reference
handles play havoc with sorting records in a serialized stream, since the first record of
a particular class is distinguished and must be treated as a special case.

All these problems are avoided by not writing the classname to the stream at all, which
is the approach that Writable takes. This makes the assumption that the client knows
the expected type. The result is that the format is considerably more compact than Java
Serialization, and random access and sorting work as expected since each record is
independent of the others (so there is no stream state).

Java Serialization is a general-purpose mechanism for serializing graphs of objects, so
it necessarily has some overhead for serialization and deserialization operations. What’s
more, the deserialization procedure creates a new instance for each object deserialized
from the stream. Writable objects, on the other hand, can be (and often are) reused.
For example, for a MapReduce job, which at its core serializes and deserializes billions
of records of justa handful of different types, the savings gained by not having to allocate
new objects are significant.

In terms of extensibility, Java Serialization has some support for evolving a type, but it
is brittle and hard to use effectively (Writables have no support: the programmer has
to manage them himself).

In principle, other languages could interpret the Java Serialization stream protocol (de-
fined by the Java Object Serialization Specification), but in practice there are no widely

102 | Chapter4: Hadoopl/0

used implementations in other languages, so it is a Java-only solution. The situation is
the same for Writables.

Serialization IDL

There are a number of other serialization frameworks that approach the problem in a
different way: rather than defining types through code, you define them in a language-
neutral, declarative fashion, using an interface description language (IDL). The system
can then generate types for different languages, which is good for interoperability. They
also typically define versioning schemes that make type evolution straightforward.

Hadoop’s own Record I/O (found in the org.apache.hadoop.record package) has an
IDL that is compiled into Writable objects, which makes it convenient for generating
types that are compatible with MapReduce. For whatever reason, however, Record
I[/O was not widely used, and has been deprecated in favor of Avro.

Apache Thrift and Google Protocol Buffers are both popular serialization frameworks,
and they are commonly used as a format for persistent binary data. There is limited
support for these as MapReduce formats;l however, Thrift is used in parts of Hadoop
to provide cross-language APIs, such as the “thriftfs” contrib module, where it is used
to expose an API to Hadoop filesystems (see “Thrift” on page 49).

In the next section, we look at Avro, an IDL-based serialization framework designed
to work well with large-scale data processing in Hadoop.

Avro

Apache Avro# is a language-neutral data serialization system. The project was created
by Doug Cutting (the creator of Hadoop) to address the major downside of Hadoop
Writables: lack of language portability. Having a data format that can be processed by
many languages (currently C, C++, Java, Python, and Ruby) makes it easier to share
datasets with a wider audience than one tied to a single language. It is also more future-
proof, allowing data to potentially outlive the language used to read and write it.

But why a new data serialization system? Avro has a set of features that, taken together,
differentiate it from other systems like Apache Thrift or Google’s Protocol Buffers." Like
these systems and others, Avro data is described using a language-independent
schema. However, unlike some other systems, code generation is optional in Avro,

[l ' You can find the latest status for a Thrift Serialization at https://issues.apache.orgl/jira/lbrowse/HADOOP
-3787, and a Protocol Buffers Serialization at https://issues.apache.org/jiralbrowse/HADOOP-3788.
Twitter’s Elephant Bird project (http://github.com/kevinweil/elephant-bird) includes tools for working with
Protocol Buffers in Hadoop.

#Named after the British aircraft manufacturer from the 20th century.

* Avro also performs favorably compared to other serialization libraries, as the benchmarks at http://code.google
.com/plthrift-protobuf-compare/ demonstrate.

Serialization | 103

http://incubator.apache.org/thrift/
http://code.google.com/p/protobuf/
http://avro.apache.org/
https://issues.apache.org/jira/browse/HADOOP-3787
https://issues.apache.org/jira/browse/HADOOP-3787
https://issues.apache.org/jira/browse/HADOOP-3788
http://github.com/kevinweil/elephant-bird
http://code.google.com/p/thrift-protobuf-compare/
http://code.google.com/p/thrift-protobuf-compare/

which means you can read and write data that conforms to a given schema even if your
code has not seen that particular schema before. To achieve this, Avro assumes that
the schema is always present—at both read and write time—which makes for a very
compact encoding, since encoded values do not need to be tagged with a field identifier.

Avro schemas are usually written in JSON, and data is usually encoded using a binary
format, but there are other options, too. There is a higher-level language called Avro
IDL, for writing schemas in a C-like language that is more familiar to developers. There
is also a JSON-based data encoder, which, being human-readable, is useful for proto-
typing and debugging Avro data.

The Avro specification precisely defines the binary format that allimplementations must
support. It also specifies many of the other features of Avro that implementations
should support. One area that the specification does not rule on, however, is APIs:
implementations have complete latitude in the API they expose for working with Avro
data, since each one is necessarily language-specific. The fact that there is only one
binary format is significant, since it means the barrier for implementing a new language
binding is lower, and avoids the problem of a combinatorial explosion of languages
and formats, which would harm interoperability.

Avro has rich schema resolution capabilities. Within certain carefully defined con-
straints, the schema used to read data need not be identical to the schema that was used
to write the data. This is the mechanism by which Avro supports schema evolution.
For example, a new, optional field may be added to a record by declaring it in the
schema used to read the old data. New and old clients alike will be able to read the old
data, while new clients can write new data that uses the new field. Conversely, if an old
client sees newly encoded data, it will gracefully ignore the new field and carry on
processing as it would have done with old data.

Avro specifies an object container format for sequences of objects—similar to Hadoop’s
sequence file. An Avro data file has a metadata section where the schema is stored,
which makes the file self-describing. Avro data files support compression and are split-
table, which is crucial for a MapReduce data input format. Furthermore, since Avro
was designed with MapReduce in mind, in the future it will be possible to use Avro to
bring first-class MapReduce APIs (that is, ones that are richer than Streaming, like the
Java API, or C++ Pipes) to languages that speak Avro.

Avro can be used for RPC, too, although this isn’t covered here. The Hadoop project
has plans to migrate to Avro RPC, which will have several benefits, including supporting
rolling upgrades, and the possibility of multilanguage clients, such as an HDFS client
implemented entirely in C.

Avro data types and schemas

Avro defines a small number of data types, which can be used to build application-
specific data structures by writing schemas. For interoperability, implementations must
support all Avro types.

104 | Chapter4: Hadoop /0

http://avro.apache.org/docs/current/spec.html

Avro’s primitive types are listed in Table 4-8. Each primitive type may also be specified
using a more verbose form, using the type attribute, such as:

{ "type": "null" }

Table 4-8. Avro primitive types

Type Description Schema
null The absence of a value "null"
boolean Abinaryvalue "boolean"”
int 32-bit signed integer "int"
long 64-bit signed integer "long"

float Single precision (32-bit) IEEE 754 floating-point number "float"
double Double precision (64-bit) IEEE 754 floating-point number ~ "double"
bytes Sequence of 8-bit unsigned bytes "bytes"

string Sequence of Unicode characters "string"

Avro also defines the complex types listed in Table 4-9, along with a representative
example of a schema of each type.

Table 4-9. Avro complex types

Type Description Schema example

array Anordered collection of objects. All objectsin a partic- ~ {

"type": "arrav”
ular array must have the same schema. ype : rarray

"items": "long"

}

map An unordered collection of key-value pairs. Keys must
be strings, values may be any type, although within a

particular map all values must have the same schema. }

"type": "map",
"values": "string"

record A collection of named fields of any type. {
"type": "record",
"name": "WeatherRecord",
"doc": "A weather reading.",
"fields": [
{"name": "year", "type": "int"},
{"name": "temperature", "type": "int"},
"name": "stationId", "type": "string"}
]
}
enum Asset of named values. {
"type": "enum",
"name": "Cutlery",
"doc": "An eating utensil.",
"symbols": ["KNIFE", "FORK", "SPOON"]
}

fixed Afixed number of 8-bit unsigned bytes.
"type": "fixed",
"name": "Md5Hash",

Serialization | 105

Type Description Schema example

"size": 16
}
union A union of schemas. A union is represented by a JSON [.
array, where each element in the array is a schema. ..““u -
string”,

Data represented by a union must match one of the {"type": "map", "values": "string"}
schemas in the union.]

Each Avro language API has a representation for each Avro type that is specific to the
language. For example, Avro’s double type is represented in C, C++, and Java by a
double, in Python by a float, and in Ruby by a Float.

What’s more, there may be more than one representation, or mapping, for a language.
All languages support a dynamic mapping, which can be used even when the schema
is not known ahead of run time. Java calls this the generic mapping.

In addition, the Java and C++ implementations can generate code to represent the data
for an Avro schema. Code generation, which is called the specific mapping in Java, is
an optimization that is useful when you have a copy of the schema before you read or
write data. Generated classes also provide a more domain-oriented API for user code
than generic ones.

Java has a third mapping, the reflect mapping, which maps Avro types onto preexisting
Java types, using reflection. It is slower than the generic and specific mappings, and is
not generally recommended for new applications.

Java’s type mappings are shown in Table 4-10. As the table shows, the specific mapping
is the same as the generic one unless otherwise noted (and the reflect one is the same
as the specific one unless noted). The specific mapping only differs from the generic
one for record, enum, and fixed, all of which have generated classes (the name of which
is controlled by the name and optional namespace attribute).

Why don’t the Java generic and specific mappings use Java String to

represent an Avro string? The answer is efficiency: the Avro Utf8 type

918 is mutable, so it may be reused for reading or writing a series of values.

" Also, Java String decodes UTF-8 at object construction time, while Avro
Utf8 does it lazily, which can increase performance in some cases. Note
that the Java reflect mapping does use Java’s String class, since it is
designed for Java compatibility, not performance.

Table 4-10. Avro Java type mappings

Avrotype GenericJava mapping Specific Java mapping Reflect Java mapping
null null type
boolean boolean

int int shortorint

106 | Chapter4: Hadoop /0

Avro type
long
float
double
bytes

string

array

map

record

enum

fixed

union

Generic Java mapping
long

float

double
java.nio.ByteBuffer

org.apache.avro.
util.Utf8

org.apache.avro.
generic.GenericArray

java.util.Map

org.apache.avro.
generic.Generic
Record

java.lang.String
org.apache.avro.

generic.GenericFixed

java.lang.Object

Specific Java mapping

Generated class implementing
org.apache.avro.
specific.Specific
Record.

Generated Java enum

Generated class implementing
org.apache.avro.
specific.SpecificFixed.

Reflect Java mapping

Array of by te
java.lang.String

Array or java.util.Collection

Arbitrary user class with a zero-
argument constructor. All inherited
nontransient instance fields are used.

Arbitrary Java enum

org.apache.avro.
generic.GenericFixed

In-memory serialization and deserialization

Avro provides APIs for serialization and deserialization, which are useful when you
want to integrate Avro with an existing system, such as a messaging system where the
framing format is already defined. In other cases, consider using Avro’s data file format.

Let’s write a Java program to read and write Avro data to and from streams. We’ll start
with a simple Avro schema for representing a pair of strings as a record:

{

"type": "record",
"name": "Pair",

"doc": "A pair of strings.",

g

]
}

ields": [
"name": "left", "type": "string"},
"name": "right", "type":

"string"}

If this schema is saved in a file on the classpath called Pair.avsc (.avsc is the conven-
tional extension for an Avro schema), then we can load it using the following statement:

Schema schema =

Schema.parse(getClass().getResourceAsStream("Pair.avsc"));

We can create an instance of an Avro record using the generic API as follows:

Serialization | 107

GenericRecord datum = new GenericData.Record(schema);
datum.put("left", new Utf8("L"));
datum.put("right", new Utf8("R"));

Notice that we construct Avro Utf8 instances for the record’s string fields.

Next, we serialize the record to an output stream:

ByteArrayOutputStream out = new ByteArrayOutputStream();
DatumWriter<GenericRecord> writer = new GenericDatumWriter<GenericRecord>(schema);
Encoder encoder = new BinaryEncoder(out);

writer.write(datum, encoder);

encoder.flush();

out.close();

There are two important objects here: the DatumWriter and the Encoder. A
Datumlriter translates data objects into the types understood by an Encoder, which the
latter writes to the output stream. Here we are using a GenericDatumhriter, which passes
the fields of GenericRecord to the Encoder, in this case the BinaryEncoder.

In this example only one object is written to the stream, but we could call write() with
more objects before closing the stream if we wanted to.

The GenericDatumiriter needs to be passed the schema since it follows the schema to
determine which values from the data objects to write out. After we have called the
writer’s write() method, we flush the encoder, then close the output stream.

We can reverse the process and read the object back from the byte buffer:

DatumReader<GenericRecord> reader = new GenericDatumReader<GenericRecord>(schema);
Decoder decoder = DecoderFactory.defaultFactory()

.createBinaryDecoder (out.toByteArray(), null);
GenericRecord result = reader.read(null, decoder);
assertThat(result.get("left").toString(), is("L"));
assertThat(result.get("right").toString(), is("R"));

We pass null to the calls to createBinaryDecoder () and read() since we are not reusing
objects here (the decoder or the record, respectively).

Let’s look briefly at the equivalent code using the specific API. We can generate the
Pair class from the schema file, by using the Avro tools JAR file:*

% java -jar $AVRO_HOME/avro-tools-*.jar compile schema \
> avro/src/main/resources/Pair.avsc avro/src/main/java

Then instead of a GenericRecord we construct a Pair instance, which we write to the
stream using a SpecificDatumWriter, and read back using a SpecificDatumReader:
Pair datum = new Pair();

datum.left = new Utf8("L");
datum.right = new Utf8("R");

ByteArrayOutputStream out = new ByteArrayOutputStream();

1 Avro can be downloaded in both source and binary forms from http://avro.apache.org/releases.html.

108 | Chapter4: Hadoop /0

http://avro.apache.org/releases.html

DatumWriter<Pair> writer = new SpecificDatumWriter<Pair>(Pair.class);
Encoder encoder = new BinaryEncoder(out);

writer.write(datum, encoder);

encoder.flush();

out.close();

DatumReader<Pair> reader = new SpecificDatumReader<Pair>(Pair.class);

Decoder decoder = DecoderFactory.defaultFactory()
.createBinaryDecoder (out.toByteArray(), null);

Pair result = reader.read(null, decoder);

assertThat(result.left.toString(), is("L"));

assertThat(result.right.toString(), is("R"));

Avro data files

Avro’s object container file format is for storing sequences of Avro objects. It is very
similar in design to Hadoop’s sequence files, which are described in “Sequence-
File” on page 116. The main difference is that Avro data files are designed to be portable
across languages, so, for example, you can write a file in Python and read it in C (we
will do exactly this in the next section).

A data file has a header containing metadata, including the Avro schema and a sync
marker, followed by a series of (optionally compressed) blocks containing the serialized
Avro objects. Blocks are separated by a sync marker that is unique to the file (the marker
for a particular file is found in the header) and that permits rapid resynchronization
with a block boundary after seeking to an arbitrary point in the file, such as an HDFS
block boundary. Thus, Avro data files are splittable, which makes them amenable to
efficient MapReduce processing.

Writing Avro objects to a data file is similar to writing to a stream. We use a
DatumWriter, as before, but instead of using an Encoder, we create a DataFileWriter
instance with the DatumWriter. Then we can create a new data file (which, by conven-
tion, has a .avro extension) and append objects to it:

File file = new File("data.avro");

Datumhriter<GenericRecord> writer = new GenericDatumWriter<GenericRecord>(schema);

DataFileWriter<GenericRecord> dataFileWriter =

new DataFileWriter<GenericRecord>(writer);
dataFileWriter.create(schema, file);

dataFileWriter.append(datum);
dataFileWriter.close();

The objects that we write to the data file must conform to the file’s schema, otherwise
an exception will be thrown when we call append().

This example demonstrates writing to a local file (java.io.Filein the previous snippet),
but we can write to any java.io.OutputStreamby using the overloaded create() method
onDataFileWriter. To write a file to HDFS, for example, get an OutputStream by calling
create() on FileSystem (see “Writing Data” on page 55).

Serialization | 109

Reading back objects from a data file is similar to the earlier case of reading objects
from an in-memory stream, with one important difference: we don’t have to specify a
schema since it is read from the file metadata. Indeed, we can get the schema from the
DataFileReader instance, using getSchema(), and verify that it is the same as the one we
used to write the original object with:
DatumReader<GenericRecord> reader = new GenericDatumReader<GenericRecord>();
DataFileReader<GenericRecord> dataFileReader =

new DataFileReader<GenericRecord>(file, reader);
assertThat("Schema is the same", schema, is(dataFileReader.getSchema()));

DataFileReader is a regular Java iterator, so we can iterate through its data objects by
calling its hasNext() and next() methods. The following snippet checks that there is
only one record, and that it has the expected field values:
assertThat(dataFileReader.hasNext(), is(true));
GenericRecord result = dataFileReader.next();
assertThat(result.get("left").toString(), is("L"));

assertThat(result.get("right").toString(), is("R"));
assertThat(dataFileReader.hasNext(), is(false));

Rather than using the usual next() method, however, it is preferable to use the over-
loaded form that takes an instance of the object to be returned (in this case,
GenericRecord), since it will reuse the object and save allocation and garbage collection
costs for files containing many objects. The following is idiomatic:
GenericRecord record = null;
while (dataFileReader.hasNext()) {
record = dataFileReader.next(record);
// process record

}

If object reuse is not important, you can use this shorter form:

for (GenericRecord record : dataFileReader) {
// process record

For the general case of reading a file on a Hadoop file system, use Avro’s FsInput to
specify the input file using a Hadoop Path object. DataFileReader actually offers random
access to Avro data file (via its seek() and sync() methods); however, in many cases,
sequential streaming access is sufficient, for which DataFileStream should be used.
DataFileStream can read from any Java InputStream.

Interoperability

To demonstrate Avro’s language interoperability, let’s write a data file using one
language (Python) and read it back with another (C).

Python API. The program in Example 4-10 reads comma-separated strings from standard
input and writes them as Pair records to an Avro data file. Like the Java code for writing
a data file, we create a DatumWriter and a DataFileWriter object. Notice that we have

110 | Chapter4: Hadoop /0

embedded the Avro schema in the code, although we could equally well have read it
from a file.

Python represents Avro records as dictionaries; each line that is read from standard in
is turned into a dict object and appended to the DataFileWriter.

Example 4-10. A Python program for writing Avro record pairs to a data file

import os
import string
import sys

from avro import schema
from avro import io
from avro import datafile
if _name__ == '_ main__':
if len(sys.argv) != 2:
sys.exit('Usage: %s <data_file>' % sys.argv[0])
avro_file = sys.argv[1]
writer = open(avro_file, 'wb')
datum writer = io.Datumhriter()
schema_object = schema.parse("""\
{ "type": "record",
"name": "Pair",
"doc": "A pair of strings.",
"fields": [
"name": "left", "type": "string"},
"name": "right", "type": "string"}

]
)
dfw = datafile.DataFileWriter(writer, datum writer, schema_object)
for line in sys.stdin.readlines():
(left, right) = string.split(line.strip(), ',")
dfw.append({'left':left, 'right':right});
dfw.close()

Before we can run the program, we need to install Avro for Python:

% easy_install avro

To run the program, we specify the name of the file to write output to (pairs.avro) and
send input pairs over standard in, marking the end of file by typing Control-D:

% python avro/src/main/py/write_pairs.py pairs.avro
a,1
c,2
b,3
b,2
D

CAPI. Next we’ll turn to the C API and write a program to display the contents of
pairs.avro; see Example 4-11.%

Serialization | 111

Example 4-11. A C program for reading Avro record pairs from a data file

#include <avro.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
if (arge !=2) {

}

fprintf(stderr, "Usage: dump_pairs <data_file>\n");
exit(EXIT FAILURE);

const char *avrofile = argv[1i];
avro_schema_error t error;
avro_file reader_ t filereader;
avro_datum_t pair;

avro_datum_t left;

avro_datum_t right;

int rval;

char *p;

avro file reader(avrofile, &filereader);
while (1) {

rval = avro file reader read(filereader, NULL, 8pair);
if (rval) break;
if (avro_record get(pair, "left", &left) == 0) {
avro_string get(left, &p);
fprintf(stdout, "%s,", p);

if (avro_record get(pair, "right", &right) == 0) {
avro_string get(right, 8p);
fprintf(stdout, "%s\n", p);

}
avro file reader close(filereader);
return 0;
}
The core of the program does three things:
1. opens a file reader of type avro file reader t by «calling Avro’s
avro file reader function,$
2. reads Avro data from the file reader with the avro_file reader_read function in a
while loop until there are no pairs left (as determined by the return value rval), and
3. closes the file reader with avro file reader close.

The avro_file reader read function accepts a schema as its second argument to sup-
port the case where the schema for reading is different to the one used when the file

1 For the general case, the Avro tools JAR file has a tojson command that dumps the contents of a Avro data
file as JSON.

§ Avro functions and types have a avro_ prefix and are defined in the avro.h header file.

112

| Chapter4: Hadoop /0

was written (this is explained in the next section), but we simply pass in NULL, which
tells Avro to use the data file’s schema. The third argument is a pointer to a
avro_datum_t object, which is populated with the contents of the next record read from
the file. We unpack the pair structure into its fields by calling avro_record get, and
then we extract the value of these fields as strings using avro_string get, which we
print to the console.

Running the program using the output of the Python program prints the original input:

% ./dump_pairs pairs.avro
a,1

We have successfully exchanged complex data between two Avro implementations.

Schema resolution

We can choose to use a different schema for reading the data back (the reader’s
schema) to the one we used to write it (the writer’s schema). This is a powerful tool,
since it enables schema evolution. To illustrate, consider a new schema for string pairs,
with an added description field:
{
"type": "record",
"name": "Pair",
"doc": "A pair of strings with an added field.",
"fields": [
"name": "left", "type": "string"},
"name": "right", "type": "string"},
"name": "description”, "type": "string", "default": ""}
]
}

We can use this schema to read the data we serialized earlier, since, crucially, we have
given the description field a default value (the empty stringll), which Avro will use when
there is no field defined in the records it is reading. Had we omitted the default
attribute, we would get an error when trying to read the old data.

W

To make the default value null, rather than the empty string, we would

instead define the description field using a union with the null Avro
&

0y type:

"name": "description", "type": ["null", "string"], "default": "null"}

[l Default values for fields are encoded using JSON. See the Avro specification for a description of this encoding
for each data type.

Serialization | 113

When the reader’s schema is different from the writer’s, we use the constructor for
GenericDatumReader that takes two schema objects, the writer’s and the reader’s, in that
order:
DatumReader<GenericRecord> reader =
new GenericDatumReader<GenericRecord>(schema, newSchema);
Decoder decoder = DecoderFactory.defaultFactory()
.createBinaryDecoder (out.toByteArray(), null);
GenericRecord result = reader.read(null, decoder);
assertThat(result.get("left").toString(), is("L"));
assertThat(result.get("right").toString(), is("R"));
assertThat(result.get("description").toString(), is(""));

For data files, which have the writer’s schema stored in the metadata, we only need to
specify the readers’s schema explicitly, which we can do by passing null for the writer’s
schema:

DatumReader<GenericRecord> reader =
new GenericDatumReader<GenericRecord>(null, newSchema);

Another common use of a different reader’s schema is to drop fields in a record, an
operation called projection. This is useful when you have records with a large number
of fields and you only want to read some of them. For example, this schema can be
used to get only the right field of a Pair:
{
"type": "record",
"name": "Pair",
"doc": "The right field of a pair of strings.”,
"fields": [
"name": "right", "type": "string"}
]
}

The rules for schema resolution have a direct bearing on how schemas may evolve from
one version to the next, and are spelled out in the Avro specification for all Avro types.
A summary of the rules for record evolution from the point of view of readers and
writers (or servers and clients) is presented in Table 4-11.

Table 4-11. Schema resolution of records

Newschema Writer Reader Action

Added field Old New The reader uses the default value of the new field, since it is not written by the writer.
New 0Old The reader does not know about the new field written by the writer, so it is ignored.
(Projection).
Removedfield Old New The reader ignores the removed field. (Projection).

New 0ld The removed field is not written by the writer. If the old schema had a default defined
for the field, then the reader uses this, otherwise it gets an error. In this case, it is best
to update the reader’s schema at the same time as, or before, the writer’s.

114 | Chapter4: Hadoop /0

Sort order

Avro defines a sort order for objects. For most Avro types, the order is the natural one
you would expect—for example, numeric types are ordered by ascending numeric
value. Others are a little more subtle—enums are compared by the order in which the
symbol is defined and not by the value of the symbol string, for instance.

All types except record have preordained rules for their sort order as described in the
Avro specification; they cannot be overridden by the user. For records, however, you
can control the sort order by specifying the order attribute for a field. It takes one of
three values: ascending (the default), descending (to reverse the order), or ignore (so
the field is skipped for comparison purposes).

For example, the following schema (SortedPair.avsc) defines an ordering of Pair records
by the right field in descending order. The left field is ignored for the purposes of
ordering, but it is still present in the projection:
{
"type": "record",
"name": "Pair",
"doc": "A pair of strings, sorted by right field descending.",
"fields": [
"name": "left", "type": "string", "order": "ignore"},
"name": "right", "type": "string", "order": "descending"}
]
}

The record’s fields are compared pairwise in the document order of the reader’s schema.
Thus, by specifying an appropriate reader’s schema, you can impose an arbitrary
ordering on data records. This schema (SwitchedPair.avsc) defines a sort order by the
right field, then the left:

{
"type": "record",
"name": "Pair",
"doc": "A pair of strings, sorted by right then left.",
"fields": [
"name": "right", "type": "string"},
"name": "left", "type": "string"}
]
}

Avro implements efficient binary comparisons. That is to say, Avro does not have to
deserialize a binary data into objects to perform the comparison, since it can instead
work directly on the byte streams.” In the case of the original Pair schema (with no
order attributes), for example, Avro implements the binary comparison as follows.

#A useful consequence of this property is that you can compute an Avro datum’s hash code from either the
object or the binary representation (the latter by using the static hashCode () method on BinaryData) and get
the same result in both cases.

Serialization | 115

The first field, left, is a UTF-8-encoded string, for which Avro can compare the bytes
lexicographically. If they differ, then the order is determined, and Avro can stop the
comparison there. Otherwise, if the two byte sequences are the same, it compares the
second two (right) fields, again lexicographically at the byte level since the field is
another UTF-8 string.

Notice that this description of a comparison function has exactly the same logic as the
binary comparator we wrote for Writables in “Implementing a RawComparator for
speed” on page 99. The great thing is that Avro provides the comparator for us, so we
don’t have to write and maintain this code. It’s also easy to change the sort order just
by changing the reader’s schema. For the SortedPair.avsc or SwitchedPair.avsc schemas,
the comparison function Avro uses is essentially the same as the one just described: the
difference is in which fields are considered, the order in which they are considered, and
whether the order is ascending or descending.

Avro MapReduce

Avro provides a number of classes for making it easy to run MapReduce programs on
Avro data. For example, AvroMapper and AvroReducer in the org.apache.avro.mapred
package are specializations of Hadoop’s (old style) Mapper and Reducer classes. They
eliminate the key-value distinction for inputs and outputs, since Avro data files are just
a sequence of values. However, intermediate data is still divided into key-value pairs
for the shuffle. Avro’s MapReduce integration was being added as this edition went to
press, but you can find example code at the website accompanying this book.

For languages other than Java, Avro provides a connector framework (in the
org.apache.avro.mapred.tether package). At the time of writing, there are no bindings
for other languages, but it is expected these will be added in future releases.

File-Based Data Structures

For some applications, you need a specialized data structure to hold your data. For
doing MapReduce-based processing, putting each blob of binary data into its own file
doesn’t scale, so Hadoop developed a number of higher-level containers for these
situations.

SequenceFile

Imagine a logfile, where each log record is a new line of text. If you want to log binary
types, plain text isn’t a suitable format. Hadoop’s SequenceFile class fits the bill in this
situation, providing a persistent data structure for binary key-value pairs. To use it as
a logfile format, you would choose a key, such as timestamp represented by a Longhrit
able, and the value is a Writable that represents the quantity being logged.

116 | Chapter4: Hadoop /0

SequenceFiles also work well as containers for smaller files. HDFS and MapReduce
are optimized for large files, so packing files into a SequenceFile makes storing
and processing the smaller files more efficient. (“Processing a whole file as a re-
cord” on page 206 contains a program to pack files into a SequenceFile.")

Writing a SequencefFile

To create a SequenceFile, use one of its createriter() static methods, which returns
a SequenceFile.Writer instance. There are several overloaded versions, but they all
require you to specify a stream to write to (either a FSDataOutputStream or a FileSys
tem and Path pairing), a Configuration object, and the key and value types. Optional
arguments include the compression type and codec, a Progressable callback to be in-
formed of write progress, and a Metadata instance to be stored in the SequenceFile

header.

The keys and values stored in a SequenceFile do not necessarily need to be Writable.
Any types that can be serialized and deserialized by a Serialization may be used.

Once you have a SequenceFile.Writer, you then write key-value pairs, using the
append() method. Then when you’ve finished, you call the close() method (Sequence
File.Writer implements java.io.Closeable).

Example 4-12 shows a short program to write some key-value pairs to a Sequence
File, using the API just described.

Example 4-12. Writing a SequenceFile

public class SequenceFileWriteDemo {

private static final String[] DATA = {
"One, two, buckle my shoe",
"Three, four, shut the door",
"Five, six, pick up sticks",
"Seven, eight, lay them straight",
"Nine, ten, a big fat hen"

b

public static void main(String[] args) throws IOException {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
Path path = new Path(uri);

IntWritable key = new IntWritable();
Text value = new Text();
SequenceFile.Writer writer = null;

try {
writer = SequenceFile.createWriter(fs, conf, path,

* In a similar vein, the blog post “A Million Little Files” by Stuart Sierra includes code for converting a tar file
into a SequenceFile, http://stuartsierra.com/2008/04/24/a-million-little-files.

File-Based Data Structures | 117

http://stuartsierra.com/2008/04/24/a-million-little-files

key.getClass(), value.getClass());

for (int i = 0; 1 < 100; i++) {
key.set(100 - 1i);
value.set(DATA[i % DATA.length]);
System.out.printf("[%s]\t%s\t%s\n", writer.getlLength(), key, value);
writer.append(key, value);

} finally {
I0Utils.closeStream(writer);
}
}
}

The keys in the sequence file are integers counting down from 100 to 1, represented as
IntWritable objects. The values are Text objects. Before each record is appended to the
SequenceFile.Writer, we call the getLength() method to discover the current position
in the file. (We will use this information about record boundaries in the next section
when we read the file nonsequentially.) We write the position out to the console, along
with the key and value pairs. The result of running it is shown here:

% hadoop SequenceFileWriteDemo numbers.seq

[128] 100 One, two, buckle my shoe

[173] 99 Three, four, shut the door
[220] 98 Five, six, pick up sticks

[264] 97 Seven, eight, lay them straight
[314] 96 Nine, ten, a big fat hen

[359] 95 One, two, buckle my shoe

[404] 94 Three, four, shut the door
[451] 93 Five, six, pick up sticks

[495] 92 Seven, eight, lay them straight
[545] 91 Nine, ten, a big fat hen

[1976] 60 One, two, buckle my shoe

[2021] 59 Three, four, shut the door
[2088] 58 Five, six, pick up sticks
[2132] 57 Seven, eight, lay them straight
[2182] 56 Nine, ten, a big fat hen

[4557] 5 One, two, buckle my shoe

[4602] 4 Three, four, shut the door
[4649] 3 Five, six, pick up sticks
[4693] 2 Seven, eight, lay them straight
[4743] 1 Nine, ten, a big fat hen

Reading a SequenceFile

Reading sequence files from beginning to end is a matter of creating an instance of
SequenceFile.Reader and iterating over records by repeatedly invoking one of the
next() methods. Which one you use depends on the serialization framework you are
using. If you are using Writable types, you can use the next() method that takes a key

118 | Chapter4: Hadoop /0

and a value argument, and reads the next key and value in the stream into these
variables:

public boolean next(Writable key, Writable val)

The return value is true if a key-value pair was read and false if the end of the file has
been reached.

For other, nonWritable serialization frameworks (such as Apache Thrift), you should
use these two methods:

public Object next(Object key) throws IOException
public Object getCurrentValue(Object val) throws IOException

In this case, you need to make sure that the serialization you want to use has been set
in the io.serializations property; see “Serialization Frameworks” on page 101.

If the next() method returns a non-null object, a key-value pair was read from the
stream, and the value can be retrieved using the getCurrentValue() method. Otherwise,
if next() returns null, the end of the file has been reached.

The program in Example 4-13 demonstrates how to read a sequence file that has
Writable keys and values. Note how the types are discovered from the Sequence
File.Reader via calls to getKeyClass() and getValueClass(), then ReflectionUtils is
used to create an instance for the key and an instance for the value. By using this tech-
nique, the program can be used with any sequence file that hasWritable keys and values.

Example 4-13. Reading a SequenceFile

public class SequenceFileReadDemo {

public static void main(String[] args) throws IOException {
String uri = args[o0];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);
Path path = new Path(uri);

SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(fs, path, conf);
Writable key = (Writable)
ReflectionUtils.newInstance(reader.getKeyClass(), conf);
Writable value = (Writable)
ReflectionUtils.newInstance(reader.getValueClass(), conf);
long position = reader.getPosition();
while (reader.next(key, value)) {
String syncSeen = reader.syncSeen() ? "*" : "";
System.out.printf("[%s%s]\t%s\t%s\n", position, syncSeen, key, value);
position = reader.getPosition(); // beginning of next record

}
} finally {
I0Utils.closeStream(reader);

}

File-Based Data Structures | 119

}
}

Another feature of the program is that it displays the position of the sync points in the
sequence file. A sync point is a point in the stream that can be used to resynchronize
with a record boundary if the reader is “lost”—for example, after seeking to an arbitrary
position in the stream. Sync points are recorded by SequenceFile.Writer, which inserts
a special entry to mark the sync point every few records as a sequence file is being
written. Such entries are small enough to incur only a modest storage overhead—Iess
than 1%. Sync points always align with record boundaries.

Running the program in Example 4-13 shows the sync points in the sequence file as
asterisks. The first one occurs at position 2021 (the second one occurs at position 4075,
but is not shown in the output):

% hadoop SequenceFileReadDemo numbers.seq

[128] 100 One, two, buckle my shoe

[173] 99 Three, four, shut the door
[220] 98 Five, six, pick up sticks

[264] 97 Seven, eight, lay them straight
[314] 96 Nine, ten, a big fat hen

[359] 95 One, two, buckle my shoe

[404] 94 Three, four, shut the door
[451] 93 Five, six, pick up sticks

[495] 92 Seven, eight, lay them straight
[545] 91 Nine, ten, a big fat hen

[590] 90 One, two, buckle my shoe

[1976] 60 One, two, buckle my shoe
[2021*] 59 Three, four, shut the door
[2088] 58 Five, six, pick up sticks
[2132] 57 Seven, eight, lay them straight
[2182] 56 Nine, ten, a big fat hen

[4557] 5 One, two, buckle my shoe

[4602] 4 Three, four, shut the door
[4649] 3 Five, six, pick up sticks
[4693] 2 Seven, eight, lay them straight
[4743] 1 Nine, ten, a big fat hen

There are two ways to seek to a given position in a sequence file. The first is the
seek() method, which positions the reader at the given point in the file. For example,
seeking to a record boundary works as expected:

reader.seek(359);

assertThat(reader.next(key, value), is(true));
assertThat(((IntWritable) key).get(), is(95));

But if the position in the file is not at a record boundary, the reader fails when the
next() method is called:

reader.seek(360);
reader.next(key, value); // fails with IOException

120 | Chapter4: Hadoop /0

The second way to find a record boundary makes use of sync points. The sync(long
position) method on SequenceFile.Reader positions the reader at the next sync point
after position. (If there are no sync points in the file after this position, then the reader
will be positioned at the end of the file.) Thus, we can call sync() with any position in
the stream—a nonrecord boundary, for example—and the reader will reestablish itself
at the next sync point so reading can continue:

reader.sync(360);

assertThat(reader.getPosition(), is(2021L));

assertThat(reader.next(key, value), is(true));
assertThat(((IntWritable) key).get(), is(59));

SequenceFile.Writer has a method called sync() for inserting a sync
) point at the current position in the stream. This is not to be confused
with the identically named but otherwise unrelated sync() method

defined by the Syncable interface for synchronizing buffers to the
underlying device.

Sync points come into their own when using sequence files as input to MapReduce,
since they permit the file to be split, so different portions of it can be processed inde-
pendently by separate map tasks. See “SequenceFileInputFormat” on page 213.

Displaying a SequenceFile with the command-line interface

The hadoop fs command has a -text option to display sequence files in textual form.
It looks at a file’s magic number so that it can attempt to detect the type of the file and
appropriately convert it to text. It can recognize gzipped files and sequence files; oth-
erwise, it assumes the input is plain text.

For sequence files, this command is really useful only if the keys and values have a
meaningful string representation (as defined by the toString() method). Also, if you
have your own key or value classes, then you will need to make sure they are on Ha-
doop’s classpath.

Running it on the sequence file we created in the previous section gives the following
output:

% hadoop fs -text numbers.seq | head

100 One, two, buckle my shoe

99 Three, four, shut the door

98 Five, six, pick up sticks

97 Seven, eight, lay them straight
96 Nine, ten, a big fat hen

95 One, two, buckle my shoe

94 Three, four, shut the door

93 Five, six, pick up sticks

92 Seven, eight, lay them straight
91 Nine, ten, a big fat hen

File-Based Data Structures | 121

Sorting and merging SequenceFiles

The most powerful way of sorting (and merging) one or more sequence files is to use
MapReduce. MapReduce is inherently parallel and will let you specify the number of
reducers to use, which determines the number of output partitions. For example, by
specifying one reducer, you get a single output file. We can use the sort example that
comes with Hadoop by specifying that the input and output are sequence files, and by
setting the key and value types:

% hadoop jar $HADOOP_INSTALL/hadoop-*-examples.jar sort -r 1 \
-inFormat org.apache.hadoop.mapred.SequenceFileInputFormat \
-outFormat org.apache.hadoop.mapred.SequenceFileOutputFormat \
-outKey org.apache.hadoop.io.IntWritable \

-outValue org.apache.hadoop.io.Text \
numbers.seq sorted
hadoop fs -text sorted/part-00000 | head
Nine, ten, a big fat hen
Seven, eight, lay them straight
Five, six, pick up sticks
Three, four, shut the door
One, two, buckle my shoe
Nine, ten, a big fat hen
Seven, eight, lay them straight
Five, six, pick up sticks
Three, four, shut the door
0 One, two, buckle my shoe

3R

P OWoo~NOUVT S WN R

Sorting is covered in more detail in “Sorting” on page 232.

As an alternative to using MapReduce for sort/merge, there is a SequenceFile.Sorter
class that has a number of sort() and merge() methods. These functions predate Map-
Reduce and are lower-level functions than MapReduce (for example, to get parallelism,
you need to partition your data manually), so in general MapReduce is the preferred
approach to sort and merge sequence files.

The SequenceFile format

A sequence file consists of a header followed by one or more records (see Figure 4-2).
The first three bytes of a sequence file are the bytes SEQ, which acts a magic number,
followed by a single byte representing the version number. The header contains other
fields including the names of the key and value classes, compression details, user-
defined metadata, and the sync marker.™ Recall that the sync marker is used to allow
areader to synchronize to a record boundary from any position in the file. Each file has
a randomly generated sync marker, whose value is stored in the header. Sync markers
appear between records in the sequence file. They are designed to incur less than a 1%
storage overhead, so they don’t necessarily appear between every pair of records (such
is the case for short records).

T Full details of the format of these fields may be found in SequenceFile’s documentation and source code.

122 | Chapter4: Hadoop /0

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/io/SequenceFile.html

Header Record Sync Record Record Record

No
compression
Record Ke Compressed
compression y value

Figure 4-2. The internal structure of a sequence file with no compression and record compression

The internal format of the records depends on whether compression is enabled, and if
it is, whether it is record compression or block compression.

If no compression is enabled (the default), then each record is made up of the record
length (in bytes), the key length, the key, and then the value. The length fields are
written as four-byte integers adhering to the contract of the writeInt() method of
java.io.DataOutput. Keys and values are serialized using the Serialization defined for
the class being written to the sequence file.

The format for record compression is almost identical to no compression, except the
value bytes are compressed using the codec defined in the header. Note that keys are
not compressed.

Block compression compresses multiple records at once; it is therefore more compact
than and should generally be preferred over record compression because it has the
opportunity to take advantage of similarities between records. (See Figure 4-3.) Records
are added to a block until it reaches a minimum size in bytes, defined by the
io.seqfile.compress.blocksize property: the default is 1 million bytes. A sync marker
is written before the start of every block. The format of a block is a field indicating the
number of records in the block, followed by four compressed fields: the key lengths,
the keys, the value lengths, and the values.

MapFile

A MapFile is a sorted SequenceFile with an index to permit lookups by key. MapFile can
be thought of as a persistent form of java.util.Map (although it doesn’t implement this
interface), which is able to grow beyond the size of a Map that is kept in memory.

File-Based Data Structures | 123

Header Sync JCITTHM Sync Blok Sync Block Sync Block

Block Number of Compressed Compressed Compressed Compressed
compression records key lengths keys value lengths values

1-5

Figure 4-3. The internal structure of a sequence file with block compression
Writing a MapFile

Writing a MapFile is similar to writing a SequenceFile: you create an instance of
MapFile.Writer, then call the append() method to add entries in order. (Attempting to
add entries out of order will result in an I0Exception.) Keys must be instances of
WritableComparable, and values must be Writable—contrast this to SequenceFile,
which can use any serialization framework for its entries.

The program in Example 4-14 creates a MapFile, and writes some entries to it. It is very
similar to the program in Example 4-12 for creating a SequenceFile.

Example 4-14. Writing a MapFile
public class MapFileWriteDemo {

private static final String[] DATA = {
"One, two, buckle my shoe",
"Three, four, shut the door",
"Five, six, pick up sticks",
"Seven, eight, lay them straight",
"Nine, ten, a big fat hen"

};

public static void main(String[] args) throws IOException {
String uri = args[o];
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), conf);

IntWritable key = new IntWritable();
Text value = new Text();
MapFile.Writer writer = null;
try {
writer = new MapFile.Writer(conf, fs, uri,
key.getClass(), value.getClass());

for (int i = 0; 1 < 1024; i++) {
key.set(i + 1);
value.set(DATA[i % DATA.length]);

124 | Chapter4: Hadoopl/0

writer.append(key, value);

} finally {
I0Utils.closeStream(writer);

}
}
}

Let’s use this program to build a MapFile:

% hadoop MapFileWriteDemo numbers.map

If we look at the MapFile, we see it’s actually a directory containing two files called
data and index:

% 1s -1 numbers.map

total 104
-rw-r--r-- 1 tom tom 47898 Jul 29 22:06 data
-rw-r--r-- 1 tom tom 251 Jul 29 22:06 index

Both files are SequenceFiles. The data file contains all of the entries, in order:

% hadoop fs -text numbers.map/data | head
One, two, buckle my shoe
Three, four, shut the door
Five, six, pick up sticks
Seven, eight, lay them straight
Nine, ten, a big fat hen
One, two, buckle my shoe
Three, four, shut the door
Five, six, pick up sticks
Seven, eight, lay them straight
0 Nine, ten, a big fat hen

PO oO~NOUV A WN R

The index file contains a fraction of the keys, and contains a mapping from the key to
that key’s offset in the data file:

% hadoop fs -text numbers.map/index

1 128

129 6079

257 12054
385 18030
513 24002
641 29976
769 35947
897 41922

As we can see from the output, by default only every 128th key is included in the index,
although you can change this value either by setting the io.map.index.interval
property or by calling the setIndexInterval() method on the MapFile.Writer instance.
A reason to increase the index interval would be to decrease the amount of memory
that the MapFile needs to store the index. Conversely, you might decrease the interval
to improve the time for random selection (since fewer records need to be skipped on
average) at the expense of memory usage.

File-Based Data Structures | 125

Since the index is only a partial index of keys, MapFile is not able to provide methods
to enumerate, or even count, all the keys it contains. The only way to perform these
operations is to read the whole file.

Reading a MapFile

[terating through the entries in order in a MapFile is similar to the procedure for a
SequenceFile: you create a MapFile.Reader, then call the next () method until it returns
false, signifying that no entry was read because the end of the file was reached:

public boolean next(WritableComparable key, Writable val) throws IOException

A random access lookup can be performed by calling the get() method:
public Writable get(WritableComparable key, Writable val) throws IOException

The return value is used to determine if an entry was found in the MapFile; if it’s null,
then no value exists for the given key. If key was found, then the value for that key is
read into val, as well as being returned from the method call.

It might be helpful to understand how this is implemented. Here is a snippet of code
that retrieves an entry for the MapFile we created in the previous section:
Text value = new Text();

reader.get(new IntWritable(496), value);
assertThat(value.toString(), is("One, two, buckle my shoe"));

For this operation, the MapFile.Reader reads the index file into memory (this is cached
so that subsequent random access calls will use the same in-memory index). The reader
then performs a binary search on the in-memory index to find the key in the index that
is less than or equal to the search key, 496. In this example, the index key found is 385,
with value 18030, which is the offset in the data file. Next the reader seeks to this offset
in the data file and reads entries until the key is greater than or equal to the search key,
496. In this case, a match is found and the value is read from the data file. Overall, a
lookup takes a single disk seek and a scan through up to 128 entries on disk. For a
random-access read, this is actually very efficient.

The getClosest() method is like get() except it returns the “closest” match to the
specified key, rather than returning null on no match. More precisely, if the MapFile
contains the specified key, then that is the entry returned; otherwise, the key in the
MapFile that is immediately after (or before, according to a boolean argument) the
specified key is returned.

Avery large MapFile’s index can take up a lot of memory. Rather than reindex to change
the index interval, it is possible to load only a fraction of the index keys into memory
when reading the MapFile by setting the io.map.index.skip property. This property is
normally 0, which means no index keys are skipped; a value of 1 means skip one key
for every key in the index (so every other key ends up in the index), 2 means skip two
keys for every key in the index (so one third of the keys end up in the index), and so

126 | Chapter4: Hadoop /0

on. Larger skip values save memory but at the expense of lookup time, since more
entries have to be scanned on disk, on average.

Converting a SequenceFile to a MapFile

One way of looking at a MapFile is as an indexed and sorted SequenceFile. So it’s quite
natural to want to be able to convert a SequenceFile into a MapFile. We covered how
to sort a SequenceFile in “Sorting and merging SequenceFiles” on page 122, so here we
look at how to create an index for a SequenceFile. The program in Example 4-15 hinges
around the static utility method fix() on MapFile, which re-creates the index for a
MapFile.

Example 4-15. Re-creating the index for a MapFile
public class MapFileFixer {

public static void main(String[] args) throws Exception {
String mapUri = args[o0];

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(URI.create(mapUri), conf);
Path map = new Path(mapUri);
Path mapData = new Path(map, MapFile.DATA FILE_NAME);

// Get key and value types from data sequence file

SequenceFile.Reader reader = new SequenceFile.Reader(fs, mapData, conf);
Class keyClass = reader.getKeyClass();

Class valueClass = reader.getValueClass();

reader.close();

// Create the map file index file
long entries = MapFile.fix(fs, map, keyClass, valueClass, false, conf);
System.out.printf("Created MapFile %s with %d entries\n", map, entries);
}
}

The fix() method is usually used for re-creating corrupted indexes, but since it creates
a new index from scratch, it’s exactly what we need here. The recipe is as follows:

1. Sort the sequence file numbers.seq into a new directory called number.map that will
become the MapFile (if the sequence file is already sorted, then you can skip this
step. Instead, copy it to a file number.map/data, then go to step 3):

% hadoop jar $HADOOP_INSTALL/hadoop-*-examples.jar sort -r 1 \
-inFormat org.apache.hadoop.mapred.SequenceFileInputFormat \
-outFormat org.apache.hadoop.mapred.SequenceFileOutputFormat \
-outKey org.apache.hadoop.io.IntWritable \

-outValue org.apache.hadoop.io.Text \
numbers.seq numbers.map

2. Rename the MapReduce output to be the data file:

% hadoop fs -mv numbers.map/part-00000 numbers.map/data

File-Based Data Structures | 127

3. Create the index file:

% hadoop MapFileFixer numbers.map
Created MapFile numbers.map with 100 entries

The MapFile numbers.map now exists and can be used.

128 | Chapter4: Hadoop /0

CHAPTER 5
Developing a MapReduce Application

In Chapter 2, we introduced the MapReduce model. In this chapter, we look at the
practical aspects of developing a MapReduce application in Hadoop.

Writing a program in MapReduce has a certain flow to it. You start by writing your
map and reduce functions, ideally with unit tests to make sure they do what you expect.
Then you write a driver program to run a job, which can run from your IDE using a
small subset of the data to check that it is working. If it fails, then you can use your
IDE’s debugger to find the source of the problem. With this information, you can
expand your unit tests to cover this case and improve your mapper or reducer as ap-
propriate to handle such input correctly.

When the program runs as expected against the small dataset, you are ready to unleash
it on a cluster. Running against the full dataset is likely to expose some more issues,
which you can fix as before, by expanding your tests and mapper or reducer to handle
the new cases. Debugging failing programs in the cluster is a challenge, but Hadoop
provides some tools to help, such as an IsolationRunner, which allows you to run a
task over the same input on which it failed, with a debugger attached, if necessary.

After the program is working, you may wish to do some tuning, first by running through
some standard checks for making MapReduce programs faster and then by doing task
profiling. Profiling distributed programs is not trivial, but Hadoop has hooks to aid the
process.

Before we start writing a MapReduce program, we need to set up and configure the
development environment. And to do that, we need to learn a bit about how Hadoop
does configuration.

129

The Configuration API

Components in Hadoop are configured using Hadoop’s own configuration API. An
instance of the Configuration class (found in the org.apache.hadoop.conf package)
represents a collection of configuration properties and their values. Each property is
named by a String, and the type of a value may be one of several types, including Java
primitives such as boolean, int, long, float, and other useful types such as String, Class,
java.io.File, and collections of Strings.

Configurations read their properties from resources—XML files with a simple structure
for defining name-value pairs. See Example 5-1.

Example 5-1. A simple configuration file, configuration-1.xml

<?xml version="1.0"?>
<configuration>
<property>
<name>color</name>
<value>yellow</value>
<description>Color</description>
</property>

<property>
<name>size</name>
<value>10</value>
<description>Size</description>
</property>

<property>
<name>weight</name>
<value>heavy</value>
<final>true</final>
<description>Weight</description>
</property>

<property>
<name>size-weight</name>
<value>${size},${weight}</value>
<description>Size and weight</description>
</property>
</configuration>

Assuming this configuration file is in a file called configuration-1.xml, we can access its
properties using a piece of code like this:

Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
assertThat(conf.get("color"), is("yellow"));
assertThat(conf.getInt("size", 0), is(10));
assertThat(conf.get("breadth", "wide"), is("wide"));

130 | Chapter5: Developing a MapReduce Application

There are a couple of things to note: type information is not stored in the XML file;
instead, properties can be interpreted as a given type when they are read. Also, the
get() methods allow you to specify a default value, which is used if the property is not
defined in the XML file, as in the case of breadth here.

Combining Resources

Things get interesting when more than one resource is used to define a configuration.
This is used in Hadoop to separate out the default properties for the system, defined
internally in a file called core-default.xml, from the site-specific overrides, in core-
site.xml. The file in Example 5-2 defines the size and weight properties.

Example 5-2. A second configuration file, configuration-2.xml

<?xml version="1.0"?>
<configuration>
<property>
<name>size</name>
<value>12</value>
</property>

<property>
<name>weight</name>
<value>light</value>
</property>
</configuration>

Resources are added to a Configuration in order:

Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
conf.addResource("configuration-2.xml");

Properties defined in resources that are added later override the earlier definitions. So
the size property takes its value from the second configuration file, configuration-2.xml:

assertThat(conf.getInt("size", 0), is(12));

However, properties that are marked as final cannot be overridden in later definitions.
The weight property is final in the first configuration file, so the attempt to override it
in the second fails, and it takes the value from the first:

assertThat(conf.get("weight"), is("heavy"));

Attempting to override final properties usually indicates a configuration error, so this
results in a warning message being logged to aid diagnosis. Administrators mark prop-
erties as final in the daemon’s site files that they don’t want users to change in their
client-side configuration files or job submission parameters.

The Configuration APl | 131

Variable Expansion

Configuration properties can be defined in terms of other properties, or system prop-
erties. For example, the property size-weight in the first configuration file is defined
as ${size},${weight}, and these properties are expanded using the values found in the
configuration:

assertThat(conf.get("size-weight"), is("12,heavy"));

System properties take priority over properties defined in resource files:

System.setProperty("size", "14");
assertThat(conf.get("size-weight"), is("14,heavy"));

This feature is useful for overriding properties on the command line by using
-Dproperty=value JVM arguments.

Note that while configuration properties can be defined in terms of system properties,
unless system properties are redefined using configuration properties, they are not ac-
cessible through the configuration API. Hence:

System.setProperty("length", "2");
assertThat(conf.get("length"), is((String) null));

Configuring the Development Environment

The first step is to download the version of Hadoop that you plan to use and unpack
it on your development machine (this is described in Appendix A). Then, in your fa-
vorite IDE, create a new project and add all the JAR files from the top level of the
unpacked distribution and from the lib directory to the classpath. You will then be able
to compile Java Hadoop programs and run them in local (standalone) mode within the
IDE.

For Eclipse users, there is a plug-in available for browsing HDFS and
launching MapReduce programs. Instructions are available on the Ha-
s doop wiki at http:/fwiki.apache.org/hadoop/EclipsePlugln.

Alternatively, Karmasphere provides Eclipse and NetBeans plug-ins for
developing and running MapReduce jobs and browsing Hadoop clus-
ters.

Managing Configuration

When developing Hadoop applications, it is common to switch between running the
application locally and running it on a cluster. In fact, you may have several clusters
you work with, or you may have a local “pseudo-distributed” cluster that you like to
test on (a pseudo-distributed cluster is one whose daemons all run on the local machine;
setting up this mode is covered in Appendix A, too).

132 | Chapter5: Developing a MapReduce Application

http://wiki.apache.org/hadoop/EclipsePlugIn
http://www.karmasphere.com/

One way to accommodate these variations is to have Hadoop configuration files con-
taining the connection settings for each cluster you run against, and specify which one
you are using when you run Hadoop applications or tools. As a matter of best practice,
it’s recommended to keep these files outside Hadoop’s installation directory tree, as
this makes it easy to switch between Hadoop versions without duplicating or losing
settings.

For the purposes of this book, we assume the existence of a directory called conf that
contains three configuration files: hadoop-local.xml, hadoop-localhost.xml, and
hadoop-cluster.xml (these are available in the example code for this book). Note that
there is nothing special about the names of these files—they are just convenient ways
to package up some configuration settings. (Compare this to Table A-1 in Appen-
dix A, which sets out the equivalent server-side configurations.)

The hadoop-local.xml file contains the default Hadoop configuration for the default
filesystem and the jobtracker:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.default.name</name>
<value>file:///</value>
</property>

<property>
<name>mapred. job.tracker</name>
<value>local</value>
</property>

</configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both run-
ning on localhost:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://localhost/</value>
</property>

<property>
<name>mapred.job.tracker</name>
<value>localhost:8021</value>
</property>

</configuration>

Configuring the Development Environment | 133

Finally, hadoop-cluster.xml contains details of the cluster’s namenode and jobtracker
addresses. In practice, you would name the file after the name of the cluster, rather
than “cluster” as we have here:

<?xml version="1.0"?>
<configuration>

<property>
<name>fs.default.name</name>
<value>hdfs://namenode/</value>
</property>

<property>
<name>mapred. job.tracker</name>
<value>jobtracker:8021</value>
</property>

</configuration>

You can add other configuration properties to these files as needed. For example, if you
wanted to set your Hadoop username for a particular cluster, you could do it in the
appropriate file.

Setting User Identity

The user identity that Hadoop uses for permissions in HDFS is determined by running
the whoami command on the client system. Similarly, the group names are derived from
the output of running groups.

If, however, your Hadoop user identity is different from the name of your user account
on your client machine, then you can explicitly set your Hadoop username and group
names by setting the hadoop.job.ugi property. The username and group names are
specified as a comma-separated list of strings (e.g., preston,directors, inventors would
set the username to preston and the group names to directors and inventors).

You can set the user identity that the HDFS web interface runs as by setting
dfs.web.ugi using the same syntax. By default, it is webuser,webgroup, which is not a
super user, so system files are not accessible through the web interface.

Notice that, by default, there is no authentication with this system. See “Secur-
ity” on page 281 for how to use Kerberos authentication with Hadoop.

With this setup, it is easy to use any configuration with the -conf command-line switch.
For example, the following command shows a directory listing on the HDFS server
running in pseudo-distributed mode on localhost:

% hadoop fs -conf conf/hadoop-localhost.xml -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-08 10:32 /user/tom/input

drwxr-xr-x - tom supergroup 0 2009-04-08 13:09 /user/tom/output

134 | Chapter5: Developing a MapReduce Application

If you omit the -conf option, then you pick up the Hadoop configuration in the conf
subdirectory under $HADOOP_INSTALL. Depending on how you set this up, this may be
for a standalone setup or a pseudo-distributed cluster.

Tools that come with Hadoop support the -conf option, but it’s also straightforward
to make your programs (such as programs that run MapReduce jobs) support it, too,
using the Tool interface.

GenericOptionsParser, Tool, and ToolRunner

Hadoop comes with a few helper classes for making it easier to run jobs from the
command line. GenericOptionsParser is a class that interprets common Hadoop
command-line options and sets them on a Configuration object for your application to
use as desired. You don’t usually use GenericOptionsParser directly, as it’s more
convenient to implement the Tool interface and run your application with the
ToolRunner, which uses GenericOptionsParser internally:
public interface Tool extends Configurable {
int run(String [] args) throws Exception;

}

Example 5-3 shows a very simple implementation of Tool, for printing the keys and
values of all the properties in the Tool’s Configuration object.

Example 5-3. An example Tool implementation for printing the properties in a Configuration

public class ConfigurationPrinter extends Configured implements Tool {

static {
Configuration.addDefaultResource("hdfs-default.xml");
Configuration.addDefaultResource("hdfs-site.xml");
Configuration.addDefaultResource("mapred-default.xml");
Configuration.addDefaultResource("mapred-site.xml");

}

@0verride
public int run(String[] args) throws Exception {
Configuration conf = getConf();
for (Entry<String, String> entry: conf) {
System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());
}

return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new ConfigurationPrinter(), args);
System.exit(exitCode);

Configuring the Development Environment | 135

We make ConfigurationPrinter a subclass of Configured, which is an implementation
of the Configurable interface. All implementations of Tool need to implement
Configurable (since Tool extends it), and subclassing Configured is often the easiest way
to achieve this. The run() method obtains the Configuration using Configurable’s
getConf() method and then iterates over it, printing each property to standard output.

The static block makes sure that the HDFS and MapReduce configurations are picked
up in addition to the core ones (which Configuration knows about already).

ConfigurationPrinter’smain() method does not invoke its own run() method directly.

Instead, we call ToolRunner’s static run() method, which takes care of creating a

Configuration object for the Tool, before calling its run() method. ToolRunner also uses

a GenericOptionsParser to pick up any standard options specified on the command line

and set them on the Configuration instance. We can see the effect of picking up the

properties specified in conf/hadoop-localhost.xml by running the following command:
% hadoop ConfigurationPrinter -conf conf/hadoop-localhost.xml \

| grep mapred.job.tracker=
mapred.job.tracker=localhost:8021

Which Properties Can | Set?

ConfigurationPrinter is a useful tool for telling you what a property is set to in your
environment.

You can also see the default settings for all the public properties in Hadoop by looking
in the docs directory of your Hadoop installation for HTML files called core-
default.html, hdfs-default.html and mapred-default.html. Each property has a descrip-
tion that explains what it is for and what values it can be set to.

Be aware that some properties have no effect when set in the client configuration. For
example, if in your job submission you set mapred. tasktracker.map.tasks.maximum with
the expectation that it would change the number of task slots for the tasktrackers run-
ning your job, then you would be disappointed, since this property only is only honored
if set in the tasktracker’s mapred-site.xml file. In general, you can tell the component
where a property should be set by its name, so the fact that mapred.task
tracker.map.tasks.maximum starts with mapred.tasktracker gives you a clue that it can
be set only for the tasktracker daemon. This is not a hard and fast rule, however, so in
some cases you may need to resort to trial and error, or even reading the source.

We discuss many of Hadoop’s most important configuration properties throughout
this book. You can find a configuration property reference on the book’s website at
http://www.hadoopbook.com.

GenericOptionsParser also allows you to set individual properties. For example:

% hadoop ConfigurationPrinter -D color=yellow | grep color
color=yellow

136 | Chapter5: Developing a MapReduce Application

http://www.hadoopbook.com

The -D option is used to set the configuration property with key color to the value
yellow. Options specified with -D take priority over properties from the configuration
files. This is very useful: you can put defaults into configuration files and then override
them with the -D option as needed. A common example of this is setting the number
of reducers for a MapReduce job via -D mapred.reduce.tasks=n. This will override the
number of reducers set on the cluster or set in any client-side configuration files.

The other options that GenericOptionsParser and ToolRunner support are listed in Ta-
ble 5-1. You can find more on Hadoop’s configuration API in “The Configuration

API” on page 130.

=

Do not confuse setting Hadoop properties using the -D
property=value option to GenericOptionsParser (and ToolRunner) with
setting JVM system properties using the -Dproperty=value option to the
java command. The syntax for JVM system properties does not allow
any whitespace between the D and the property name, whereas
GenericOptionsParser requires them to be separated by whitespace.

JVM system properties are retrieved from the java.lang.System class,
whereas Hadoop properties are accessible only from a Configuration
object. So, the following command will print nothing, since the
System class is not used by ConfigurationPrinter:

% hadoop -Dcolor=yellow ConfigurationPrinter | grep color

If you want to be able to set configuration through system properties,
then you need to mirror the system properties of interest in the
configuration file. See “Variable Expansion” on page 132 for further
discussion.

Table 5-1. GenericOptionsParser and ToolRunner options

Option
-D property=value

-conf filename ...

-fs uri

-jt host:port

-files filei,file2,...

-archives

archivel,archive2,...

Description

Sets the given Hadoop configuration property to the given value. Overrides any default
or site properties in the configuration, and any properties set via the - con¥ option.

Adds the given files to the list of resources in the configuration. Thisis a convenient way
to set site properties or to set a number of properties at once.

Setsthedefaultfilesystemtothegiven URI. Shortcutfor-D fs.default.name=uri

Sets the jobtracker to the given host and port. Shortcut for -D
mapred.job.tracker=host:port

Copies the specified files from the local filesystem (or any filesystem if a scheme is
specified) to the shared filesystem used by the jobtracker (usually HDFS) and makes
themavailabletoMapReduce programsin thetask’sworking directory. (See “Distributed
Cache” on page 253 for more on the distributed cache mechanism for copying files to
tasktracker machines.)

Copies the specified archives from the local filesystem (or any filesystem if a scheme is
specified) to the shared filesystem used by the jobtracker (usually HDFS), unarchives

Configuring the Development Environment | 137

Option Description
them, and makes them available to MapReduce programs in the task’s working
directory.

-libjars jari,jar2,... Copies the specified JAR files from the local filesystem (or any filesystem if a scheme is
specified) to the shared filesystem used by the jobtracker (usually HDFS), and adds them
to the MapReduce task’s classpath. This option is a useful way of shipping JAR files that
ajob is dependent on.

Writing a Unit Test

The map and reduce functions in MapReduce are easy to test in isolation, which is a
consequence of their functional style. For known inputs, they produce known outputs.
However, since outputs are written to an OutputCollector, rather than simply being
returned from the method call, the OutputCollector needs to be replaced with a mock
so that its outputs can be verified. There are several Java mock object frameworks that
can help build mocks; here we use Mockito, which is noted forits clean syntax, although
any mock framework should work just as well.”

All of the tests described here can be run from within an IDE.

Mapper

The test for the mapper is shown in Example 5-4.

Example 5-4. Unit test for MaxTemperatureMapper

import static org.mockito.Mockito.*;

import java.io.IOException;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.OutputCollector;
import org.junit.*;

public class MaxTemperatureMapperTest {

@Test
public void processesValidRecord() throws IOException {
MaxTemperatureMapper mapper = new MaxTemperatureMapper();

Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +
// Year "AAAA
"99999V0203201N00261220001CN9999999N9-00111+99999999999") ;
// Temperature ~AAAA
OutputCollector<Text, IntWritable> output = mock(OutputCollector.class);

mapper.map(null, value, output, null);

* See also the MRUnit contrib module, which aims to make unit testing MapReduce programs easier.

138 | Chapter5: Developing a MapReduce Application

verify(output).collect(new Text("1950"), new IntWritable(-11));
}

The test is very simple: it passes a weather record as input to the mapper, then checks
the output is the year and temperature reading. The input key and Reporter are both
ignored by the mapper, so we can pass in anything, including null as we do here. To
create a mock OutputCollector, we call Mockito’s mock() method (a static import),
passing the class of the type we want to mock. Then we invoke the mapper’s map()
method, which executes the code being tested. Finally, we verify that the mock object
was called with the correct method and arguments, using Mockito’s verify() method
(again, statically imported). Here we verify that OutputCollector’s collect() method
was called with a Text object representing the year (1950) and an IntWritable repre-
senting the temperature (-1.1°C).

Proceeding in a test-driven fashion, we create a Mapper implementation that passes the
test (see Example 5-5). Since we will be evolving the classes in this chapter, each is put
in a different package indicating its version for ease of exposition. For example, v1.Max
TemperatureMapper is version 1 of MaxTemperatureMapper. In reality, of course, you would
evolve classes without repackaging them.

Example 5-5. First version of a Mapper that passes MaxTemperatureMapperTest

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();
String year = line.substring(15, 19);
int airTemperature = Integer.parseInt(line.substring(87, 92));
output.collect(new Text(year), new IntWritable(airTemperature));
}
}

This is a very simple implementation, which pulls the year and temperature fields from
the line and emits them in the OutputCollector. Let’s add a test for missing values,
which in the raw data are represented by a temperature of +9999:

@Test

public void ignoresMissingTemperatureRecord() throws IOException {
MaxTemperatureMapper mapper = new MaxTemperatureMapper();

Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +
// Year AMAA
"99999V0203201N00261220001CN9999999N9+99991+99999999999") ;
// Temperature A~~~
OutputCollector<Text, IntWritable> output = mock(OutputCollector.class);

mapper.map(null, value, output, null);

Writing a Unit Test | 139

verify(output, never()).collect(any(Text.class), any(IntWritable.class));

Since records with missing temperatures should be filtered out, this test uses Mockito
to verify that the collect method on the OutputCollector is never called for any Text key
or IntWritable value.

The existing test fails with a NumberFormatException, as parseInt() cannot parseintegers
with a leading plus sign, so we fix up the implementation (version 2) to handle missing
values:

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

String line = value.toString();
String year = line.substring(15, 19);
String temp = line.substring(87, 92);
if (!missing(temp)) {
int airTemperature = Integer.parselnt(temp);
output.collect(new Text(year), new IntWritable(airTemperature));
}
}

private boolean missing(String temp) {
return temp.equals("+9999");
}

With the test passing, we move on to writing the reducer.

Reducer

The reducer has to find the maximum value for a given key. Here’s a simple test for
this feature:
@Test

public void returnsMaximumIntegerInValues() throws IOException {
MaxTemperatureReducer reducer = new MaxTemperatureReducer();

Text key = new Text("1950");
Iterator<IntWritable> values = Arrays.aslList(

new IntWritable(10), new IntWritable(5)).iterator();
OutputCollector<Text, IntWritable> output = mock(OutputCollector.class);

reducer.reduce(key, values, output, null);

verify(output).collect(key, new IntWritable(10));
}

We construct an iterator over some IntWritable values and then verify that
MaxTemperatureReducer picks the largest. The code in Example 5-6 is for an implemen-
tation of MaxTemperatureReducer that passes the test. Notice that we haven’t tested the

140 | Chapter5: Developing a MapReduce Application

case of an empty values iterator, but arguably we don’t need to, since MapReduce
would never call the reducer in this case, as every key produced by a mapper has a value.

Example 5-6. Reducer for maximum temperature example

public class MaxTemperatureReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

int maxValue = Integer.MIN_VALUE;
while (values.hasNext()) {
maxValue = Math.max(maxValue, values.next().get());

output.collect(key, new IntWritable(maxValue));

Running Locally on Test Data

Now that we’ve got the mapper and reducer working on controlled inputs, the next
step is to write a job driver and run it on some test data on a development machine.

Running a Job in a Local Job Runner

Using the Tool interface introduced earlier in the chapter, it’s easy to write a driver to
run our MapReduce job for finding the maximum temperature by year (see
MaxTemperatureDriver in Example 5-7).

Example 5-7. Application to find the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

@0verride
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;

}

JobConf conf = new JobConf(getConf(), getClass());
conf.setJobName("Max temperature");

FileInputFormat.addInputPath(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(InthWritable.class);

Running Locally on Test Data | 141

conf.setMapperClass(MaxTemperatureMapper.class);
conf.setCombinerClass(MaxTemperatureReducer.class);
conf.setReducerClass(MaxTemperatureReducer.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
System.exit(exitCode);

}

MaxTemperatureDriver implements the Tool interface, so we get the benefit of being able
to set the options that GenericOptionsParser supports. The run() method constructs
and configures a JobConf object, before launching a job described by the JobConf.
Among the possible job configuration parameters, we set the input and output file
paths, the mapper, reducer and combiner classes, and the output types (the input types
are determined by the input format, which defaults to TextInputFormat and has Long
Writable keys and Text values). It’s also a good idea to set a name for the job so that
you can pick it outin the job list during execution and after it has completed. By default,
the name is the name of the JAR file, which is normally not particularly descriptive.

Now we can run this application against some local files. Hadoop comes with a local
job runner, a cut-down version of the MapReduce execution engine for running Map-
Reduce jobs in a single JVM. It’s designed for testing and is very convenient for use in
an IDE, since you can run it in a debugger to step through the code in your mapper and
reducer.

The local job runner is only designed for simple testing of MapReduce
“i% programs, so inevitably it differs from the full MapReduce implemen-

tation. The biggest difference is that it can’t run more than one reducer.
(It can support the zero reducer case, too.) This is normally not a prob-
lem, as most applications can work with one reducer, although on a
cluster you would choose a larger number to take advantage of paral-
lelism. The thing to watch out for is that even if you set the number of
reducers to a value over one, the local runner will silently ignore the
setting and use a single reducer.

The local job runner also has no support for the DistributedCache fea-
ture (described in “Distributed Cache” on page 253).

Neither of these limitations is inherent in the local job runner, and future
versions of Hadoop may relax these restrictions.

142 | Chapter5: Developing a MapReduce Application

The local job runner is enabled by a configuration setting. Normally,
mapred.job.tracker isahost:port pair to specify the address of the jobtracker, but when
it has the special value of local, the job is run in-process without accessing an external
jobtracker.

From the command line, we can run the driver by typing:

% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml \
input/ncdc/micro max-temp

Equivalently, we could use the -fs and -jt options provided by GenericOptionsParser:

% hadoop v2.MaxTemperatureDriver -fs file:/// -jt local input/ncdc/micro max-temp

This command executes MaxTemperatureDriver using input from the local input/ncdc/
micro directory, producing output in the local max-temp directory. Note that although
we’ve set -fs so we use the local filesystem (file:///), the local job runner will actually
work fine against any filesystem, including HDFS (and it can be handy to do this if you
have a few files that are on HDFS).

When we run the program, it fails and prints the following exception:

java.lang.NumberFormatException: For input string: "+0000"

Fixing the mapper

This exception shows that the map method still can’t parse positive temperatures. (If
the stack trace hadn’t given us enough information to diagnose the fault, we could run
the test in a local debugger, since it runs in a single JVM.) Earlier, we made it handle
the special case of missing temperature, +9999, but not the general case of any positive
temperature. With more logic going into the mapper, it makes sense to factor out a
parser class to encapsulate the parsing logic; see Example 5-8 (now on version 3).

Example 5-8. A class for parsing weather records in NCDC format

public class NcdcRecordParser {
private static final int MISSING TEMPERATURE = 9999;

private String year;
private int airTemperature;
private String quality;

public void parse(String record) {
year = record.substring(15, 19);
String airTemperatureString;
// Remove leading plus sign as parseInt doesn't like them
if (record.charAt(87) == '+') {
airTemperatureString = record.substring(88, 92);
} else {
airTemperatureString = record.substring(87, 92);
}
airTemperature = Integer.parseInt(airTemperatureString);
quality = record.substring(92, 93);

Running Locally on Test Data | 143

}

public void parse(Text record) {
parse(record.toString());

public boolean isValidTemperature() {
return airTemperature != MISSING TEMPERATURE &8 quality.matches("[01459]");

}

public String getYear() {
return year;

}

public int getAirTemperature() {
return airTemperature;
}
}

The resulting mapper is much simpler (see Example 5-9). It just calls the parser’s
parse() method, which parses the fields of interest from a line of input, checks whether
a valid temperature was found using the isvalidTemperature() query method, and if it
was, retrieves the year and the temperature using the getter methods on the parser.
Notice that we also check the quality status field as well as missing temperatures in
isValidTemperature() to filter out poor temperature readings.

Another benefit of creating a parser class is that it makes it easy to write related mappers
for similar jobs without duplicating code. It also gives us the opportunity to write unit
tests directly against the parser, for more targeted testing.

Example 5-9. A Mapper that uses a utility class to parse records

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);
if (parser.isValidTemperature()) {
output.collect(new Text(parser.getYear()),
new IntWritable(parser.getAirTemperature()));
}
}
}

With these changes, the test passes.

144 | Chapter5: Developing a MapReduce Application

Testing the Driver

Apart from the flexible configuration options offered by making your application im-
plement Tool, you also make it more testable because it allows you to inject an arbitrary
Configuration. You can take advantage of this to write a test that uses a local job runner
to run a job against known input data, which checks that the output is as expected.

There are two approaches to doing this. The first is to use the local job runner and run
the job against a test file on the local filesystem. The code in Example 5-10 gives an
idea of how to do this.

Example 5-10. A test for MaxTemperatureDriver that uses a local, in-process job runner

@Test

public void test() throws Exception {
JobConf conf = new JobConf();
conf.set("fs.default.name", "file:///");
conf.set("mapred.job.tracker", "local");

Path input = new Path("input/ncdc/micro");
Path output = new Path("output");

FileSystem fs = FileSystem.getLocal(conf);
fs.delete(output, true); // delete old output

MaxTemperatureDriver driver = new MaxTemperatureDriver();
driver.setConf(conf);

int exitCode = driver.run(new String[] {
input.toString(), output.toString() });
assertThat(exitCode, is(0));

checkOutput(conf, output);
}

The test explicitly sets fs.default.name and mapred.job.tracker so it uses the local
filesystem and the local job runner. It then runs the MaxTemperatureDriver via its Tool
interface against a small amount of known data. At the end of the test, the checkOut
put() method is called to compare the actual output with the expected output, line by
line.

The second way of testing the driver is to run it using a “mini-” cluster. Hadoop has a
pair of testing classes, called MiniDFSCluster and MiniMRCluster, which provide a pro-
grammatic way of creating in-process clusters. Unlike the local job runner, these allow
testing against the full HDFS and MapReduce machinery. Bear in mind, too, that task-
trackers in a mini-cluster launch separate JVMs to run tasks in, which can make de-
bugging more difficult.

Mini-clusters are used extensively in Hadoop’s own automated test suite, but they can
be used for testing user code, too. Hadoop’s ClusterMapReduceTestCase abstract class
provides a useful base for writing such a test, handles the details of starting and stopping

Running Locally on Test Data | 145

the in-process HDFS and MapReduce clusters in its setUp() and tearDown() methods,
and generates a suitable JobConf object that is configured to work with them. Subclasses
need populate only data in HDFS (perhaps by copying from a local file), run a Map-
Reduce job, then confirm the output is as expected. Refer to the MaxTemperatureDriver
MiniTest class in the example code that comes with this book for the listing.

Tests like this serve as regression tests, and are a useful repository of input edge cases
and their expected results. As you encounter more test cases, you can simply add them
to the input file and update the file of expected output accordingly.

Running on a Cluster

Now that we are happy with the program running on a small test dataset, we are ready
to try it on the full dataset on a Hadoop cluster. Chapter 9 covers how to set up a fully
distributed cluster, although you can also work through this section on a pseudo-
distributed cluster.

Packaging

We don’t need to make any modifications to the program to run on a cluster rather
than on a single machine, but we do need to package the program as a JAR file to send
to the cluster. This is conveniently achieved using Ant, using a task such as this (you
can find the complete build file in the example code):

<jar destfile="job.jar" basedir="${classes.dir}"/>

If you have a single job per JAR, then you can specify the main class to run in the JAR
file’s manifest. If the main class is not in the manifest, then it must be specified on the
command line (as you will see shortly). Also, any dependent JAR files should be pack-
aged in a [ib subdirectory in the JAR file. (This is analogous to a Java Web application
archive, or WAR file, except in that case the JAR files go in a WEB-INF/lib subdirectory
in the WAR file.)

Launching a Job

To launch the job, we need to run the driver, specifying the cluster that we want to run
the job on with the -conf option (we could equally have used the -fs and -jt options):

% hadoop jar job.jar v3.MaxTemperatureDriver -conf conf/hadoop-cluster.xml \
input/ncdc/all max-temp

The runJob() method on JobClient launches the job and polls for progress, writing a
line summarizing the map and reduce’s progress whenever either changes. Here’s the
output (some lines have been removed for clarity):

09/04/11 08:15:52 INFO mapred.FileInputFormat: Total input paths to process : 101

09/04/11 08:15:53 INFO mapred.JobClient: Running job: job_200904110811 0002
09/04/11 08:15:54 INFO mapred.JobClient: map 0% reduce 0%

146 | Chapter5: Developing a MapReduce Application

09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11
09/04/11

08:
08:

08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:

16:
16:

21:
21:
21:
21:
21:
138
138
21:
21:
138
21:
21:
138
21:
21:
138
21:
21:
21:
21:
21:
21:
21:
21:
21:

21
21

21

21

21

06
07

36
38
38
38
38

38
38

38
38

38
38

38
38
38
38
38
38
38
38
38

The output includes
this is needed whenever you want to refer to the job, in logfiles for example, or when
interrogating it via the hadoop job command. When the job is complete, its statistics
(known as counters) are printed out. These are very useful for confirming that the job
did what you expected. For example, for this job we can see that around 275 GB of
input data was analyzed (“Map input bytes”), read from around 34 GB of compressed
files on HDFS (“HDFS_BYTES_READ”). The input was broken into 101 gzipped files
of reasonable size, so there was no problem with not being able to split them.

INFO
INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

mapred.
mapred.

mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.
mapred.

JobClient:
JobClient:

JobClient:
JobClient:

JobClient

JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:
JobClient:

map 28% reduce 0%
map 30% reduce 0%

map 100% reduce 100%

Job complete: job_ 200904110811 0002

: Counters: 19

Job Counters
Launched reduce tasks=32
Rack-local map tasks=82
Launched map tasks=127
Data-local map tasks=45

FileSystemCounters
FILE_BYTES_READ=12667214
HDFS_BYTES_READ=33485841275
FILE_BYTES WRITTEN=989397
HDFS_BYTES_WRITTEN=904

Map-Reduce Framework
Reduce input groups=100
Combine output records=4489
Map input records=1209901509
Reduce shuffle bytes=19140
Reduce output records=100
Spilled Records=9481
Map output bytes=10282306995
Map input bytes=274600205558
Combine input records=1142482941
Map output records=1142478555
Reduce input records=103

more useful information. Before the job starts, its ID is printed:

job_200904110811_0002

is the second (0002, job IDs are 1-based) job run by the jobtracker which started at
08:11 on April 11, 2009. The counter is formatted with leading zeros to make job IDs
sort nicely—in directory listings, for example. However, when the counter reaches
10000 it is not reset, resulting in longer job IDs (which don’t sort so well).

Job, Task, and Task Attempt IDs

The format of a job ID is composed of the time that the jobtracker (not the job) started
and an incrementing counter maintained by the jobtracker to uniquely identify the job
to that instance of the jobtracker. So the job with this ID:

Running ona Cluster | 147

Tasks belong to a job, and their IDs are formed by replacing the job prefix of a job ID
with a task prefix, and adding a suffix to identify the task within the job. For example:

task_200904110811_0002_m_000003

is the fourth (000003, task IDs are O-based) map (m) task of the job with ID
job 200904110811 0002. The task IDs are created for a job when it is initialized, so they
do not necessarily dictate the order that the tasks will be executed in.

Tasks may be executed more than once, due to failure (see “Task Fail-
ure” on page 173) or speculative execution (see “Speculative Execu-
tion” on page 183), so to identify different instances of a task execution, task attempts
are given unique IDs on the jobtracker. For example:

attempt_200904110811_0002_m_000003_0

is the first (0, attempt IDs are O0-based) attempt at running task
task 200904110811 0002_m_000003. Task attempts are allocated during the job run as
needed, so their ordering represents the order that they were created for tasktrackers
to run.

The final count in the task attempt ID is incremented by 1,000 if the job is restarted
after the jobtracker is restarted and recovers its running jobs.

The MapReduce Web Ul

Hadoop comes with a web Ul for viewing information about your jobs. It is useful for
following a job’s progress while it is running, as well as finding job statistics and logs
after the job has completed. You can find the Ul at http://jobtracker-host:50030/.

The jobtracker page

A screenshot of the home page is shown in Figure 5-1. The first section of the page gives
details of the Hadoop installation, such as the version number and when it was com-
piled, and the current state of the jobtracker (in this case, running), and when it was
started.

Next is a summary of the cluster, which has measures of cluster capacity and utilization.
This shows the number of maps and reduces currently running on the cluster, the total
number of job submissions, the number of tasktracker nodes currently available, and
the cluster’s capacity: in terms of the number of map and reduce slots available across
the cluster (“Map Task Capacity” and “Reduce Task Capacity”), and the number of
available slots per node, on average. The number of tasktrackers that have been black-
listed by the jobtracker is listed as well (blacklisting is discussed in “Tasktracker Fail-
ure” on page 175).

Below the summary, there is a section about the job scheduler that is running (here the
default). You can click through to see job queues.

148 | Chapter5: Developing a MapReduce Application

Further down, we see sections for running, (successfully) completed, and failed jobs.
Each of these sections has a table of jobs, with a row per job that shows the job’s ID,
owner, name (as set using JobConf’s setJobName() method, which sets the
mapred.job.name property) and progress information.

Finally, at the foot of the page, there are links to the jobtracker’s logs, and the job-
tracker’s history: information on all the jobs that the jobtracker has run. The main
display displays only 100 jobs (configurable via the mapred.jobtracker.completeuser
jobs.maximum property), before consigning them to the history page. Note also that the
job history is persistent, so you can find jobs here from previous runs of the jobtracker.

Quick Links

ip-10-250-110-47 Hadoop Map/Reduce Administration

State: RUNNING

Started: Sat Apr 11 08:11:53 EDT 2009

Version: 0.20.0, r763504

Compiled: Thu Apr 9 05:18:40 UTC 2009 by ndaley
Identifier: 200904110811

Cluster Summary (Heap Size is 53.75 MB/888.94 MB)

|Maps |Reduces ‘Tmal Submissions |Nades ‘Map Task Capacity ‘ Reduce Task Capacity ‘ Avg. Tasks/Node ‘ Blacklisted Nodes |
[sa [s0 B |11 e 88 [16.00 o |

Scheduling Information

Queue Name | Scheduling Information
default N/A

Filter (Jobid, Priority, User, Name)
Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200'in all fields

Running Jobs

Job
- - Map % Map |Maps Reduce % Reduce |Reduces "
Jobid Priority |User |Name Scheduling
Ci Total |C C Total Completed |0 ation
i 47.52% 15.25%
job_200904110811_0002 | NORMAL | root temperature ° 101 48 ° 30 0 NA
Completed Jobs
" s Map % Map |Maps Reduce % Reduce |Reduces Job Scheduling
Jobid Priority |User |Name | P Total |Comp Comp Total Completed Information
i word 100.00% 100.00%
job 200904110811 0001 | NORMAL | gonzo count o 14 14 ° 30 30 NA
Failed Jobs
none
Local Logs

Log directory, Job Tracker History
Hadoop, 2009.

Figure 5-1. Screenshot of the jobtracker page

Running ona Cluster | 149

Job History

Job history refers to the events and configuration for a completed job. It is retained
whether the job was successful or not. Job history is used to support job recovery after
a jobtracker restart (see the mapred.jobtracker.restart.recover property), as well as
providing interesting information for the user running a job.

Job history files are stored on the local filesystem of the jobtracker in a history subdir-
ectory of the logs directory. It is possible to set the location to an arbitrary Hadoop
filesystem via the hadoop. job.history.location property. Thejobtracker’s history files
are kept for 30 days before being deleted by the system.

A second copy is also stored for the user in the _logs/history subdirectory of the
job’s output directory. This location may be overridden by setting
hadoop.job.history.user.location. By setting it to the special value none, no user job
history is saved, although job history is still saved centrally. A user’s job history files
are never deleted by the system.

The history log includes job, task, and attempt events, all of which are stored in a plain-
text file. The history for a particular job may be viewed through the web U], or via the
command line, using hadoop job -history (which you point at the job’s output
directory).

The job page

Clicking on a job ID brings you to a page for the job, illustrated in Figure 5-2. At the
top of the page is a summary of the job, with basic information such as job owner and
name, and how long the job has been running for. The job file is the consolidated
configuration file for the job, containing all the properties and their values that were in
effect during the job run. If you are unsure of what a particular property was set to, you
can click through to inspect the file.

While the job is running, you can monitor its progress on this page, which periodically
updatesitself. Below the summary is a table that shows the map progress and the reduce
progress. “Num Tasks” shows the total number of map and reduce tasks for this job
(a row for each). The other columns then show the state of these tasks: “Pending”
(waiting to run), “Running,” “Complete” (successfully run), “Killed” (tasks that have
failed—this column would be more accurately labeled “Failed”). The final column
shows the total number of failed and killed task attempts for all the map or reduce tasks
for the job (task attempts may be marked as killed if they are a speculative execution
duplicate, if the tasktracker they are running on dies or if they are killed by a user). See
“Task Failure” on page 173 for background on task failure.

Further down the page, you can find completion graphs for each task that show their
progress graphically. The reduce completion graph is divided into the three phases of
the reduce task: copy (when the map outputs are being transferred to the reduce’s
tasktracker), sort (when the reduce inputs are being merged), and reduce (when the

150 | Chapter5: Developing a MapReduce Application

reduce function is being run to produce the final output). The phases are described in
more detail in “Shuffle and Sort” on page 177.

In the middle of the page is a table of job counters. These are dynamically updated
during the job run, and provide another useful window into the job’s progress and
general health. There is more information about what these counters mean in “Built-
in Counters” on page 225.

Retrieving the Results

Once the job is finished, there are various ways to retrieve the results. Each reducer
produces one output file, so there are 30 part files named part-00000 to part-00029 in
the max-temp directory.

B
)

As their names suggest, a good way to think of these “part” files is as
parts of the max-temp “file.”

N

3 If the output is large (which it isn’t in this case), then it is important to
have multiple parts so that more than one reducer can work in parallel.
Usually, if a file is in this partitioned form, it can still be used easily
enough: as the input to another MapReduce job, for example. In some
cases, you can exploit the structure of multiple partitions to do a map-
side join, for example, (“Map-Side Joins” on page 247) or a MapFile
lookup (“An application: Partitioned MapFile lookups” on page 235).

This job produces a very small amount of output, so it is convenient to copy it from
HDFS to our development machine. The -getmerge option to the hadoop fs command
is useful here, as it gets all the files in the directory specified in the source pattern and
merges them into a single file on the local filesystem:

% hadoop fs -getmerge max-temp max-temp-local
% sort max-temp-local | tail

1991 607
1992 605
1993 567
1994 568
1995 567
1996 561
1997 565
1998 568
1999 568
2000 558

We sorted the output, as the reduce output partitions are unordered (owing to the hash
partition function). Doing a bit of postprocessing of data from MapReduce is very
common, as is feeding it into analysis tools, such as R, a spreadsheet, or even a relational
database.

Runningona Cluster | 151

Hadoop job_200904110811_0002 on ip-10-250-110-47

User: root

Job Name: Max temperature
Job File: hdfs://ip-10-250-110-47.ec2.internal/mr)¢

1/job 200904110811 0002/job.xml

Job Setup: Successful
Status: Runnin,

9
Started at: Sat Apr 11 08:15:53 EDT 2009

Running for: 5mins, 38sec
Job Cleanup: Pending

" " Failed/Killed
Kind | % C Num Tasks g g | Ct Killed | - c Attempts
map 100.00% 101 0 0 101 0 0/26
reduce 70.74% 30 0 13 17 [0/0
Counter Map Reduce Total
Launched reduce tasks 0 0 32
Rack-local map tasks 0 0 82
Job Counters
Launched map tasks 0 0 127
Data-local map tasks 0 0 45
FILE_BYTES_READ 12,665,901 564 12,666,465
HDFS_BYTES_READ 33,485,841,275 0 | 33,485,841,275
Fil ounters
FILE_BYTES_WRITTEN 988,084 564 988,648
HDFS_BYTES_WRITTEN o] 360 360
Reduce input groups 0 40 40
Combine output records 4,489 0 4,489
Map input records 1,209,901,509 0 1,209,901,509
Reduce shuffle bytes 0| 18,397 18,397
Reduce output records 0 40 40
Map-Reduce Framework | Spilled Records 9,378 42 9,420
Map output bytes 10,282,306,995 0 | 10,282,306,995
Map input bytes 274,600,205,558 0 (274,600,205,558
Map output records 1,142,478,555 0 1,142,478,555
Combine input records 1,142,482,941 0 1,142,482,941
Reduce input records 0 42 42
Map Completion Graph - close
100
90
80
70
60
50
40
30
20
10
0 il 22 33 44 55 66 77 88 99
Reduce Completion Graph - close
100
90
co|
20 W copy
70 W sort
60 reduce
50
40
30
20
10
0 2

12

15 18 21 24

Go back to JobTracker

Hadoop, 2009.

Figure 5-2. Screenshot of the job page

152 | Chapter5: Developing a MapReduce Application

Another way of retrieving the output if it is small is to use the -cat option to print the
output files to the console:

% hadoop fs -cat max-temp/*

On closer inspection, we see that some of the results don’tlook plausible. For instance,
the maximum temperature for 1951 (not shown here) is 590°C! How do we find out
what’s causing this? Is it corrupt input data or a bug in the program?

Debugging a Job

The time-honored way of debugging programs is via print statements, and this is cer-
tainly possible in Hadoop. However, there are complications to consider: with pro-
grams running on tens, hundreds, or thousands of nodes, how do we find and examine
the output of the debug statements, which may be scattered across these nodes? For
this particular case, where we are looking for (what we think is) an unusual case, we
can use a debug statement to log to standard error, in conjunction with a message to
update the task’s status message to prompt us to look in the error log. The web Ul
makes this easy, as we will see.

We also create a custom counter to count the total number of records with implausible
temperatures in the whole dataset. This gives us valuable information about how to
deal with the condition—if it turns out to be a common occurrence, then we might
need to learn more about the condition and how to extract the temperature in these
cases, rather than simply dropping the record. In fact, when trying to debug a job, you
should always ask yourself if you can use a counter to get the information you need to
find out what’s happening. Even if you need to use logging or a status message, it may
be useful to use a counter to gauge the extent of the problem. (There is more on counters
in “Counters” on page 225.)

If the amount of log data you produce in the course of debugging is large, then you’ve
gota couple of options. The first is to write the information to the map’s output, rather
than to standard error, for analysis and aggregation by the reduce. This approach usu-
ally necessitates structural changes to your program, so start with the other techniques
first. Alternatively, you can write a program (in MapReduce of course) to analyze the
logs produced by your job.

We add our debugging to the mapper (version 4), as opposed to the reducer, as we
want to find out what the source data causing the anomalous output looks like:

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

enum Temperature {
OVER_100

}

private NcdcRecordParser parser = new NcdcRecordParser();

Running ona Cluster | 153

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);
if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
if (airTemperature > 1000) {
System.err.println("Temperature over 100 degrees for input: " + value);
reporter.setStatus("Detected possibly corrupt record: see logs.");
reporter.incrCounter(Temperature.OVER_100, 1);

output.collect(new Text(parser.getYear()), new IntWritable(airTemperature));

}
}
}

If the temperature is over 100°C (represented by 1000, since temperatures are in tenths
of a degree), we print a line to standard error with the suspect line, as well as updating
the map’s status message using the setStatus() method on Reporter directing us to
look in the log. We also increment a counter, which in Java is represented by a field of
an enum type. In this program, we have defined a single field OVER_100 as a way to count
the number of records with a temperature of over 100°C.

With this modification, we recompile the code, re-create the JAR file, then rerun the
job, and while it’s running go to the tasks page.

The tasks page

The job page has a number of links for look at the tasks in a job in more detail. For
example, by clicking on the “map” link, you are brought to a page that lists information
for all of the map tasks on one page. You can also see just the completed tasks. The
screenshot in Figure 5-3 shows a portion of this page for the job run with our debugging
statements. Each row in the table is a task, and it provides such information as the start
and end times for each task, any errors reported back from the tasktracker, and a link
to view the counters for an individual task.

The “Status” column can be helpful for debugging, since it shows a task’s latest status
message. Before a task starts, it shows its status as “initializing,” then once it starts
reading records it shows the split information for the split it is reading as a filename
with a byte offset and length. You can see the status we set for debugging for task
task_200904110811_0003_m_ 000044, so let’s click through to the logs page to find the
associated debug message. (Notice, too, that there is an extra counter for this task, since
our user counter has a nonzero count for this task.)

The task details page

From the tasks page, you can click on any task to get more information about it. The
task details page, shown in Figure 5-4, shows each task attempt. In this case, there was

154 | Chapter5: Developing a MapReduce Application

one task attempt, which completed successfully. The table provides further useful data,
such as the node the task attempt ran on, and links to task logfiles and counters.

The “Actions” column contains links for killing a task attempt. By default, this is dis-
abled, making the web UI a read-only interface. Set webinterface.private.actions to
true to enable the actions links.

Hadoop map task list for job 200904110811 0003 on
ip-10-250-110-47

Completed Tasks

| Task Complete | Status Start Time Finish Time ‘Errors ‘Coumers
hdfs:/fip- 11-Apr-2009
100.00% 10-250-110-47.ec2.internal | 11-Apr-2009 |09:01:25
task 200904110811 0003 m 000043 : Juser/root/input/ncdc/all 09:00:06 {1mins, 10
/1949.92:0+220338475 18sec)
11-Apr-2009
100.00% Detected possibly corrupt 11-Apr-2009 |09:01:28
task 200904110811 0003 m 000044 ° record: see logs. 09:00:06 {1mins, 1
21sec)
hdfs://ip- 11-Apr-2009
100.00% 10-250-110-47.ec2.internal | 11-Apr-2009 | 09:01:28
lask 200904110811 0003 m 000045 ° Juser/root/input/ncder/all 09:00:06 {1mins, 10
/1970.92:0+208374610 21sec)
Figure 5-3. Screenshot of the tasks page
Job job 200904110811 0003
All Task Attempts
Task Attempts Machine Status Progress Start Time | Finish Time |Errors 12;2 Counters | Actions
11-Apr-2009 Lt
attompt 200004110811 0003 m 000044 o [Melatltracklip. |syccEEDED |10000% | 11-Apr-2009 ?ﬁm;ﬁ % 1
19sec) Al

Input Split Locations

Idefault-rack/10.250.202.127
Idefault-rack/10.250.123.223
Idefault-rack/10.250.115.79

Go back to the job
Go back to JobTracker

Hadoop, 2009.

Figure 5-4. Screenshot of the task details page

By setting webinterface.private.actions to true, you also allow anyone
‘*% with access to the HDFS web interface to delete files. The dfs.web.ugi

property determines the user that the HDFS web Ul runs as, thus con-
trolling which files may be viewed and deleted.

Running ona Cluster | 155

For map tasks, there is also a section showing which nodes the input split was located
on.

By following one of the links to the logfiles for the successful task attempt (you can see

the last 4 KB or 8 KB of each logfile, or the entire file), we can find the suspect input

record that we logged (the line is wrapped and truncated to fit on the page):
Temperature over 100 degrees for input:

0335999999433181957042302005+37950+139117SA0 +0004RISN V020113590031500703569999994
33201957010100005+35317+139650SA0 +000899999V02002359002650076249N004000599+0067. . .

This record seems to be in a different format to the others. For one thing, there are
spaces in the line, which are not described in the specification.

When the job has finished, we can look at the value of the counter we defined to see
how many records over 100°C there are in the whole dataset. Counters are accessible
via the web Ul or the command line:

% hadoop job -counter job_200904110811_0003 'v4.MaxTemperatureMapper$Temperature' \

OVER_100
3

The -counter option takes the job ID, counter group name (which is the fully qualified
classname here), and the counter name (the enum name). There are only three mal-
formed records in the entire dataset of over a billion records. Throwing out bad records
is standard for many big data problems, although we need to be careful in this case,
since we are looking for an extreme value—the maximum temperature rather than an
aggregate measure. Still, throwing away three records is probably not going to change
the result.

Hadoop User Logs

Hadoop produces logs in various places, for various audiences. These are summarized
in Table 5-2.

As you have seen in this section, MapReduce task logs are accessible through the web
U, which is the most convenient way to view them. You can also find the logfiles on
the local filesystem of the tasktracker that ran the task attempt, in a directory named
by the task attempt. If task JVM reuse is enabled (“Task JVM Reuse” on page 184),
then each logfile accumulates the logs for the entire JVM run, so multiple task attempts
will be found in each logfile. The web UT hides this by showing only the portion that
is relevant for the task attempt being viewed.

It is straightforward to write to these logfiles. Anything written to standard output, or
standard error, is directed to the relevant logfile. (Of course, in Streaming, standard
output is used for the map or reduce output, so it will not show up in the standard
output log.)

In Java, you can write to the task’s syslog file if you wish by using the Apache Commons
Logging API. The actual logging is done by log4j in this case: the relevant log4j appender
is called TLA (Task Log Appender) in the log4j.properties file in Hadoop’s configuration
directory.

156 | Chapter5: Developing a MapReduce Application

There are some controls for managing retention and size of task logs. By default, logs
are deleted after a minimum of 24 hours (set using the mapred.userlog.retain.hours
property). You can also set a cap on the maximum size of each logfile using the

mapred.userlog.limit.kb property, which is O by default, meaning there is no cap.

Table 5-2. Hadoop logs

Logs Primary audience Description Further
information
System daemon logs Administrators Each Hadoop daemon produces a logfile (using ~ “System log-

log4j) and another file that combines standard ~ files” on page 271.
out and error. Written in the directory defined

by the HADOOP_LOG_DIR environment

variable.

HDFS audit logs Administrators AlogofallHDFS requests, turned offby default. ~ “Audit Log-
Written to the namenode’s log, although thisis ging” on page 300.
configurable.

MapReduce job historylogs Users Alog of the events (such as task completion) “Job His-
that occurin the course of running ajob. Saved tory” on page 150.
centrally on the jobtracker, and in the job’s out-
put directory in a__logs/history subdirectory.

MapReduce task logs Users Each tasktracker child process producesalogfile See next section.
using log4; (called syslog), a file for data sent to
standard out (stdout), and a file for standard
error (stderr). Written in the userlogs subdirec-
tory of the directory defined by the
HADOOP_LOG_DIR environment variable.

Handling malformed data

Capturing input data that causes a problem is valuable, as we can use it in a test to
check that the mapper does the right thing:

@Test
public void parsesMalformedTemperature() throws IOException {
MaxTemperatureMapper mapper = new MaxTemperatureMapper();
Text value = new Text("0335999999433181957042302005+37950+139117SA0 +0004" +
// Year ANANA
"RISN V02011359003150070356999999433201957010100005+353") ;
// Temperature ~nAAn
OutputCollector<Text, IntWritable> output = mock(OutputCollector.class);
Reporter reporter = mock(Reporter.class);

mapper.map(null, value, output, reporter);

verify(output, never()).collect(any(Text.class), any(IntWritable.class));
verify(reporter).incrCounter (MaxTemperatureMapper.Temperature .MALFORMED, 1);

Running ona Cluster | 157

The record that was causing the problem is of a different format to the other lines we’ve
seen. Example 5-11 shows a modified program (version 5) using a parser that ignores
each line with a temperature field that does not have a leading sign (plus or minus).
We've also introduced a counter to measure the number of records that we are ignoring
for this reason.

Example 5-11. Mapper for maximum temperature example

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

enum Temperature {
MALFORMED

}

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);

if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
output.collect(new Text(parser.getYear()), new IntWritable(airTemperature));

} else if (parser.isMalformedTemperature()) {
System.err.println("Ignoring possibly corrupt input:
reporter.incrCounter(Temperature.MALFORMED, 1);

}

}
}

+ value);

Using a Remote Debugger

When a task fails and there is not enough information logged to diagnose the error,
you may want to resort to running a debugger for that task. This is hard to arrange
when running the job on a cluster, as you don’t know which node is going to process
which part of the input, so you can’t set up your debugger ahead of the failure. Instead,
you run the job with a property set that instructs Hadoop to keep all the intermediate
data generated during the job run. This data can then be used to rerun the failing task
in isolation with a debugger attached. Note that the task is run in situ, on the same
node that it failed on, which increases the chances of the error being reproducible.t

First, set the configuration property keep.failed.task.files to true, so that when tasks
fail, the tasktracker keeps enough information to allow the task to be rerun over the
same input data. Then run the job again and note which node the task fails on, and the
task attempt ID (it begins with the string attempt_) using the web UL

t This feature is currently broken in Hadoop 0.20.2 but will be fixed in 0.21.0.

158 | Chapter5: Developing a MapReduce Application

Next we need to run a special task runner called IsolationRunner with the retained files
as input. Log into the node that the task failed on and look for the directory for that
task attempt. It will be under one of the local MapReduce directories, as set by the
mapred.local.dir property (covered in more detail in “Important Hadoop Daemon
Properties” on page 273). If this property is a comma-separated list of directories (to
spread load across the physical disks on a machine), then you may need to look in all
of the directories before you find the directory for that particular task attempt. The task
attempt directory is in the following location:

mapred.local.dir/taskTracker/jobcache/job-ID/task-attempt-ID

This directory contains various files and directories, including job.xml, which contains
all of the job configuration properties in effect during the task attempt, and which
IsolationRunner uses to create a JobConf instance. For map tasks, this directory also
contains a file containing a serialized representation of the input split, so the same input
data can be fetched for the task. For reduce tasks, a copy of the map output, which
forms the reduce input, is stored in a directory named output.

Thereisalso a directory called work, which is the working directory for the task attempt.
We change into this directory to run the IsolationRunner. We need to set some options
to allow the remote debugger to connect:*

% export HADOOP_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,\
address=8000"

The suspend=y option tells the JVM to wait until the debugger has attached before
running code. The IsolationRunner is launched with the following command:

% hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml

Next, set breakpoints, attach your remote debugger (all the major Java IDEs support
remote debugging—consult the documentation for instructions), and the task will be
run under your control. You can rerun the task any number of times like this. With any
luck, you’ll be able to find and fix the error.

During the process, you can use other, standard, Java debugging techniques, such as
kill -QUIT pid or jstack to get thread dumps.

More generally, it’s worth knowing that this technique isn’t only useful for failing tasks.
You can keep the intermediate files for successful tasks, too, which may be handy if
you want to examine a task that isn’t failing. In this case, set the property
keep.task.files.pattern to a regular expression that matches the IDs of the tasks you
want to keep.

1 You can find details about debugging options on the Java Platform Debugger Architecture web page.

Running ona Cluster | 159

http://java.sun.com/javase/6/docs/technotes/guides/jpda/

Tuning a Job

After a job is working, the question many developers ask is, “Can I make it run faster?”

There are a few Hadoop-specific “usual suspects” that are worth checking to see if they
are responsible for a performance problem. You should run through the checklist in

Table 5-3 before you start trying to profile or optimize at the task level.

Table 5-3. Tuning checklist

Area Best practice Furtherinformation
Number of Howlongareyourmappersrunningfor?Iftheyareonlyrunningforafewseconds ~ “Small files and Com-
mappers on average, then you should see if there’s a way to have fewer mappers and bineFilelnputFor-
make them all run longer, a minute or so, as a rule of thumb. The extent to mat” on page 203
which this is possible depends on the input format you are using.
Numberofreducers ~ Formaximum performance, the number of reducers should beslightly lessthan ~ “Choosing the Num-
the number of reduce slots in the cluster. This allows the reducers to finishin ~ ber of Reduc-
one wave and fully utilizes the cluster during the reduce phase. ers” on page 195
Combiners (an your job take advantage of a combiner to reduce the amount of data in “Combiner Func-

Intermediate

passing through the shuffle?

Job execution time can almost always benefit from enabling map output

tions” on page 30

“Compressing map

compression compression. output” on page 85
Custom If you are using your own custom Writable objects, or custom comparators, “Implementing a
serialization then make sure you have implemented RawComparator. RawComparator for
speed” on page 99
Shuffle tweaks The MapReduce shuffle exposes around adozen tuning parametersformemory ~ “Configuration Tun-

management, which may help you eke out the last bit of performance. ing” on page 180

Profiling Tasks

Like debugging, profiling a job running on a distributed system like MapReduce
presents some challenges. Hadoop allows you to profile a fraction of the tasks in a job,
and, as each task completes, pulls down the profile information to your machine for
later analysis with standard profiling tools.

Of course, it’s possible, and somewhat easier, to profile a job running in the local job
runner. And provided you can run with enough input data to exercise the map and
reduce tasks, this can be a valuable way of improving the performance of your mappers
and reducers. There are a couple of caveats, however. The local job runner is a very
different environment from a cluster, and the data flow patterns are very different.
Optimizing the CPU performance of your code may be pointless if your MapReduce
job is I/O-bound (as many jobs are). To be sure that any tuning is effective, you should
compare the new execution time with the old running on a real cluster. Even this is
easier said than done, since job execution times can vary due to resource contention
with other jobs and the decisions the scheduler makes to do with task placement. To
get a good idea of job execution time under these circumstances, perform a series of

160 | Chapter5: Developing a MapReduce Application

runs (with and without the change) and check whether any improvement is statistically
significant.

It’s unfortunately true that some problems (such as excessive memory use) can be re-
produced only on the cluster, and in these cases the ability to profile in situ is
indispensable.

The HPROF profiler

There are a number of configuration properties to control profiling, which are also
exposed via convenience methods on JobConf. The following modification to
MaxTemperatureDriver (version 6) will enable remote HPROF profiling. HPROF is a
profiling tool that comes with the JDK that, although basic, can give valuable infor-
mation about a program’s CPU and heap usage:$

conf.setProfileEnabled(true);

conf.setProfileParams("-agentlib:hprof=cpu=samples,heap=sites,depth=6," +

"force=n,thread=y,verbose=n,file=%s");
conf.setProfileTaskRange(true, "0-2");

The first line enables profiling, which by default is turned off. (This is equivalent to
setting the configuration property mapred.task.profile to true).

Next we set the profile parameters, which are the extra command-line arguments to
pass to the task’s JVM. (When profiling is enabled, a new JVM is allocated for each
task, even if JVM reuse is turned on; see “Task JVM Reuse” on page 184.) The default
parameters specify the HPROF profiler; here we set an extra HPROF option, depth=6,
to give more stack trace depth than the HPROF default. The setProfileParams()
method on JobConf is equivalent to setting the mapred.task.profile.params.

Finally, we specify which tasks we want to profile. We normally only want profile
information from a few tasks, so we use the setProfileTaskRange() method to specify
the range of task IDs that we want profile information for. We’ve set it to 0-2 (which
is actually the default), which means tasks with IDs 0, 1, and 2 are profiled. The first
argument to the setProfileTaskRange() method dictates whether the range is for map
or reduce tasks: true is for maps, false is for reduces. A set of ranges is permitted, using
anotation that allows open ranges. For example, 0-1,4, 6- would specify all tasks except
those with IDs 2, 3, and 5. The tasks to profile can also be controlled using the
mapred.task.profile.maps property for map tasks, and mapred.task.profile.reduces
for reduce tasks.

When we run a job with the modified driver, the profile output turns up at the end of
the job in the directory we launched the job from. Since we are only profiling a few
tasks, we can run the job on a subset of the dataset.

§ HPROF uses byte code insertion to profile your code, so you do not need to recompile your application with
special options to use it. For more information on HPROF, see “HPROF: A Heap/CPU Profiling Tool in J2SE
5.0,” by Kelly O’Hair at http://java.sun.com/developer/technical Articles/Programming/HPROF.html.

Tuningalob | 161

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

Here’s a snippet of one of the mapper’s profile files, which shows the CPU sampling
information:

CPU SAMPLES BEGIN (total = 1002) Sat Apr 11 11:17:52 2009
rank self accum count trace method

1 3.49% 3.49% 35 307969 java.lang.Object.<init>
2 3.39% 6.89% 34 307954 java.lang.Object.<init>
3 3.19% 10.08% 32 307945 java.util.regex.Matcher.<init>
4 3.19% 13.27% 32 307963 java.lang.Object.<init>
5 3.19% 16.47% 32 307973 java.lang.Object.<init>

Cross-referencing the trace number 307973 gives us the stacktrace from the same file:

TRACE 307973: (thread=200001)
java.lang.Object.<init>(Object.java:20)
org.apache.hadoop.io.IntWritable.<init>(IntWritable.java:29)
v5.MaxTemperatureMapper .map (MaxTemperatureMapper.java:30)
v5.MaxTemperatureMapper .map (MaxTemperatureMapper.java:14)
org.apache.hadoop.mapred.MapRunner . run(MapRunner. java:50)
org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:356)

So it looks like the mapper is spending 3% of its time constructing IntWritable objects.
This observation suggests that it might be worth reusing the Writable instances being
output (version 7, see Example 5-12).

Example 5-12. Reusing the Text and IntWritable output objects

public class MaxTemperatureMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

enum Temperature {
MALFORMED

}

private NcdcRecordParser parser = new NcdcRecordParser();
private Text year = new Text();
private IntWritable temp = new IntWritable();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);

if (parser.isValidTemperature()) {
year.set(parser.getYear());
temp.set(parser.getAirTemperature());
output.collect(year, temp);

} else if (parser.isMalformedTemperature()) {
System.err.println("Ignoring possibly corrupt input:
reporter.incrCounter (Temperature.MALFORMED, 1);

}

}
}

+ value);

162 | Chapter5: Developing a MapReduce Application

However, we know if this is significant only if we can measure an improvement when
running the job over the whole dataset. Running each variant five times on an otherwise
quiet 11-node cluster showed no statistically significant difference in job execution
time. Of course, this result holds only for this particular combination of code, data,
and hardware, so you should perform similar benchmarks to see whether such a change
is significant for your setup.

Other profilers

At the time of this writing, the mechanism for retrieving profile output is HPROF-
specific. Until this is fixed, it should be possible to use Hadoop’s profiling settings to
trigger profiling using any profiler (see the documentation for the particular profiler),
although it may be necessary to manually retrieve the profiler’s output from tasktrack-
ers for analysis.

If the profiler is not installed on all the tasktracker machines, consider using the Dis-
tributed Cache (“Distributed Cache” on page 253) for making the profiler binary
available on the required machines.

MapReduce Workflows

So far in this chapter, you have seen the mechanics of writing a program using Map-
Reduce. We haven’t yet considered how to turn a data processing problem into the
MapReduce model.

The data processing you have seen so far in this book is to solve a fairly simple problem
(finding the maximum recorded temperature for given years). When the processing
gets more complex, this complexity is generally manifested by having more MapReduce
jobs, rather than having more complex map and reduce functions. In other words, as
a rule of thumb, think about adding more jobs, rather than adding complexity to jobs.

For more complex problems, it is worth considering a higher-level language than Map-
Reduce, such as Pig, Hive, or Cascading. One immediate benefit is that it frees you up
from having to do the translation into MapReduce jobs, allowing you to concentrate
on the analysis you are performing.

Finally, the book Data-Intensive Text Processing with MapReduce by Jimmy Lin and
Chris Dyer (Morgan & Claypool Publishers, 2010, http://mapreduce.me/) is a great re-
source for learning more about MapReduce algorithm design, and is highly
recommended.

Decomposing a Problem into MapReduce Jobs

Let’s look at an example of a more complex problem that we want to translate into a
MapReduce workflow.

MapReduce Workflows | 163

http://mapreduce.me/

Imagine that we want to find the mean maximum recorded temperature for every day
of the year and every weather station. In concrete terms, to calculate the mean maxi-
mum daily temperature recorded by station 029070-99999, say, on January 1, we take
the mean of the maximum daily temperatures for this station for January 1, 1901;
January 1, 1902; and so on up to January 1, 2000.

How can we compute this using MapReduce? The computation decomposes most
naturally into two stages:

1. Compute the maximum daily temperature for every station-date pair.

The MapReduce program in this case is a variant of the maximum temperature
program, except that the keys in this case are a composite station-date pair, rather
than just the year.

2. Compute the mean of the maximum daily temperatures for every station-day-
month key.

The mapper takes the output from the previous job (station-date, maximum tem-
perature) records and projects it into (station-day-month, maximum temperature)
records by dropping the year component. The reduce function then takes the mean
of the maximum temperatures for each station-day-month key.

The output from first stage looks like this for the station we are interested in (the
mean_max_daily_temp.sh script in the examples provides an implementation in
Hadoop Streaming):

029070-99999 19010101 0
029070-99999 19020101 -94

The first two fields form the key, and the final column is the maximum temperature
from all the readings for the given station and date. The second stage averages these
daily maxima over years to yield:

029070-99999 0101 -68

which is interpreted as saying the mean maximum daily temperature on January 1 for
station 029070-99999 over the century is -6.8°C.

It’s possible to do this computation in one MapReduce stage, but it takes more work
on the part of the programmer.|

The arguments for having more (but simpler) MapReduce stages are that doing so leads
to more composable and more maintainable mappers and reducers. The case studies
in Chapter 16 cover a wide range of real-world problems that were solved using Map-
Reduce, and in each case, the data processing task is implemented using two or more
MapReduce jobs. The details in that chapter are invaluable for getting a better idea of
how to decompose a processing problem into a MapReduce workflow.

I It’s an interesting exercise to do this. Hint: use “Secondary Sort” on page 241.

164 | Chapter5: Developing a MapReduce Application

It’s possible to make map and reduce functions even more composable than we have
done. A mapper commonly performs input format parsing, projection (selecting the
relevant fields), and filtering (removing records that are not of interest). In the mappers
you have seen so far, we have implemented all of these functions in a single mapper.
However, there is a case for splitting these into distinct mappers and chaining them
into a single mapper using the ChainMapper library class that comes with Hadoop.
Combined with a ChainReducer, you can run a chain of mappers, followed by a reducer
and another chain of mappers in a single MapReduce job.

Running Dependent Jobs

When there is more than one job in a MapReduce workflow, the question arises: how
do you manage the jobs so they are executed in order? There are several approaches,
and the main consideration is whether you have a linear chain of jobs, or a more com-
plex directed acyclic graph (DAG) of jobs.

For a linear chain, the simplest approach is to run each job one after another, waiting
until a job completes successfully before running the next:

JobClient.runJob(conf1);
JobClient.runJob(conf2);

If ajob fails, the runJob() method will throw an I0Exception, so later jobs in the pipeline
don’t get executed. Depending on your application, you might want to catch the ex-
ception and clean up any intermediate data that was produced by any previous jobs.

For anything more complex than a linear chain, there are libraries that can help or-
chestrate your workflow (although they are suited to linear chains, or even one-offjobs,
too). The simplest is in the org.apache.hadoop.mapred.jobcontrol package: the
JobControl class. An instance of JobControl represents a graph of jobs to be run. You
add the job configurations, then tell the JobControl instance the dependencies between
jobs. You run the JobControl in a thread, and it runs the jobs in dependency order. You
can poll for progress, and when the jobs have finished, you can query for all the jobs’
statuses and the associated errors for any failures. If a job fails, JobControl won’t run
its dependencies.

Oozie

Unlike JobControl, which runs on the client machine submitting the jobs, Oozie
(http://yahoo.github.com/oozie/) runs as a server, and a client submits a workflow to the
server. In Oozie, a workflow is a DAG of action nodes and control-flow nodes. An action
node performs a workflow task, like moving files in HDFS, running a MapReduce job
or running a Pig job. A control-flow node governs the workflow execution between
actions by allowing such constructs as conditional logic (so different execution
branches may be followed depending on the result of an earlier action node) or parallel
execution. When the workflow completes, Oozie can make an HTTP callback to the

MapReduce Workflows | 165

client to inform it of the workflow status. It is also possible to receive callbacks every
time the workflow enters or exits an action node.

Oozie allows failed workflows to be re-run from an arbitrary point. This is useful for
dealing with transient errors when the early actions in the workflow are time-
consuming to execute.

166 | Chapter5: Developing a MapReduce Application

CHAPTER 6
How MapReduce Works

In this chapter, we look at how MapReduce in Hadoop works in detail. This knowledge
provides a good foundation for writing more advanced MapReduce programs, which
we will cover in the following two chapters.

Anatomy of a MapReduce Job Run

You can run a MapReduce job with a single line of code: JobClient.runJob(conf). It’s
very short, but it conceals a great deal of processing behind the scenes. This section
uncovers the steps Hadoop takes to run a job.

The whole process is illustrated in Figure 6-1. At the highest level, there are four inde-
pendent entities:

* The client, which submits the MapReduce job.

* Thejobtracker, which coordinates the job run. The jobtracker is a Java application
whose main class is JobTracker.

* The tasktrackers, which run the tasks that the job has been split into. Tasktrackers
are Java applications whose main class is TaskTracker.

* The distributed filesystem (normally HDFS, covered in Chapter 3), which is used
for sharing job files between the other entities.

Job Submission

The runJob() method on JobClient is a convenience method that creates a new
JobClient instance and calls submitJob() on it (step 1 in Figure 6-1). Having submitted
the job, runJob() polls the job’s progress once a second and reports the progress to the
console if it has changed since the last report. When the job is complete, if it was
successful, the job counters are displayed. Otherwise, the error that caused the job to
fail is logged to the console.

167

2: getnew job ID

MapReduce |1:runjob 4: submit job T
rogram!'!.f!.l.‘?...,m S JobTracker
gra <+

client JVUM

- brretrieve . !
dlient node : nput sphts jobtracker node
3: copy job 7: heartheat
resources (returns task) :
v :
Shared
FileSystem TaskTracker
(e.g., HDFS) 8: retrieve job
resources :
9: IaunchE
4
child JVM
Child
10: runé
h 4
MapTask
or
ReduceTask
tasktracker node

Figure 6-1. How Hadoop runs a MapReduce job

The job submission process implemented by JobClient’s submitJob() method does the
following:

* Asks the jobtracker for a new job ID (by calling getNewJobId() on JobTracker) (step
2).

* Checks the output specification of the job. For example, if the output directory has
not been specified or it already exists, the job is not submitted and an error is
thrown to the MapReduce program.

* Computes the input splits for the job. If the splits cannot be computed, because
the input paths don’t exist, for example, then the job is not submitted and an error
is thrown to the MapReduce program.

* Copies the resources needed to run the job, including the job JAR file, the config-
uration file, and the computed input splits, to the jobtracker’s filesystem in a
directory named after the job ID. The job JAR is copied with a high replication
factor (controlled by the mapred.submit.replication property, which defaults to
10) so that there are lots of copies across the cluster for the tasktrackers to access
when they run tasks for the job (step 3).

168 | Chapter6: How MapReduce Works

* Tells the jobtracker that the job is ready for execution (by calling submitJob() on
JobTracker) (step 4).

Job Initialization

When the JobTracker receives a call to its submitJob() method, it puts it into an internal
queue from where the job scheduler will pick it up and initialize it. Initialization involves
creating an object to represent the job being run, which encapsulates its tasks, and
bookkeeping information to keep track of the tasks’ status and progress (step 5).

To create the list of tasks to run, the job scheduler first retrieves the input splits com-
puted by the JobClient from the shared filesystem (step 6). It then creates one map task
for each split. The number of reduce tasks to create is determined by the
mapred.reduce.tasks property in the JobConf, which is set by the setNumReduce
Tasks() method, and the scheduler simply creates this number of reduce tasks to be
run. Tasks are given IDs at this point.

Task Assignment

Tasktrackers run a simple loop that periodically sends heartbeat method calls to the
jobtracker. Heartbeats tell the jobtracker that a tasktracker is alive, but they also double
as a channel for messages. As a part of the heartbeat, a tasktracker will indicate whether
it is ready to run a new task, and if it is, the jobtracker will allocate it a task, which it
communicates to the tasktracker using the heartbeat return value (step 7).

Before it can choose a task for the tasktracker, the jobtracker must choose a job to select
the task from. There are various scheduling algorithms as explained later in this chapter
(see “Job Scheduling” on page 175), but the default one simply maintains a priority
list of jobs. Having chosen a job, the jobtracker now chooses a task for the job.

Tasktrackers have a fixed number of slots for map tasks and for reduce tasks: for ex-
ample, a tasktracker may be able to run two map tasks and two reduce tasks simulta-
neously. (The precise number depends on the number of cores and the amount of
memory on the tasktracker; see “Memory” on page 269.) The default scheduler fills
empty map task slots before reduce task slots, so if the tasktracker has at least one
empty map task slot, the jobtracker will select a map task; otherwise, it will select a
reduce task.

To choose a reduce task, the jobtracker simply takes the next in its list of yet-to-be-run
reduce tasks, since there are no data locality considerations. For a map task, however,
it takes account of the tasktracker’s network location and picks a task whose input split
is as close as possible to the tasktracker. In the optimal case, the task is data-local, that
is, running on the same node that the split resides on. Alternatively, the task may be

rack-local: on the same rack, but not the same node, as the split. Some tasks are neither
data-local nor rack-local and retrieve their data from a different rack from the one they

Anatomy of a MapReduce Job Run | 169

are running on. You can tell the proportion of each type of task by looking at a job’s
counters (see “Built-in Counters” on page 225).

Task Execution

Now that the tasktracker has been assigned a task, the next step is for it to run the task.
First, it localizes the job JAR by copying it from the shared filesystem to the tasktracker’s
filesystem. It also copies any files needed from the distributed cache by the application
to the local disk; see “Distributed Cache” on page 253 (step 8). Second, it creates a
local working directory for the task, and un-jars the contents of the JAR into this
directory. Third, it creates an instance of TaskRunner to run the task.

TaskRunner launches a new Java Virtual Machine (step 9) to run each task in (step 10),
so that any bugs in the user-defined map and reduce functions don’t affect the task-
tracker (by causing it to crash or hang, for example). It is, however, possible to reuse
the JVM between tasks; see “Task JVM Reuse” on page 184.

The child process communicates with its parent through the umbilical interface. This
way it informs the parent of the task’s progress every few seconds until the task is
complete.

Streaming and Pipes

Both Streaming and Pipes run special map and reduce tasks for the purpose of launching
the user-supplied executable and communicating with it (Figure 6-2).

In the case of Streaming, the Streaming task communicates with the process (which
may be written in any language) using standard input and output streams. The Pipes
task, on the other hand, listens on a socket and passes the C++ process a port number
in its environment, so that on startup, the C++ process can establish a persistent socket
connection back to the parent Java Pipes task.

In both cases, during execution of the task, the Java process passes input key-value
pairs to the external process, which runs it through the user-defined map or reduce
function and passes the output key-value pairs back to the Java process. From the
tasktracker’s point of view, it is as if the tasktracker child process ran the map or reduce
code itself.

Progress and Status Updates

MapReduce jobs are long-running batch jobs, taking anything from minutes to hours
to run. Because this is a significant length of time, it’s important for the user to get
feedback on how the job is progressing. A job and each of its tasks have a status, which
includes such things as the state of the job or task (e.g., running, successfully completed,
failed), the progress of maps and reduces, the values of the job’s counters, and a status

170 | Chapter6: How MapReduce Works

message or description (which may be set by user code). These statuses change over
the course of the job, so how do they get communicated back to the client?

When a task is running, it keeps track of its progress, that is, the proportion of the task
completed. For map tasks, this is the proportion of the input that has been processed.
For reduce tasks, it’s a little more complex, but the system can still estimate the pro-
portion of the reduce input processed. It does this by dividing the total progress into
three parts, corresponding to the three phases of the shuffle (see “Shuffle and
Sort” on page 177). For example, if the task has run the reducer on half its input, then
the task’s progress is %, since it has completed the copy and sort phases (¥ each) and
is halfway through the reduce phase ().

Streaming Pipes
TaskTracker TaskTracker
launch launch
h 4 h 4
child JVM child JVM
Child Child
run run
h 4
MapTask MapTask
or or
ReduceTask ReduceTask
- |4 N |4
input i | i output § input : | i output
key/values : : key/values key/values : i key/values
stdin ¥ | “stdout ¥ socket
Y N C
launc launch ++.wrapper
Streaming library
process
(++ Map or
Reduce class

tasktracker node tasktracker node

Figure 6-2. The relationship of the Streaming and Pipes executable to the tasktracker and its child

Anatomy of a MapReduce JobRun | 171

What Constitutes Progress in MapReduce?

Progress is not always measurable, but nevertheless it tells Hadoop that a task is doing
something. For example, a task writing output records is making progress, even though
it cannot be expressed as a percentage of the total number that will be written, since
the latter figure may not be known, even by the task producing the output.

Progress reporting is important, as it means Hadoop will not fail a task that’s making
progress. All of the following operations constitute progress:
* Reading an input record (in a mapper or reducer)
* Writing an output record (in a mapper or reducer)
* Setting the status description on a reporter (using Reporter’s setStatus() method)
* Incrementing a counter (using Reporter’s incrCounter () method)

* Calling Reporter’s progress() method

Tasks also have a set of counters that count various events as the task runs (we saw an
example in “A test run” on page 23), either those built into the framework, such as the
number of map output records written, or ones defined by users.

If a task reports progress, it sets a flag to indicate that the status change should be sent
to the tasktracker. The flag is checked in a separate thread every three seconds, and if
set it notifies the tasktracker of the current task status. Meanwhile, the tasktracker is
sending heartbeats to the jobtracker every five seconds (this is a minimum, as the
heartbeat interval is actually dependent on the size of the cluster: for larger clusters,
the interval is longer), and the status of all the tasks being run by the tasktracker is sent
in the call. Counters are sent less frequently than every five seconds, because they can
be relatively high-bandwidth.

The jobtracker combines these updates to produce a global view of the status of all the
jobs being run and their constituent tasks. Finally, as mentioned earlier, the
JobClient receives the latest status by polling the jobtracker every second. Clients can
also use JobClient’s getJob() method to obtain a RunningJob instance, which contains
all of the status information for the job.

The method calls are illustrated in Figure 6-3.

Job Completion

When the jobtracker receives a notification that the last task for a job is complete, it
changes the status for the job to “successful.” Then, when the JobClient polls for status,
it learns that the job has completed successtully, so it prints a message to tell the user
and then returns from the runJob() method.

172 | Chapter6: How MapReduce Works

Reduce tlob ‘ tlobStat
“:z:mm | getiob | ,M L TN JobTracker

client JUM
client node

jobtracker node

heartbeat

Shared
FileSystem TaskTracker
(e.q., HDFS)

A

child JVM
Child

MapTask
or
ReduceTask

[progress or counter updated]
statusUpdate

tasktracker node

Figure 6-3. How status updates are propagated through the MapReduce system

The jobtracker also sends an HTTP job notification if it is configured to do so. This
can be configured by clients wishing to receive callbacks, via the job.end.notifica
tion.url property.

Last, the jobtracker cleans up its working state for the job and instructs tasktrackers to
do the same (so intermediate output is deleted, for example).

Failures

In the real world, user code is buggy, processes crash, and machines fail. One of the
major benefits of using Hadoop is its ability to handle such failures and allow your job
to complete.

Task Failure

Consider first the case of the child task failing. The most common way that this happens
is when user code in the map or reduce task throws a runtime exception. If this happens,

Failures | 173

the child JVM reports the error back to its parent tasktracker, before it exits. The error
ultimately makes it into the user logs. The tasktracker marks the task attempt as
failed, freeing up a slot to run another task.

For Streaming tasks, if the Streaming process exits with a nonzero exit code, it is marked
as failed. This behavior is governed by the stream.non.zero.exit.is.failure property
(the default is true).

Another failure mode is the sudden exit of the child JVM—perhaps there is a JVM bug
that causes the JVM to exit for a particular set of circumstances exposed by the Map-
Reduce user code. In this case, the tasktracker notices that the process has exited and
marks the attempt as failed.

Hanging tasks are dealt with differently. The tasktracker notices that it hasn’t received
a progress update for a while and proceeds to mark the task as failed. The child JVM
process will be automatically killed after this period.” The timeout period after which
tasks are considered failed is normally 10 minutes and can be configured on a per-job
basis (or a cluster basis) by setting the mapred.task.timeout property to a value in
milliseconds.

Setting the timeout to a value of zero disables the timeout, so long-running tasks are
never marked as failed. In this case, a hanging task will never free up its slot, and over
time there may be cluster slowdown as a result. This approach should therefore be
avoided, and making sure that a task is reporting progress periodically will suffice (see
“What Constitutes Progress in MapReduce?” on page 172).

When the jobtracker is notified of a task attempt that has failed (by the tasktracker’s
heartbeat call), it will reschedule execution of the task. The jobtracker will try to avoid
rescheduling the task on a tasktracker where it has previously failed. Furthermore, if a
task fails four times (or more), it will not be retried further. This value is configurable:
the maximum number of attempts to run a task is controlled by the
mapred.map.max.attempts property for map tasks and mapred.reduce.max.attempts for
reduce tasks. By defaul, if any task fails four times (or whatever the maximum number
of attempts is configured to), the whole job fails.

For some applications, it is undesirable to abort the job if a few tasks fail, as it may be
possible to use the results of the job despite some failures. In this case, the maximum
percentage of tasks that are allowed to fail without triggering job failure can be set
for the job. Map tasks and reduce tasks are controlled independently, using
the mapred.max.map.failures.percent and mapred.max.reduce.failures.percent
properties.

* If a Streaming process hangs, the tasktracker does not try to kill it (although the JVM that launched it will
be killed), so you should take precautions to monitor for this scenario, and kill orphaned processes by some
other means.

174 | Chapter6: How MapReduce Works

A task attempt may also be killed, which is different from it failing. A task attempt may
be killed because it is a speculative duplicate (for more, see “Speculative Execu-
tion” on page 183), or because the tasktracker it was running on failed, and the job-
tracker marked all the task attempts running on it as killed. Killed task attempts do
not count against the number of attempts to run the task (as set by
mapred.map.max.attempts and mapred.reduce.max.attempts), since it wasn’t the task’s
fault that an attempt was killed.

Users may also kill or fail task attempts using the web UT or the command line (type
hadoop job to see the options). Jobs may also be killed by the same mechanisms.

Tasktracker Failure

Failure of a tasktracker is another failure mode. If a tasktracker fails by crashing, or
running very slowly, it will stop sending heartbeats to the jobtracker (or send them very
infrequently). The jobtracker will notice a tasktracker that has stopped sending heart-
beats (if it hasn’t received one for 10 minutes, configured via the mapred.task
tracker.expiry.interval property, in milliseconds) and remove it from its pool of
tasktrackers to schedule tasks on. The jobtracker arranges for map tasks that were run
and completed successtully on that tasktracker to be rerun if they belong to incomplete
jobs, since their intermediate output residing on the failed tasktracker’s local filesystem
may not be accessible to the reduce task. Any tasks in progress are also rescheduled.

A tasktracker can also be blacklisted by the jobtracker, even if the tasktracker has not
failed. A tasktracker is blacklisted if the number of tasks that have failed on it is
significantly higher than the average task failure rate on the cluster. Blacklisted task-
trackers can be restarted to remove them from the jobtracker’s blacklist.

Jobtracker Failure

Failure of the jobtracker is the most serious failure mode. Currently, Hadoop has no
mechanism for dealing with failure of the jobtracker—it is a single point of failure—
so in this case the job fails. However, this failure mode has a low chance of occurring,
since the chance of a particular machine failing is low. It is possible that a future release
of Hadoop will remove this limitation by running multiple jobtrackers, only one of
which is the primary jobtracker at any time (perhaps using ZooKeeper as a coordination
mechanism for the jobtrackers to decide who is the primary; see Chapter 14).

Job Scheduling

Early versions of Hadoop had a very simple approach to scheduling users’ jobs: they
ran in order of submission, using a FIFO scheduler. Typically, each job would use the
whole cluster, so jobs had to wait their turn. Although a shared cluster offers great
potential for offering large resources to many users, the problem of sharing resources

Job Scheduling | 175

fairly between users requires a better scheduler. Production jobs need to complete in a
timely manner, while allowing users who are making smaller ad hoc queries to get
results back in a reasonable time.

Later on, the ability to set a job’s priority was added, via the mapred.job.priority
property or the setJobPriority() method on JobClient (both of which take one of the
values VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW). When the job scheduler is choosing the
next job to run, it selects one with the highest priority. However, with the FIFO
scheduler, priorities do not support preemption, so a high-priority job can still be
blocked by a long-running low priority job that started before the high-priority job was
scheduled.

MapReduce in Hadoop comes with a choice of schedulers. The default is the original
FIFO queue-based scheduler, and there are also multiuser schedulers called the Fair
Scheduler and the Capacity Scheduler.

The Fair Scheduler

The Fair Scheduler aims to give every user a fair share of the cluster capacity over time.
If a single job is running, it gets all of the cluster. As more jobs are submitted, free task
slots are given to the jobs in such a way as to give each user a fair share of the cluster.
A short job belonging to one user will complete in a reasonable time even while another
user’s long job is running, and the long job will still make progress.

Jobs are placed in pools, and by default, each user gets their own pool. A user who
submits more jobs than a second user will not get any more cluster resources than the
second, on average. Itis also possible to define custom pools with guaranteed minimum
capacities defined in terms of the number of map and reduce slots, and to set weightings
for each pool.

The Fair Scheduler supports preemption, so if a pool has not received its fair share for
a certain period of time, then the scheduler will kill tasks in pools running over capacity
in order to give the slots to the pool running under capacity.

The Fair Scheduler is a “contrib” module. To enable it, place its JAR file on Hadoop’s
classpath, by copying it from Hadoop’s contrib/fairscheduler directory to the lib direc-
tory. Then set the mapred.jobtracker.taskScheduler property to:

org.apache.hadoop.mapred.FairScheduler
The Fair Scheduler will work without further configuration, but to take full advantage

of its features and how to configure it (including its web interface), refer to README
in the src/contrib/fairscheduler directory of the distribution.

176 | Chapter6: How MapReduce Works

The Capacity Scheduler

The Capacity Scheduler takes a slightly different approach to multiuser scheduling. A
cluster is made up of a number of queues (like the Fair Scheduler’s pools), which may
be hierarchical (so a queue may be the child of another queue), and each queue has an
allocated capacity. This is like the Fair Scheduler, except that within each queue, jobs
are scheduled using FIFO scheduling (with priorities). In effect, the Capacity Scheduler
allows users or organizations (defined using queues) to simulate a separate MapReduce
cluster with FIFO scheduling for each user or organization. The Fair Scheduler, by
contrast, (which actually also supports FIFO job scheduling within pools as an option,
making it like the Capacity Scheduler) enforces fair sharing within each pool, so running
jobs share the pool’s resources.

Shuffle and Sort

MapReduce makes the guarantee that the input to every reducer is sorted by key. The
process by which the system performs the sort—and transfers the map outputs to the
reducers as inputs—is known as the shuffle. In this section, we look at how the shuffle
works, as a basic understanding would be helpful, should you need to optimize a Map-
Reduce program. The shuffle is an area of the codebase where refinements and
improvements are continually being made, so the following description necessarily
conceals many details (and may change over time, this is for version 0.20). In many
ways, the shulffle is the heart of MapReduce and is where the “magic” happens.

The Map Side

When the map function starts producing output, it is not simply written to disk. The
process is more involved, and takes advantage of buffering writes in memory and doing
some presorting for efficiency reasons. Figure 6-4 shows what happens.

Each map task has a circular memory buffer that it writes the output to. The buffer is
100 MB by default, a size which can be tuned by changing the io.sort.mb property.
When the contents of the buffer reaches a certain threshold size (io.sort.spill.per
cent, default 0.80, or 80%), a background thread will start to spill the contents to disk.
Map outputs will continue to be written to the buffer while the spill takes place, but if
the buffer fills up during this time, the map will block until the spill is complete.

Spills are written in round-robin fashion to the directories specified by the
mapred.local.dir property, in a job-specific subdirectory.

1 The term shuffle is actually imprecise, since in some contexts it refers to only the part of the process where
map outputs are fetched by reduce tasks. In this section, we take it to mean the whole process from the point
where a map produces output to where a reduce consumes input.

Shuffle and Sort | 177

Copy “Sort” Reduce

phase phase phase
map task partitiony reduce task
sp||| to disk fetclj _________________ p-.__
bufferin ¢* " .
memory g »
----- — -_ -
mPUt P _ uutput
split | / .
pamnons : : e
VA mixture of in-memory and on-disk data

Other maps . ». Other reduces

Figure 6-4. Shuffle and sort in MapReduce

Before it writes to disk, the thread first divides the data into partitions corresponding
to the reducers that they will ultimately be sent to. Within each partition, the back-
ground thread performs an in-memory sort by key, and if there is a combiner function,
it is run on the output of the sort.

Each time the memory buffer reaches the spill threshold, a new spill file is created, so
after the map task has written its last output record there could be several spill files.
Before the task is finished, the spill files are merged into a single partitioned and sorted
output file. The configuration property io.sort.factor controls the maximum number
of streams to merge at once; the default is 10.

If a combiner function has been specified, and the number of spills is at least three (the
value of themin.num.spills.for.combine property), then the combiner is run before the
output file is written. Recall that combiners may be run repeatedly over the input with-
out affecting the final result. The point is that running combiners makes for a more
compact map output, so there is less data to write to local disk and to transfer to the
reducer.

It is often a good idea to compress the map output as it is written to disk, since doing
so makes it faster to write to disk, saves disk space, and reduces the amount of data to
transfer to the reducer. By default, the output is not compressed, but it is easy to enable
by setting mapred. compress.map.output to true. The compression library to use is speci-
fied by mapred.map.output.compression.codec; see “Compression” on page 77 for more
on compression formats.

The output file’s partitions are made available to the reducers over HTTP. The number
of worker threads used to serve the file partitions is controlled by the task
tracker.http.threads property—this setting is per tasktracker, not per map task slot.
The default of 40 may need increasing for large clusters running large jobs.

178 | Chapter6: How MapReduce Works

The Reduce Side

Let’s turn now to the reduce part of the process. The map output file is sitting on the
local disk of the tasktracker that ran the map task (note that although map outputs
always get written to the local disk of the map tasktracker, reduce outputs may not be),
but now it is needed by the tasktracker that is about to run the reduce task for the
partition. Furthermore, the reduce task needs the map output for its particular partition
from several map tasks across the cluster. The map tasks may finish at different times,
so the reduce task starts copying their outputs as soon as each completes. This is known
as the copy phase of the reduce task. The reduce task has a small number of copier
threads so that it can fetch map outputs in parallel. The default is five threads, but this
number can be changed by setting the mapred.reduce.parallel.copies property.

W

How do reducers know which tasktrackers to fetch map output from?

As map tasks complete successfully, they notify their parent tasktracker
. of the status update, which in turn notifies the jobtracker. These noti-
fications are transmitted over the heartbeat communication mechanism
described earlier. Therefore, for a given job, the jobtracker knows the
mapping between map outputs and tasktrackers. A thread in the reducer
periodically asks the jobtracker for map output locations until it has
retrieved them all.

Tasktrackers do not delete map outputs from disk as soon as the first
reducer has retrieved them, as the reducer may fail. Instead, they wait
until they are told to delete them by the jobtracker, which is after the
job has completed.

The map outputs are copied to the reduce tasktracker’s memory if they are small enough
(the buffer’s size is controlled by mapred.job.shuffle.input.buffer.percent, which
specifies the proportion of the heap to use for this purpose); otherwise, they are copied
to disk. When the in-memory buffer reaches a threshold size (controlled by
mapred.job.shuffle.merge.percent), or reaches a threshold number of map outputs
(mapred.inmem.merge.threshold), it is merged and spilled to disk.

As the copies accumulate on disk, a background thread merges them into larger, sorted
files. This saves some time merging later on. Note that any map outputs that were
compressed (by the map task) have to be decompressed in memory in order to perform
a merge on them.

When all the map outputs have been copied, the reduce task moves into the sort
phase (which should properly be called the merge phase, as the sorting was carried out
on the map side), which merges the map outputs, maintaining their sort ordering. This
is done in rounds. For example, if there were 50 map outputs, and the merge factor was
10 (the default, controlled by the io.sort. factor property, just like in the map’s merge),

Shuffle and Sort | 179

then there would be 5 rounds. Each round would merge 10 files into one, so at the end
there would be five intermediate files.

Rather than have a final round that merges these five files into a single sorted file, the
merge saves a trip to disk by directly feeding the reduce function in what is the last
phase: the reduce phase. This final merge can come from a mixture of in-memory and
on-disk segments.

W

- The number of files merged in each round is actually more subtle than
"‘:\ this example suggests. The goal is to merge the minimum number of
T Uar files to get to the merge factor for the final round. So if there were 40

" files, the merge would not merge 10 files in each of the four rounds to
get 4 files. Instead, the first round would merge only 4 files, and the
subsequent three rounds would merge the full 10 files. The 4 merged
files, and the 6 (as yet unmerged) files make a total of 10 files for the
final round.

Note that this does not change the number of rounds, it’s just an opti-
mization to minimize the amount of data that is written to disk, since
the final round always merges directly into the reduce.

During the reduce phase, the reduce function is invoked for each key in the sorted
output. The output of this phase is written directly to the output filesystem, typically
HDFES. In the case of HDFS, since the tasktracker node is also running a datanode, the
first block replica will be written to the local disk.

Configuration Tuning

We are now in a better position to understand how to tune the shuffle to improve
MapReduce performance. The relevant settings, which can be used on a per-job basis
(except where noted), are summarized in Tables 6-1 and 6-2, along with the defaults,
which are good for general-purpose jobs.

The general principle is to give the shuffle as much memory as possible. However, there
is a trade-off, in that you need to make sure that your map and reduce functions get
enough memory to operate. This is why it is best to write your map and reduce functions
to use as little memory as possible—certainly they should not use an unbounded
amount of memory (by avoiding accumulating values in a map, for example).

The amount of memory given to the JVMs in which the map and reduce tasks run is
set by the mapred.child.java.opts property. You should try to make this as large as
possible for the amount of memory on your task nodes; the discussion in “Mem-
ory” on page 269 goes through the constraints to consider.

On the map side, the best performance can be obtained by avoiding multiple spills to
disk; one is optimal. If you can estimate the size of your map outputs, then you can set
the io.sort.* properties appropriately to minimize the number of spills. In particular,

180 | Chapter6: How MapReduce Works

you should increase io.sort.mb if you can. There is a MapReduce counter (“Spilled
records”; see “Counters” on page 225) that counts the total number of records that
were spilled to disk over the course of a job, which can be useful for tuning. Note that
the counter includes both map and reduce side spills.

On the reduce side, the best performance is obtained when the intermediate data can
reside entirely in memory. By default, this does not happen, since for the general case
all the memory is reserved for the reduce function. But if your reduce function has light
memory requirements, then setting mapred.inmem.merge.threshold to 0 and
mapred.job.reduce.input.buffer.percent to 1.0 (or a lower value; see Table 6-2) may
bring a performance boost.

More generally, Hadoop uses a buffer size of 4 KB by default, which is low, so you
should increase this across the cluster (by setting io.file.buffer.size, see also “Other
Hadoop Properties” on page 279).

In April 2008, Hadoop won the general-purpose terabyte sort benchmark (described
in “TeraByte Sort on Apache Hadoop” on page 553), and one of the optimizations
used was this one of keeping the intermediate data in memory on the reduce side.

Table 6-1. Map-side tuning properties

Property name Type Default value Description

io.sort.mb int 100 Thessize, in megabytes, of the mem-
ory buffer to use while sorting map
output.

io.sort.record.percent float 0.05 The proportion of io. sort.mb re-

served for storing record boundaries
of the map outputs. The remaining
space is used for the map output re-
cords themselves.

io.sort.spill.percent float 0.80 The threshold usage proportion for
both the map output memory buffer
and the record boundaries index to
start the process of spilling to disk.

io.sort.factor int 10 The maximum number of streams to
merge at once when sorting files.
This property is also used in the re-
duce. It's fairly common to increase

this to 100.
min.num.spills.for. int 3 The minimum number of spill files
combine needed for the combiner to run (ifa

combiner is specified).
mapred.compress.map. boolean false Compress map outputs.
output
mapred.map.output. Class org.apache.hadoop.io. The compression codec to use for
compression.codec name compress.DefaultCodec map outputs.

Shuffle and Sort | 181

Property name

task
tracker.http.threads

Type
int

Default value
40

Description

The number of worker threads per
tasktracker for serving the map out-
puts to reducers. This is a cluster-
wide setting and cannot be set by
individual jobs.

Table 6-2. Reduce-side tuning properties

Property name

mapred.reduce.parallel.
copies

mapred.reduce.copy.backoff

io.sort.factor

mapred.job.shuffle.input.

buffer.percent

mapred.job.shuffle.merge.

percent

mapred.inmem.merge.threshold

mapred.job.reduce.input.
buffer.percent

Type

int

int

int

float

float

int

float

Default value

5

300

10

0.70

0.66

1000

0.0

Description

The number of threads used to copy map outputs
to the reducer.

The maximum amount of time, in seconds, to spend
retrieving one map output for a reducer before de-
claring it as failed. The reducer may repeatedly re-
attempt a transfer within this time if it fails (using
exponential backoff).

The maximum number of streams to merge at once
when sorting files. This property is also used in the
map.

The proportion of total heap size to be allocated to
themap outputs buffer during the copy phase of the
shuffle.

Thethreshold usage proportion for the map outputs
buffer (defined by mapred. job. shuf
fle.input.buffer.percent)forstarting
the process of merging the outputs and spilling to
disk.

The threshold number of map outputs for starting
the process of merging the outputs and spilling to
disk. Avalue of 0 orless means thereis no threshold,
and the spill behavior is governed solely by
mapred.job.shuffle.merge.percent.

The proportion of total heap size to be used for re-
taining map outputs in memory during the reduce.
For the reduce phase to begin, the size of map out-
puts in memory must be no more than this size. By
default, all map outputs are merged to disk before
the reduce begins, to give the reducers as much
memory as possible. However, if your reducers re-
quire less memory, this value may be increased to
minimize the number of trips to disk.

182 | Chapter6: How MapReduce Works

Task Execution

We saw how the MapReduce system executes tasks in the context of the overall job at
the beginning of the chapter in “Anatomy of a MapReduce Job Run” on page 167. In
this section, we’ll look at some more controls that MapReduce users have over task
execution.

Speculative Execution

The MapReduce model is to break jobs into tasks and run the tasks in parallel to make
the overall job execution time smaller than it would otherwise be if the tasks ran se-
quentially. This makes job execution time sensitive to slow-running tasks, as it takes
only one slow task to make the whole job take significantly longer than it would have
done otherwise. When a job consists of hundreds or thousands of tasks, the possibility
of a few straggling tasks is very real.

Tasks may be slow for various reasons, including hardware degradation or software
mis-configuration, but the causes may be hard to detect since the tasks still complete
successfully, albeit after a longer time than expected. Hadoop doesn’t try to diagnose
and fix slow-running tasks; instead, it tries to detect when a task is running slower than
expected and launches another, equivalent, task as a backup. This is termed speculative
execution of tasks.

It’s important to understand that speculative execution does not work by launching
two duplicate tasks at about the same time so they can race each other. This would be
wasteful of cluster resources. Rather, a speculative task is launched only after all the
tasks for a job have been launched, and then only for tasks that have been running for
some time (at least a minute) and have failed to make as much progress, on average, as
the other tasks from the job. When a task completes successfully, any duplicate tasks
that are running are killed since they are no longer needed. So if the original task com-
pletes before the speculative task, then the speculative task is killed; on the other hand,
if the speculative task finishes first, then the original is killed.

Speculative execution is an optimization, not a feature to make jobs run more reliably.
If there are bugs that sometimes cause a task to hang or slow down, then relying on
speculative execution to avoid these problems is unwise, and won’t work reliably, since
the same bugs are likely to affect the speculative task. You should fix the bug so that
the task doesn’t hang or slow down.

Speculative execution is turned on by default. It can be enabled or disabled independ-
ently for map tasks and reduce tasks, on a cluster-wide basis, or on a per-job basis. The
relevant properties are shown in Table 6-3.

Task Execution | 183

Table 6-3. Speculative execution properties

Property name Type Defaultvalue Description
mapred.map.tasks.speculative.execution boolean true Whether extra instances of map
tasks may be launched if a task is
making slow progress.
mapred.reduce.tasks.speculative. boolean true Whether extra instances of re-
execution duce tasks may be launched if a

task is making slow progress.

Why would you ever want to turn off speculative execution? The goal of speculative
execution is reducing job execution time, but this comes at the cost of cluster efficiency.
On a busy cluster, speculative execution can reduce overall throughput, since redun-
dant tasks are being executed in an attempt to bring down the execution time for a
single job. For this reason, some cluster administrators prefer to turn it off on the cluster
and have users explicitly turn it on for individual jobs. This was especially relevant for
older versions of Hadoop, when speculative execution could be overly aggressive in
scheduling speculative tasks.

Task JVM Reuse

Hadoop runs tasks in their own Java Virtual Machine to isolate them from other run-
ning tasks. The overhead of starting a new JVM for each task can take around a second,
which for jobs that run for a minute or so is insignificant. However, jobs that have a
large number of very short-lived tasks (these are usually map tasks), or that have lengthy
initialization, can see performance gains when the JVM is reused for subsequent tasks.

With task JVM reuse enabled, tasks do not run concurrently in a single JVM. The JVM
runs tasks sequentially. Tasktrackers can, however, run more than one task at a time,
but this is always done in separate JVMs. The properties for controlling the tasktrackers
number of map task slots and reduce task slots are discussed in “Memory”
on page 269.

The property for controlling task JVM reuse is mapred.job.reuse.jvm.num.tasks: it
specifies the maximum number of tasks to run for a given job for each JVM launched;
the default is 1 (see Table 6-4). Tasks from different jobs are always run in separate
JVMs. If the property is set to —1, there is no limit to the number of tasks from the same
job that may share a JVM. The method setNumTasksToExecutePerJvm() on JobConf can
also be used to configure this property.

184 | Chapter6: How MapReduce Works

Table 6-4. Task JVM Reuse properties

Property name Type Defaultvalue Description

mapred.job.reuse.jvm.num.tasks int 1 The maximum number of tasks to run for a given
job for each JVM on a tasktracker. A value of -1
indicates no limit: the same JVM may be used for
all tasks for a job.

Tasks that are CPU-bound may also benefit from task JVM reuse by taking advantage
of runtime optimizations applied by the HotSpot JVM. After running for a while, the
HotSpot JVM builds up enough information to detect performance-critical sections in
the code and dynamically translates the Java byte codes of these hot spots into native
machine code. This works well for long-running processes, but JVMs that run for sec-
onds or a few minutes may not gain the full benefit of HotSpot. In these cases, it is
worth enabling task JVM reuse.

Another place where a shared JVM is useful is for sharing state between the tasks of a
job. By storing reference data in a static field, tasks get rapid access to the shared data.

Skipping Bad Records

Large datasets are messy. They often have corrupt records. They often have records
that are in a different format. They often have missing fields. In an ideal world, your
code would cope gracefully with all of these conditions. In practice, it is often expedient
to ignore the offending records. Depending on the analysis being performed, if only a
small percentage of records are affected, then skipping them may not significantly affect
the result. However, if a task trips up when it encounters a bad record—by throwing
a runtime exception—then the task fails. Failing tasks are retried (since the failure may
be due to hardware failure or some other reason outside the task’s control), but if a
task fails four times, then the whole job is marked as failed (see “Task Fail-
ure” on page 173). If it is the data that is causing the task to throw an exception,
rerunning the task won’t help, since it will fail in exactly the same way each time.

If you are using TextInputFormat (“TextInputFormat” on page 209),
then you can set a maximum expected line length to safeguard against
corrupted files. Corruption in a file can manifest itself as a very long line,
" which can cause out of memory errors and then task failure. By setting
mapred.linerecordreader.maxlength to a value in bytes that fits in mem-
ory (and is comfortably greater than the length of lines in your input
data), the record reader will skip the (long) corrupt lines without the
task failing.

Task Execution | 185

The best way to handle corrupt records is in your mapper or reducer code. You can
detect the bad record and ignore it, or you can abort the job by throwing an exception.
You can also count the total number of bad records in the job using counters to see
how widespread the problem is.

In rare cases, though, you can’t handle the problem because there is a bug in a third-
party library that you can’t work around in your mapper or reducer. In these cases, you
can use Hadoop’s optional skipping mode for automatically skipping bad records.

When skipping mode is enabled, tasks report the records being processed back to the
tasktracker. When the task fails, the tasktracker retries the task, skipping the records
that caused the failure. Because of the extra network traffic and bookkeeping to
maintain the failed record ranges, skipping mode is turned on for a task only after it
has failed twice.

Thus, for a task consistently failing on a bad record, the tasktracker runs the following
task attempts with these outcomes:

1. Task fails.

2. Task fails.

3. Skipping mode is enabled. Task fails, but failed record is stored by the tasktracker.
4

. Skipping mode is still enabled. Task succeeds by skipping the bad record that failed
in the previous attempt.

Skipping mode is off by default; you enable it independently for map and reduce tasks
using the SkipBadRecords class. It’s important to note that skipping mode can detect
only one bad record per task attempt, so this mechanism is appropriate only for de-
tecting occasional bad records (a few per task, say). You may need to increase the
maximum number of task attempts (via mapred.map.max.attempts and
mapred.reduce.max.attempts) to give skipping mode enough attempts to detect and skip
all the bad records in an input split.

Bad records that have been detected by Hadoop are saved as sequence files in the job’s
output directory under the _logs/skip subdirectory. These can be inspected for diag-
nostic purposes after the job has completed (using hadoop fs -text, for example).

The Task Execution Environment

Hadoop provides information to a map or reduce task about the environment in which
it is running. For example, a map task can discover the name of the file it is processing
(see “File information in the mapper” on page 205), and a map or reduce task can find
out the attempt number of the task. The properties in Table 6-5 can be accessed from
the job’s configuration, obtained by providing an implementation of the configure()
method for Mapper or Reducer, where the configuration is passed in as an argument.

186 | Chapter6: How MapReduce Works

Table 6-5. Task environment properties

Property name Type Description Example

mapred.job.id String ThejobID. (See“Job, job_200811201130_0004
Task, and Task Attempt
IDs” on page 147 fora

description of the
format.)
mapred.tip.id String ThetaskID. task_200811201130_0004_m_000003
mapred.task.id String Thetask attemptID. attempt 200811201130 _0004 m 000003 0
(Not the task ID.)
mapred.task. int TheIDof thetask within 3
partition the job.

mapred.task.is.map boolean Whetherthistaskisa true
map task.

Streaming environment variables

Hadoop sets job configuration parameters as environment variables for Streaming pro-
grams. However, it replaces nonalphanumeric characters with underscores to make
sure they are valid names. The following Python expression illustrates how you can
retrieve the value of the mapred. job.id property from within a Python Streaming script:

os.environ["mapred _job_id"]

You can also set environment variables for the Streaming processes launched by Map-
Reduce by supplying the -cmdenv option to the Streaming launcher program (once for
each variable you wish to set). For example, the following sets the MAGIC_PARAMETER
environment variable:

-cmdenv MAGIC_PARAMETER=abracadabra

Task side-effect files

The usual way of writing output from map and reduce tasks is by using the OutputCol
lector to collect key-value pairs. Some applications need more flexibility than a single
key-value pair model, so these applications write output files directly from the map or
reduce task to a distributed filesystem, like HDFS. (There are other ways to produce
multiple outputs, too, as described in “Multiple Outputs” on page 217.)

Care needs to be taken to ensure that multiple instances of the same task don’t try to
write to the same file. There are two problems to avoid: if a task failed and was retried,
then the old partial output would still be present when the second task ran, and it would
have to delete the old file first. Second, with speculative execution enabled, two in-
stances of the same task could try to write to the same file simultaneously.

Task Execution | 187

Hadoop solves this problem for the regular outputs from a task by writing outputs to
atemporary directory that is specific to that task attempt. The directory is ${mapred.out
put.dir}/ temporary/${mapred.task.id}. On successful completion of the task, the
contents of the directory are copied to the job’s output directory (${mapred.out
put.dir}). Thus, if the task fails and is retried, the first attempt’s partial output will just
be cleaned up. A task and another speculative instance of the same task will get separate
working directories, and only the first to finish will have the content of its working
directory promoted to the output directory—the other will be discarded.

W

The way that a task’s output is committed on completion is implemen-

ted by an OutputCommitter, which is associated with the OutputFormat.

s The OutputCommitter for FileOutputFormat is a FileOutputCommitter,

" which implements the commit protocol described earlier. The getOut
putCommitter() method on OutputFormat may be overridden to return a
custom OutputCommitter, in case you want to implement the commit
process in a different way.

Hadoop provides a mechanism for application writers to use this feature, too. A task
may find its working directory by retrieving the value of the mapred.work.output.dir
property from its configuration file. Alternatively, a MapReduce program using the Java
API may call the getWorkOutputPath() static method on FileOutputFormat to get the
Path object representing the working directory. The framework creates the working
directory before executing the task, so you don’t need to create it.

To take a simple example, imagine a program for converting image files from one format
to another. One way to do this is to have a map-only job, where each map is given a
set of images to convert (perhaps using NLineInputFormat; see “NLinelnputFor-
mat” on page 211). If a map task writes the converted images into its working directory,
then they will be promoted to the output directory when the task successfully finishes.

188 | Chapter6: How MapReduce Works

CHAPTER 7
MapReduce Types and Formats

MapReduce has a simple model of data processing: inputs and outputs for the map and
reduce functions are key-value pairs. This chapter looks at the MapReduce model in
detail and, in particular, how data in various formats, from simple text to structured
binary objects, can be used with this model.

MapReduce Types

The map and reduce functions in Hadoop MapReduce have the following general form:
map: (K1, V1) » list(K2, V2)
reduce: (K2, list(Vv2)) »> list(K3, V3)
In general, the map input key and value types (K1 and V1) are different from the map
output types (K2 and V2). However, the reduce input must have the same types as the
map output, although the reduce output types may be different again (K3 and v3). The
Java interfaces mirror this form:

public interface Mapper<Ki, Vi, K2, V2> extends JobConfigurable, Closeable {

void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
throws IOException;
}

public interface Reducer<kK2, V2, K3, V3> extends JobConfigurable, Closeable {

void reduce(K2 key, Iterator<V2> values,
OutputCollector<K3, V3> output, Reporter reporter) throws IOException;
}

Recall that the OutputCollector is purely for emitting key-value pairs (and is hence
parameterized with their types), while the Reporter is for updating counters and status.
(In the new MapReduce API in release 0.20.0 and later, these two functions are com-
bined in a single context object.)

189

If a combine function is used, then it is the same form as the reduce function (and is
an implementation of Reducer), except its output types are the intermediate key and
value types (K2 and V2), so they can feed the reduce function:

map: (K1, V1) » list(K2, V2)

combine: (K2, list(V2)) » list(k2, V2)

reduce: (K2, list(v2)) » list(K3, V3)
Often the combine and reduce functions are the same, in which case, K3 is the same as
K2, and V3 is the same as V2.

The partition function operates on the intermediate key and value types (K2 and V2),
and returns the partition index. In practice, the partition is determined solely by the
key (the value is ignored):

partition: (K2, V2) » integer

Or in Java:

public interface Partitioner<k2, V2> extends JobConfigurable {

int getPartition(K2 key, V2 value, int numPartitions);

}

So much for the theory, how does this help configure MapReduce jobs? Table 7-1
summarizes the configuration options. It is divided into the properties that determine
the types and those that have to be compatible with the configured types.

Input types are set by the input format. So, for instance, a TextInputFormat generates
keys of type LongWritable and values of type Text. The other types are set explicitly by
calling the methods on the JobConf. If not set explicitly, the intermediate types default
to the (final) output types, which default to LongWritable and Text. So if K2 and K3 are
the same, you don’t need to call setMapOutputKeyClass(), since it falls back to the type
set by calling setOutputKeyClass(). Similarly, if V2 and V3 are the same, you only need
to use setOutputValueClass().

It may seem strange that these methods for setting the intermediate and final output
types exist at all. After all, why can’t the types be determined from a combination of
the mapper and the reducer? The answer is that it’s to do with a limitation in Java
generics: type erasure means that the type information isn’t always present at runtime,
so Hadoop has to be given it explicitly. This also means that it’s possible to configure
a MapReduce job with incompatible types, because the configuration isn’t checked at
compile time. The settings that have to be compatible with the MapReduce types are
listed in the lower part of Table 7-1. Type conflicts are detected at runtime during job
execution, and for this reason, it is wise to run a test job using a small amount of data
to flush out and fix any type incompatibilities.

190 | Chapter7: MapReduce Typesand Formats

. . ()3ewzro43ndinpias sseTd*3ewrol *3ndino- paxdew
. . . . ()sseTd1adnpay3as Sserd*13onpai-paxdew
. ()x03exedwordutdnornanepindingias sseTd°ujdnoid-anteA*yndino-pazdew

. ()sseTdrojexedwo)rfayindingies sserd-1ojexedwod A3y indino-paxdew

. . ()SSeT)IaU0TITIIRYIDS sseTd*1auot3}T}red paideu

. . ()sser)IauTquo)las SSeTd* IauTquod * paxdew

. . . . ()sserdrauunydeyyas sseTd*1auuni-dew*paxdew

. . . . ()ssetdraddepioas sseTd* 1addew* paxdew

:59d£1 3Y3 yIM JURSISUOD 3q Isnw Jey) satuadolg

. ()sseTdanTepyndinglas sseTd-anTeA*indino-paideu
. ()sseTdhay3ndinpies sseTd* A9y 3ndino-paxdew

. ()sserdanTepindinpdepias sseTd*anTeA*3ndynodeu- pazdew

. () sseTdAayzndingdepias sset2* Aoy Ind3nodew- paxdew

. . ()3ewxo4induries SseTd*3ewros 3ndut *paxdew

:s3dA) buunbiyuod Joj saradoid
€N e [4) Ol A 1
sadfyanding sadfyajerpawuiu) sadAyInduj poy3aw 131395 Juo)qor fyadoig

sadAq aonpaydopy Jo uoyvindifuor ‘1-/ 2)qv

MapReduce Types | 191

The Default MapReduce Job

What happens when you run MapReduce without setting a mapper or a reducer? Let’s

try it by running this minimal MapReduce program:

public class MinimalMapReduce extends Configured implements Tool {

@0verride
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err);
return -1;

}

JobConf conf = new JobConf(getConf(), getClass());
FileInputFormat.addInputPath(conf, new Path(args[o0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);

return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduce(), args);
System.exit(exitCode);

}

The only configuration that we set is an input path and an output path. We run it over

a subset of our weather data with the following:
% hadoop MinimalMapReduce "input/ncdc/all/190{1,2}.gz" output

We do get some output: one file named part-00000 in the output directory. Here’s what

the first few lines look like (truncated to fit the page):

0+0029029070999991901010106004+64333+023450FM-12+000599999V0202701N01591. . .
0+0035029070999991902010106004+64333+023450FM-12+000599999V0201401N01181. . .
13550029029070999991901010113004+64333+023450FM-12+000599999V0202901N00821. . .
14150035029070999991902010113004+64333+023450FM-12+000599999V0201401N01181. ..
270»0029029070999991901010120004+64333+023450FM-12+000599999V0209991C00001. . .
28250035029070999991902010120004+64333+023450FM-12+000599999V0201401N01391. . .

Each line is an integer followed by a tab character, followed by the original weather
data record. Admittedly, it’s not a very useful program, but understanding how it pro-
duces its output does provide some insight into the defaults that Hadoop uses when
running MapReduce jobs. Example 7-1 shows a program that has exactly the same

effect as MinimalMapReduce, but explicitly sets the job settings to their defaults.

192 | Chapter7: MapReduce Typesand Formats

Example 7-1. A minimal MapReduce driver, with the defaults explicitly set
public class MinimalMapReduceWithDefaults extends Configured implements Tool {

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setInputFormat(TextInputFormat.class);

conf.setNumMapTasks(1);
conf.setMapperClass(IdentityMapper.class);
conf.setMapRunnerClass(MapRunner.class);

conf.setMapOutputKeyClass(LongWritable.class);
conf.setMapOutputValueClass(Text.class);

conf.setPartitionerClass(HashPartitioner.class);

conf.setNumReduceTasks(1);
conf.setReducerClass(IdentityReducer.class);

conf.setOutputKeyClass(LongWritable.class);
conf.setOutputValueClass(Text.class);

conf.setOutputFormat(TextOutputFormat.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MinimalMapReduceWithDefaults(), args);
System.exit(exitCode);

}

}

We've simplified the first few lines of the run() method, by extracting the logic for
printing usage and setting the input and output paths into a helper method. Almost all
MapReduce drivers take these two arguments (input and output), so reducing
the boilerplate code here is a good thing. Here are the relevant methods in the
JobBuilder class for reference:

public static JobConf parseInputAndOutput(Tool tool, Configuration conf,
String[] args) {

if (args.length != 2) {

printUsage(tool, "<input> <output>");

return null;
}
JobConf jobConf = new JobConf(conf, tool.getClass());
FileInputFormat.addInputPath(jobConf, new Path(args[o]));
FileOutputFormat.setOutputPath(jobConf, new Path(args[1]));

MapReduce Types | 193

return jobConf;

}

public static void printUsage(Tool tool, String extraArgsUsage) {
System.err.printf("Usage: %s [genericOptions] %s\n\n",
tool.getClass().getSimpleName(), extraArgsUsage);
GenericOptionsParser.printGenericCommandUsage(System.err);

}

Going back to MinimalMapReduceWithDefaults in Example 7-1, although there are many
other default job settings, the ones highlighted are those most central to running a job.
Let’s go through them in turn.

The default input format is TextInputFormat, which produces keys of type Longhrita
ble (the offset of the beginning of the line in the file) and values of type Text (the line
of text). This explains where the integers in the final output come from: they are the
line offsets.

Despite appearances, the setNumMapTasks () call does not necessarily set the number of
map tasks to one, in fact. It is a hint, and the actual number of map tasks depends on
the size of the input, and the file’s block size (if the file is in HDFES). This is discussed
further in “FileInputFormat input splits” on page 202.

The default mapper is IdentityMapper, which writes the input key and value unchanged
to the output:

public class IdentityMapper<K, V>
extends MapReduceBase implements Mapper<K, V, K, V> {

public void map(K key, V val,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
output.collect(key, val);

}
}

IdentityMapper is a generic type, which allows it to work with any key or value types,
with the restriction that the map input and output keys are of the same type, and the
map input and output values are of the same type. In this case, the map output key is
LongWritable and the map output value is Text.

Map tasks are run by MapRunner, the default implementation of MapRunnable that calls
the Mapper’s map() method sequentially with each record.

The default partitioner is HashPartitioner, which hashes a record’s key to determine
which partition the record belongs in. Each partition is processed by a reduce task, so
the number of partitions is equal to the number of reduce tasks for the job:

public class HashPartitioner<kK2, V2> implements Partitioner<k2, V2> {
public void configure(JobConf job) {}

public int getPartition(K2 key, V2 value,

194 | Chapter7: MapReduce Typesand Formats

int numPartitions) {
return (key.hashCode() & Integer.MAX_VALUE) % numPartitions;

}
}

The key’s hash code is turned into a nonnegative integer by bitwise ANDing it with the
largest integer value. It is then reduced modulo the number of partitions to find the
index of the partition that the record belongs in.

By default, there is a single reducer, and therefore a single partition, so the action of
the partitioner is irrelevant in this case since everything goes into one partition. How-
ever, it is important to understand the behavior of HashPartitioner when you have
more than one reduce task. Assuming the key’s hash function is a good one, the records
will be evenly allocated across reduce tasks, with all records sharing the same key being
processed by the same reduce task.

Choosing the Number of Reducers

The single reducer default is something of a gotcha for new users to Hadoop. Almost
all real-world jobs should set this to a larger number; otherwise, the job will be very
slow since all the intermediate data flows through a single reduce task. (Note that when
running under the local job runner, only zero or one reducers are supported.)

The optimal number of reducers is related to the total number of available reducer slots
in your cluster. The total number of slots is found by multiplying the number of nodes
in the cluster and the number of slots per node (which is determined by the value of
the mapred.tasktracker.reduce.tasks.maximum property, described in “Environment
Settings” on page 269).

One common setting is to have slightly fewer reducers than total slots, which gives one
wave of reduce tasks (and tolerates a few failures, without extending job execution
time). If your reduce tasks are very big, then it makes sense to have a larger number of
reducers (resulting in two waves, for example) so that the tasks are more fine-grained,
and failure doesn’t affect job execution time significantly.

The default reducer is IdentityReducer, again a generic type, which simply writes all
its input to its output:

public class IdentityReducer<K, V>
extends MapReduceBase implements Reducer<K, V, K, V> {

public void reduce(K key, Iterator<V> values,
OutputCollector<K, V> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(key, values.next());
}
}
}

MapReduce Types | 195

For this job, the output key is LongWritable, and the output value is Text. In fact, all
the keys for this MapReduce program are Longhritable, and all the values are Text,
since these are the input keys and values, and the map and reduce functions are both
identity functions which by definition preserve type. Most MapReduce programs,
however, don’t use the same key or value types throughout, so you need to configure
the job to declare the types you are using, as described in the previous section.

Records are sorted by the MapReduce system before being presented to the reducer.
In this case, the keys are sorted numerically, which has the effect of interleaving the
lines from the input files into one combined output file.

The default output format is TextOutputFormat, which writes out records, one per line,
by converting keys and values to strings and separating them with a tab character. This
is why the output is tab-separated: it is a feature of TextOutputFormat.

The default Streaming job

In Streaming, the default job is similar, but not identical, to the Java equivalent. The
minimal form is:
% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
-input input/ncdc/sample.txt \
-output output \
-mapper /bin/cat

Notice that you have to supply a mapper: the default identity mapper will not work.
The reason has to do with the default input format, TextInputFormat, which generates
LongWritable keys and Text values. However, Streaming output keys and values (in-
cluding the map keys and values) are always both of type Text.” The identity mapper
cannot change LongWritable keys to Text keys, so it fails.

When we specify a non-Java mapper, and the input format is TextInputFormat, Stream-
ing does something special. It doesn’t pass the key to the mapper process, it just passes
the value. This is actually very useful, since the key is just the line offset in the file, and
the value is the line, which is all most applications are interested in. The overall effect
of this job is to perform a sort of the input.

With more of the defaults spelled out, the command looks like this:

% hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \
-input input/ncdc/sample.txt \
-output output \
-inputformat org.apache.hadoop.mapred.TextInputFormat \
-mapper /bin/cat \
-partitioner org.apache.hadoop.mapred.lib.HashPartitioner \
-numReduceTasks 1 \
-reducer org.apache.hadoop.mapred.lib.IdentityReducer \
-outputformat org.apache.hadoop.mapred.TextOutputFormat

* Except when used in binary mode, from version 0.21.0 onward, via the -io rawbytes or -io typedbytes
options. Text mode (-io text) is the default.

196 | Chapter7: MapReduce Typesand Formats

The mapper and reducer arguments take a command or a Java class. A combiner may
optionally be specified, using the -combiner argument.

Keys and values in Streaming

A Streaming application can control the separator that is used when a key-value pair is
turned into a series of bytes and sent to the map or reduce process over standard input.
The default is a tab character, but it is useful to be able to change it in the case that the
keys or values themselves contain tab characters.

Similarly, when the map or reduce writes out key-value pairs, they may be separated
by a configurable separator. Furthermore, the key from the output can be composed
of more than the first field: it can be made up of the first n fields (defined by
stream.num.map.output.key.fields or stream.num.reduce.output.key.fields), with
the value being the remaining fields. For example, if the output from a Streaming proc-
ess was a,b,c (and the separator is a comma), and # is two, then the key would be
parsed as a,b and the value as c.

Separators may be configured independently for maps and reduces. The properties are
listed in Table 7-2 and shown in a diagram of the data flow path in Figure 7-1.

These settings do not have any bearing on the input and output formats. For example,
if stream.reduce.output.field.separator were set to be a colon, say, and the reduce
stream process wrote the line a:b to standard out, then the Streaming reducer would
know to extract the key as a and the value as b. With the standard TextOutputFormat,
this record would be written to the output file with a tab separating a and b. You can
change the separator that TextOutputFormat uses by setting mapred.textoutputfor
mat.separator.

Table 7-2. Streaming separator properties

Property name Type Defaultvalue Description

stream.map.input.field. String \t The separator to use when passing the input key and

separator value strings to the stream map process as a stream of
bytes.

stream.map.output.field. String \t The separator to use when splitting the output from the

separator stream map process into key and value strings for the
map output.

stream.num.map. int 1 The number of fields separated by

output.key.fields stream.map.output.field.separator to
treat as the map output key.

stream.reduce.input.field. String \t The separator to use when passing the input key and

separator value strings to the stream reduce process as a stream of
bytes.

stream.reduce. String \t The separator to use when splitting the output from the

output.field. stream reduce process into key and value strings for the

separator final reduce output.

MapReduce Types | 197

Property name Type Defaultvalue Description

stream.num.reduce. int 1 The number of fields separated by
output.key.fields stream.reduce.output.field.separatorto
treat as the reduce output key.

shuffle
ReduceTask
: ‘ : A
stream.map.input ! | istream.map.output stream.reduce.input | istream.reduce.output
.field.separator | {.field.separator .field.separator i | i.field.separator
stdin ¥ “std out srdin‘l' “std out
Streaming Streaming
process process

Figure 7-1. Where separators are used in a Streaming MapReduce job

Input Formats

Hadoop can process many different types of data formats, from flat text files to data-
bases. In this section, we explore the different formats available.

Input Splits and Records

As we saw in Chapter 2, an input split is a chunk of the input that is processed by a
single map. Each map processes a single split. Each split is divided into records, and
the map processes each record—a key-value pair—in turn. Splits and records are log-
ical: there is nothing that requires them to be tied to files, for example, although in their
most common incarnations, they are. In a database context, a split might correspond
to a range of rows from a table and a record to a row in that range (this is precisely what
DBInputFormat does, an input format for reading data from a relational database).

Input splits are represented by the Java interface, InputSplit (which, like all of the
classes mentioned in this section, is in the org.apache.hadoop.mapred package®):

public interface InputSplit extends Writable {
long getlength() throws IOException;

String[] getlLocations() throws IOException;

T But see the new MapReduce classes in org.apache . hadoop .mapreduce, described in “The new Java MapReduce
API” on page 25.

198 | Chapter7: MapReduce Typesand Formats

}

An InputSplit has a length in bytes and a set of storage locations, which are just host-
name strings. Notice that a split doesn’t contain the input data; it is just a reference to
the data. The storage locations are used by the MapReduce system to place map tasks
as close to the split’s data as possible, and the size is used to order the splits so that the
largest get processed first, in an attempt to minimize the job runtime (this is an instance
of a greedy approximation algorithm).

As a MapReduce application writer, you don’t need to deal with InputSplits directly,
as they are created by an InputFormat. An InputFormat is responsible for creating the
input splits and dividing them into records. Before we see some concrete examples of
InputFormat, let’s briefly examine how it is used in MapReduce. Here’s the interface:

public interface InputFormat<K, V> {
InputSplit[] getSplits(JobConf job, int numSplits) throws IOException;

RecordReader<K, V> getRecordReader(InputSplit split,
JobConf job,
Reporter reporter) throws IOException;

}

The JobClient calls the getSplits() method, passing the desired number of map tasks
as the numSplits argument. This number is treated as a hint, as InputFormat imple-
mentations are free to return a different number of splits to the number specified in
numSplits. Having calculated the splits, the client sends them to the jobtracker, which
uses their storage locations to schedule map tasks to process them on the tasktrackers.
On a tasktracker, the map task passes the split to the getRecordReader() method on
InputFormat to obtain a RecordReader for that split. A RecordReader is little more than
an iterator over records, and the map task uses one to generate record key-value pairs,
which it passes to the map function. A code snippet (based on the code in MapRunner)
illustrates the idea:

K key = reader.createKey();

V value = reader.createValue();

while (reader.next(key, value)) {
mapper.map(key, value, output, reporter);

Here the RecordReader’s next() method is called repeatedly to populate the key and
value objects for the mapper. When the reader gets to the end of the stream, the
next() method returns false, and the map task completes.

Input Formats | 199

This code snippet makes it clear that the same key and value objects are
*t% used on each invocation of the map() method—only their contents are

changed (by the reader’s next () method). This can be a surprise to users,
who might expect keys and values to be immutable. This causes prob-
lems when a reference to a key or value object is retained outside the
map() method, as its value can change without warning. If you need to
do this, make a copy of the object you want to hold on to. For example,
for a Text object, you can use its copy constructor: new Text(value).

The situation is similar with reducers. In this case, the value objects in
the reducer’s iterator are reused, so you need to copy any that you need
to retain between calls to the iterator (see Example 8-14).

Finally, note that MapRunner is only one way of running mappers. MultithreadedMapRun
ner is another implementation of the MapRunnable interface that runs mappers concur-
rently in a configurable number of threads (set by mapred.map.multithreadedrun
ner.threads). For most data processing tasks, it confers no advantage over MapRunner.
However, for mappers that spend a long time processing each record, because they
contact external servers, for example, it allows multiple mappers to run in one JVM
with little contention. See “Fetcher: A multithreaded MapRunner in ac-
tion” on page 527 for an example of an application that uses MultithreadedMapRunner.

FileInputFormat

FileInputFormat is the base class for all implementations of InputFormat that use files
as their data source (see Figure 7-2). It provides two things: a place to define which files
are included as the input to a job, and an implementation for generating splits for the
input files. The job of dividing splits into records is performed by subclasses.

FilelnputFormat input paths

The input to a job is specified as a collection of paths, which offers great flexibility in
constraining the input to a job. FileInputFormat offers four static convenience methods
for setting a JobConf’s input paths:

public static void addInputPath(JobConf conf, Path path)

public static void addInputPaths(JobConf conf, String commaSeparatedPaths)

public static void setInputPaths(JobConf conf, Path... inputPaths)
public static void setInputPaths(JobConf conf, String commaSeparatedPaths)

The addInputPath() and addInputPaths() methods add a path or paths to the list of
inputs. You can call these methods repeatedly to build the list of paths. The setInput
Paths() methods set the entire list of paths in one go (replacing any paths set on the
JobConf in previous calls).

200 | Chapter7: MapReduce Typesand Formats

CombineFile

InputFormat<K, V>

TextInputFormat
«interface
InputFormat<K, V> Ok FilelnputFormat<K, V> S = KeyValuelextinputFormat StreamInputFormat
org.apache.hadoop.mapred

NLinelnputFormat

SequenceFile SequenceFileAsBinary
InputFormat<K, V> InputFormat

SequenceFileAsText
InputFormat

interface»
Composable
InputFormat<K, V>

CompositelnputFormat Sequencefile
<K, V> InputFilter<K, V>

emmessssmssssssssssssssssssss=e=s==—-

28 DBlnputFormat<T>

Empty

p
InputFormat<K,V>

Figure 7-2. InputFormat class hierarchy

A path may represent a file, a directory, or, by using a glob, a collection of files and
directories. A path representing a directory includes all the files in the directory as input
to the job. See “File patterns” on page 60 for more on using globs.

-

The contents of a directory specified as an input path are not processed
recursively. In fact, the directory should only contain files: if the direc-
tory contains a subdirectory, it will be interpreted as a file, which will
cause an error. The way to handle this case is to use a file glob or a filter
to select only the files in the directory based on a name pattern.

The add and set methods allow files to be specified by inclusion only. To exclude certain
files from the input, you can set a filter using the setInputPathFilter() method on
FileInputFormat:

public static void setInputPathFilter(JobConf conf,

Class<? extends PathFilter> filter)

Filters are discussed in more detail in “PathFilter” on page 61.

Input Formats | 201

Even if you don’t set a filter, FileInputFormat uses a default filter that excludes hidden
files (those whose names begin with a dot or an underscore). If you set a filter by calling
setInputPathFilter(), it acts in addition to the default filter. In other words, only non-
hidden files that are accepted by your filter get through.

Paths and filters can be set through configuration properties, too (Table 7-3), which
can be handy for Streaming and Pipes. Setting paths is done with the -input option for
both Streaming and Pipes interfaces, so setting paths directly is not usually needed.

Table 7-3. Input path and filter properties

Property name Type Defaultvalue Description
mapred.input.dir comma-separated none The input files for a job. Paths that contain com-
paths mas should have those commas escaped by a

backslash character. For example, the glob
{a, b} would be escaped as {a\, b}.

mapred. input.path PathFilter none The filter to apply to the input files for a job.
Filter.class classname

FilelnputFormat input splits

Given a set of files, how does FileInputFormat turn them into splits? FileInputFormat
splits only large files. Here “large” means larger than an HDFS block. The split size is
normally the size of an HDFS block, which is appropriate for most applications; how-
ever, it is possible to control this value by setting various Hadoop properties, as shown
in Table 7-4.

Table 7-4. Properties for controlling split size

Property name Type Defaultvalue Description
mapred.min.split.size int 1 The smallest valid size in
bytes for a file split.
mapred.max.split.size? long Long.MAX_VALUE, thatis The largest valid size in
9223372036854775807 bytes for a file split.
dfs.block.size long 64 MB, thatis 67108864 The size of a block in HDFS
in bytes.

&

This property is not present in the old MapReduce API (with the exception of CombineFileInputFormat). Instead, it s calculated
indirectly as the size of the total input for the job, divided by the guide number of map tasks specified by mapred.map.tasks (or the
setNumMapTasks () method on JobConf). Because mapred.map . tasks defaults to 1, this makes the maximum split size the size
of the input.

The minimum split size is usually 1 byte, although some formats have a lower bound
on the split size. (For example, sequence files insert sync entries every so often in the
stream, so the minimum split size has to be large enough to ensure that every split has
a sync point to allow the reader to resynchronize with a record boundary.)

202 | Chapter7: MapReduce Typesand Formats

Applications may impose a minimum split size: by setting this to a value larger than
the block size, they can force splits to be larger than a block. There is no good reason
for doing this when using HDFS, since doing so will increase the number of blocks that
are not local to a map task.

The maximum split size defaults to the maximum value that can be represented by a
Java long type. It has an effect only when it is less than the block size, forcing splits to
be smaller than a block.

The split size is calculated by the formula (see the computeSplitSize() method in
FileInputFormat):

max(minimumSize, min(maximumSize, blockSize))

by default:

minimumSize < blockSize < maximumSize

so the split size is blockSize. Various settings for these parameters and how they affect
the final split size are illustrated in Table 7-5.

Table 7-5. Examples of how to control the split size

Minimum split size ~ Maximum split size Block size Splitsize ~ Comment

1 (default) Long.MAX_VALUE 64 MB (default) 64 MB By default, split size is the same as the
(default) default block size.

1 (default) Long.MAX_ VALUE 128 MB 128 MB The most natural way to increase the
(default) split size is to have larger blocks in

HDFS, by setting dfs.block.size,
oronaper-file basis at file construction
time.

128 MB Long.MAX_VALUE 64 MB (default) 128 MB Making the minimum split size greater
(default) than the block size increases the split
size, but at the cost of locality.

1 (default) 32MB 64 MB (default) 32MB Making the maximum split size less
than the block size decreases the split
size.

Small files and CombineFilelnputFormat

Hadoop works better with a small number of large files than a large number of small
files. One reason for this is that FileInputFormat generates splits in such a way that each
split is all or part of a single file. If the file is very small (“small” means significantly
smaller than an HDFS block) and there are a lot of them, then each map task will process
very little input, and there will be a lot of them (one per file), each of which imposes
extra bookkeeping overhead. Compare a 1 GB file broken into sixteen 64 MB blocks,
and 10,000 or so 100 KB files. The 10,000 files use one map each, and the job time can
be tens or hundreds of times slower than the equivalent one with a single input file and
16 map tasks.

Input Formats | 203

The situation is alleviated somewhat by CombineFileInputFormat, which was designed
to work well with small files. Where FileInputFormat creates a split per file,
CombineFileInputFormat packs many files into each split so that each mapper has more
to process. Crucially, CombineFileInputFormat takes node and rack locality into account
when deciding which blocks to place in the same split, so it does not compromise the
speed at which it can process the input in a typical MapReduce job.

Of course, if possible, it is still a good idea to avoid the many small files case since
MapReduce works best when it can operate at the transfer rate of the disks in the cluster,
and processing many small files increases the number of seeks that are needed to run
ajob. Also, storing large numbers of small files in HDFS is wasteful of the namenode’s
memory. One technique for avoiding the many small files case is to merge small files
into larger files by using a SequenceFile: the keys can act as filenames (or a constant
such as NullWritable, if not needed) and the values as file contents. See Example 7-4.
But if you already have a large number of small files in HDFS, then CombineFileInput
Format is worth trying.

W

- CombineFileInputFormat isn’tjust good for small files—it can bring ben-
"‘:\ efits when processing large files, too. Essentially, CombineFileInputFor
i * mat decouples the amount of data that a mapper consumes from the

" block size of the files in HDES.

If your mappers can process each block in a matter of seconds, then
you could use CombineFileInputFormat with the maximum split size set
to a small multiple of the number of blocks (by setting the
mapred.max.split.size property in bytes) so that each mapper processes
more than one block. In return, the overall processing time falls, since
proportionally fewer mappers run, which reduces the overhead in task
bookkeeping and startup time associated with a large number of short-
lived mappers.

Since CombineFileInputFormat is an abstract class without any concrete classes (unlike
FileInputFormat), you need to do a bit more work to use it. (Hopefully, common im-
plementations will be added to the library over time.) For example, to have the
CombineFileInputFormat equivalent of TextInputFormat, you would create a concrete
subclass of CombineFileInputFormat and implement the getRecordReader() method.

204 | Chapter7: MapReduce Typesand Formats

Preventing splitting

Some applications don’t want files to be split so that a single mapper can process each
input file in its entirety. For example, a simple way to check if all the records in a file
are sorted is to go through the records in order, checking whether each record is not
less than the preceding one. Implemented as a map task, this algorithm will work only
if one map processes the whole file.*

There are a couple of ways to ensure that an existing file is not split. The first (quick
and dirty) way is to increase the minimum split size to be larger than the largest file in
your system. Setting it to its maximum value, Long.MAX VALUE, has this effect. The sec-
ond is to subclass the concrete subclass of FileInputFormat that you want to use, to
override the isSplitable() methodS to return false. For example, here’s a nonsplitta-
ble TextInputFormat:

import org.apache.hadoop.fs.*;
import org.apache.hadoop.mapred.TextInputFormat;

public class NonSplittableTextInputFormat extends TextInputFormat {
@0verride
protected boolean isSplitable(FileSystem fs, Path file) {
return false;

}
}

File information in the mapper

A mapper processing a file input split can find information about the split by reading
some special properties from its job configuration object, which may be obtained by
implementing configure() in your Mapper implementation to get access to the
JobConf object. Table 7-6 lists the properties available. These are in addition to the ones
available to all mappers and reducers, listed in “The Task Execution Environ-
ment” on page 186.

Table 7-6. File split properties
Property name Type Description
map.input.file String The path of the input file being processed

map.input.start long The byte offset of the start of the split
map.input.length long The length of the split in bytes

In the next section, you shall see how to use this when we need to access the split’s
filename.

1 This is how the mapper in SortValidator.RecordStatsChecker is implemented.

§ In the method name isSplitable(), “splitable” has a single “t.” It is usually spelled “splittable,” which is the
spelling I have used in this book.

Input Formats | 205

Processing a whole file as a record

A related requirement that sometimes crops up is for mappers to have access to the full
contents of a file. Not splitting the file gets you part of the way there, but you also need
to have a RecordReader that delivers the file contents as the value of the record. The
listing for WholeFileInputFormat in Example 7-2 shows a way of doing this.

Example 7-2. An InputFormat for reading a whole file as a record

public class WholeFileInputFormat
extends FileInputFormat<NullWritable, BytesWritable> {

@0verride
protected boolean isSplitable(FileSystem fs, Path filename) {
return false;

}

@verride
public RecordReader<NullWritable, BytesWritable> getRecordReader
InputSplit split, JobConf job, Reporter reporter) throws IOException {

return new WholeFileRecordReader((FileSplit) split, job);

}
}

WholeFileInputFormat defines a format where the keys are not used, represented by
NullWritable, and the values are the file contents, represented by BytesWritable in-
stances. It defines two methods. First, the format is careful to specify that input files
should never be split, by overriding isSplitable() to return false. Second, we
implement getRecordReader() to return a custom implementation of RecordReader,
which appears in Example 7-3.

Example 7-3. The RecordReader used by WholeFileInputFormat for reading a whole file as a record

class WholeFileRecordReader implements RecordReader<NullWritable, BytesWritable> {

private FileSplit fileSplit;
private Configuration conf;
private boolean processed = false;

public WholeFileRecordReader(FileSplit fileSplit, Configuration conf)
throws IOException {
this.fileSplit = fileSplit;
this.conf = conf;

}

@0verride
public NullWritable createKey() {
return NullWritable.get();

}

@0verride
public BytesWritable createValue() {
return new BytesWritable();

206 | Chapter7: MapReduce Typesand Formats

}

@0verride
public long getPos() throws IOException {
return processed ? fileSplit.getlength() : 0;

}

@0verride
public float getProgress() throws IOException {
return processed ? 1.0f : 0.0f;

}

@0verride
public boolean next(NullWritable key, BytesWritable value) throws IOException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
I0Utils.readFully(in, contents, 0, contents.length);
value.set(contents, 0, contents.length);
} finally {
I0Utils.closeStream(in);
}

processed = true;
return true;

}

return false;

}

@0verride
public void close() throws IOException {
// do nothing
}
}

WholeFileRecordReader is responsible for taking a FileSplit and converting it into a
single record, with a null key and a value containing the bytes of the file. Because there
is only a single record, WholeFileRecordReader has either processed it or not, so it main-
tains a boolean called processed. If, when the next() method is called, the file has not
been processed, then we open the file, create a byte array whose length is the length of
the file, and use the Hadoop I0Utils class to slurp the file into the byte array. Then we
set the array on the BytesWritable instance that was passed into the next() method,
and return true to signal that a record has been read.

The other methods are straightforward bookkeeping methods for creating the correct
key and value types, getting the position and progress of the reader, and a close()
method, which is invoked by the MapReduce framework when the reader is done with.

Input Formats | 207

To demonstrate how WholeFileInputFormat can be used, consider a MapReduce job for
packaging small files into sequence files, where the key is the original filename, and the
value is the content of the file. The listing is in Example 7-4.

Example 7-4. A MapReduce program for packaging a collection of small files as a single SequenceFile

public class SmallFilesToSequenceFileConverter extends Configured
implements Tool {

static class SequenceFileMapper extends MapReduceBase
implements Mapper<NullWritable, BytesWritable, Text, BytesWritable> {

private JobConf conf;

@0verride
public void configure(JobConf conf) {
this.conf = conf;

}

@0verride

public void map(NullWritable key, BytesWritable value,
OutputCollector<Text, BytesWritable> output, Reporter reporter)
throws IOException {

String filename = conf.get("map.input.file");
output.collect(new Text(filename), value);

}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setInputFormat(WholeFileInputFormat.class);
conf.setOutputFormat(SequenceFileOutputFormat.class);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(BytesWritable.class);

conf.setMapperClass(SequenceFileMapper.class);
conf.setReducerClass(IdentityReducer.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(), args);
System.exit(exitCode);

208 | Chapter7: MapReduce Typesand Formats

Since the input format is a WholeFileInputFormat, the mapper has to find only the
filename for the input file split. It does this by retrieving the map.input.file property
from the JobConf, which is set to the split’s filename by the MapReduce framework,
but only for splits that are FileSplit instances (this includes most subclasses of
FileInputFormat). The reducer is the IdentityReducer, and the output format is a
SequenceFileQutputFormat.

Here’s a run on a few small files. We’ve chosen to use two reducers, so we get two
output sequence files:

% hadoop jar job.jar SmallFilesToSequenceFileConverter \
-conf conf/hadoop-localhost.xml -D mapred.reduce.tasks=2 input/smallfiles output

Two part files are created, each of which is a sequence file, which we can inspect with
the -text option to the filesystem shell:
% hadoop fs -conf conf/hadoop-localhost.xml -text output/part-00000
hdfs://localhost/user/tom/input/smallfiles/a 61 61 61 61 61 61 61 61 61 61
hdfs://localhost/user/tom/input/smallfiles/c 63 63 63 63 63 63 63 63 63 63
hdfs://localhost/user/tom/input/smallfiles/e
% hadoop fs -conf conf/hadoop-localhost.xml -text output/part-00001
hdfs://localhost/user/tom/input/smallfiles/b ~ 62 62 62 62 62 62 62 62 62 62
hdfs://localhost/user/tom/input/smallfiles/d 64 64 64 64 64 64 64 64 64 64
hdfs://localhost/user/tom/input/smallfiles/f 66 66 66 66 66 66 66 66 66 66

The input files were named a, b, ¢, d, e, and f, and each contained 10 characters of the
corresponding letter (so, for example, a contained 10 “a” characters), except e, which
was empty. We can see this in the textual rendering of the sequence files, which prints
the filename followed by the hex representation of the file.

There’s at least one way we could improve this program. As mentioned earlier, having
one mapper per file is inefficient, so subclassing CombineFileInputFormat instead of
FileInputFormat would be a better approach. Also, for a related technique of packing
files into a Hadoop Archive, rather than a sequence file, see the section “Hadoop Ar-
chives” on page 71.

Text Input

Hadoop excels at processing unstructured text. In this section, we discuss the different
InputFormats that Hadoop provides to process text.

TextlnputFormat

TextInputFormat is the default InputFormat. Each record is a line of input. The key, a
LongWritable, is the byte offset within the file of the beginning of the line. The value is
the contents of the line, excluding any line terminators (newline, carriage return), and
is packaged as a Text object. So a file containing the following text:

On the top of the Crumpetty Tree
The Quangle Wangle sat,

Input Formats | 209

But his face you could not see,
On account of his Beaver Hat.

is divided into one split of four records. The records are interpreted as the following
key-value pairs:

(0, On the top of the Crumpetty Tree)

(33, The Quangle Wangle sat,)

(57, But his face you could not see,)
(89, On account of his Beaver Hat.)

Clearly, the keys are not line numbers. This would be impossible to implement in gen-
eral, in that a file is broken into splits, at byte, not line, boundaries. Splits are processed
independently. Line numbers are really a sequential notion: you have to keep a count
of lines as you consume them, so knowing the line number within a split would be
possible, but not within the file.

However, the offset within the file of each line is known by each split independently of
the other splits, since each split knows the size of the preceding splits and just adds this
on to the offsets within the split to produce a global file offset. The offset is usually
sufficient for applications that need a unique identifier for each line. Combined with
the file’s name, it is unique within the filesystem. Of course, if all the lines are a fixed
width, then calculating the line number is simply a matter of dividing the offset by the
width.

The Relationship Between Input Splits and HDFS Blocks

The logical records that FileInputFormats define do not usually fit neatly into HDFS
blocks. For example, a TextInputFormat’s logical records are lines, which will cross
HDFS boundaries more often than not. This has no bearing on the functioning of your
program—Ilines are not missed or broken, for example—but it’s worth knowing about,
as it does mean that data-local maps (that is, maps that are running on the same host
as their input data) will perform some remote reads. The slight overhead this causes is
not normally significant.

Figure 7-3 shows an example. A single file is broken into lines, and the line boundaries
do not correspond with the HDFS block boundaries. Splits honor logical record boun-
daries, in this case lines, so we see that the first split contains line 5, even though it
spans the first and second block. The second split starts at line 6.

i split i split i split i
ﬂﬁs1|z|3|4|s 6 | 7 [8] 9 10 1
block block block block
boundary boundary boundary boundary

Figure 7-3. Logical records and HDFS blocks for TextInputFormat

210 | Chapter7: MapReduce Typesand Formats

KeyValueTextInputFormat

TextInputFormat’s keys, being simply the offset within the file, are not normally very
useful. Itis common for each line in a file to be a key-value pair, separated by a delimiter
such as a tab character. For example, this is the output produced by TextOutputFor
mat, Hadoop’s default OutputFormat. To interpret such files correctly, KeyValueTextIn
putFormat is appropriate.

You can specify the separator via the key.value.separator.in.input.line property. It
is a tab character by default. Consider the following input file, where — represents a
(horizontal) tab character:

line1s0n the top of the Crumpetty Tree

line2»>The Quangle Wangle sat,

line3+But his face you could not see,
line4>0n account of his Beaver Hat.

Like in the TextInputFormat case, the input is in a single split comprising four records,
although this time the keys are the Text sequences before the tab in each line:

(line1, On the top of the Crumpetty Tree)

(1ine2, The Quangle Wangle sat,)

(1ine3, But his face you could not see,)
(line4, On account of his Beaver Hat.)

NLinelnputFormat

With TextInputFormat and KeyValueTextInputFormat, each mapper receives a variable
number of lines of input. The number depends on the size of the split and the length
of the lines. If you want your mappers to receive a fixed number of lines of input, then
NLineInputFormat is the InputFormat to use. Like TextInputFormat, the keys are the byte
offsets within the file and the values are the lines themselves.

N refers to the number of lines of input that each mapper receives. With N set to
one (the default), each mapper receives exactly one line of input. The
mapred.line.input.format.linespermap property controls the wvalue of N.
By way of example, consider these four lines again:

On the top of the Crumpetty Tree

The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.

If, for example, N is two, then each split contains two lines. One mapper will receive
the first two key-value pairs:

(0, On the top of the Crumpetty Tree)
(33, The Quangle Wangle sat,)

And another mapper will receive the second two key-value pairs:

(57, But his face you could not see,)
(89, On account of his Beaver Hat.)

Input Formats | 211

The keys and values are the same as TextInputFormat produces. What is different is the
way the splits are constructed.

Usually, having a map task for a small number of lines of input is inefficient (due to the
overhead in task setup), but there are applications that take a small amount of input
data and run an extensive (that is, CPU-intensive) computation for it, then emit their
output. Simulations are a good example. By creating an input file that specifies input
parameters, one per line, you can perform a parameter sweep: run a set of simulations
in parallel to find how a model varies as the parameter changes.

If you have long-running simulations, you may fall afoul of task time-
%—% outs. When a task doesn’t report progress for more than 10 minutes,

then the tasktracker assumes it has failed and aborts the process (see
“Task Failure” on page 173).

The best way to guard against this is to report progress periodically, by
writing a status message, or incrementing a counter, for example. See
“What Constitutes Progress in MapReduce?” on page 172.

Another example is using Hadoop to bootstrap data loading from multiple data
sources, such as databases. You create a “seed” input file that lists the data sources,
one per line. Then each mapper is allocated a single data source, and it loads the data
from that source into HDFS. The job doesn’t need the reduce phase, so the number of
reducers should be set to zero (by calling setNumReduceTasks() on Job). Furthermore,
MapReduce jobs can be run to process the data loaded into HDFS. See Appendix C for
an example.

XML

Most XML parsers operate on whole XML documents, so if a large XML document is
made up of multiple input splits, then it is a challenge to parse these individually. Of
course, you can process the entire XML document in one mapper (if it is not too large)
using the technique in “Processing a whole file as a record” on page 206.

Large XML documents that are composed of a series of “records” (XML document
fragments) can be broken into these records using simple string or regular-expression
matching to find start and end tags of records. This alleviates the problem when the
document is split by the framework, since the next start tag of a record is easy to find
by simply scanning from the start of the split, just like TextInputFormat finds newline
boundaries.

212 | Chapter7: MapReduce Typesand Formats

Hadoop comes with a class for this purpose called StreamXmlRecordReader (which is in
the org.apache.hadoop.streaming package, although it can be used outside of Stream-
ing). You can use it by setting your input format to StreamInputFormat and setting the
stream.recordreader.class property to org.apache.hadoop.streaming.StreamXmlRecor
dReader. The reader is configured by setting job configuration properties to tell it the
patterns for the start and end tags (see the class documentation for details).!

To take an example, Wikipedia provides dumps of its content in XML form, which are
appropriate for processing in parallel using MapReduce using this approach. The data
is contained in one large XML wrapper document, which contains a series of elements,
such as page elements that contain a page’s content and associated metadata. Using
StreamXmlRecordReader, the page elements can be interpreted as records for processing
by a mapper.

Binary Input

Hadoop MapReduce is not just restricted to processing textual data—it has support
for binary formats, too.

SequenceFilelnputFormat

Hadoop’s sequence file format stores sequences of binary key-value pairs. They are well
suited as a format for MapReduce data since they are splittable (they have sync points
so that readers can synchronize with record boundaries from an arbitrary point in the
file, such as the start of a split), they support compression as a part of the format, and
they can store arbitrary types using a variety of serialization frameworks. (These topics
are covered in “SequenceFile” on page 116.)

To use data from sequence files as the input to MapReduce, you use SequenceFileln
putFormat. The keys and values are determined by the sequence file, and you need to
make sure that your map input types correspond. For example, if your sequence file
has IntWritable keys and Text values, like the one created in Chapter 4, then the map
signature would be Mapper<IntWritable, Text, K, V>, where K and V are the types of
the map’s output keys and values.

B
o)

Although its name doesn’t give it away, SequenceFileInputFormat can
read MapFiles as well as sequence files. If it finds a directory where it
Wls' was expecting a sequence file, SequenceFileInputFormat assumes that it
" is reading a MapFile and uses its data file. This is why there is no
MapFileInputFormat class.

Il See Mahout’s XmlInputFormat (available from http://mahout.apache.org/) for an improved XML input format.

Input Formats | 213

http://mahout.apache.org/

SequenceFileAsTextInputFormat

SequenceFileAsTextInputFormat is a variant of SequenceFileInputFormat that converts
the sequence file’s keys and values to Text objects. The conversion is performed by
calling toString() on the keys and values. This format makes sequence files suitable
input for Streaming.

SequenceFileAsBinarylnputFormat

SequenceFileAsBinaryInputFormat isavariant of SequenceFileInputFormat thatretrieves
the sequence file’s keys and values as opaque binary objects. They are encapsulated as
Byteshritable objects, and the application is free to interpret the underlying byte array
as it pleases. Combined with SequenceFile.Reader’s appendRaw() method, this provides
a way to use any binary data types with MapReduce (packaged as a sequence file),
although plugging into Hadoop’s serialization mechanism is normally a cleaner alter-
native (see “Serialization Frameworks” on page 101).

Multiple Inputs

Although the input to a MapReduce job may consist of multiple input files (constructed
by a combination of file globs, filters, and plain paths), all of the input is interpreted
by a single InputFormat and a single Mapper. What often happens, however, is that over
time, the data format evolves, so you have to write your mapper to cope with all of your
legacy formats. Or, you have data sources that provide the same type of data but in
different formats. This arises in the case of performing joins of different datasets; see
“Reduce-Side Joins” on page 249. For instance, one might be tab-separated plain text,
the other a binary sequence file. Even if they are in the same format, they may have
different representations and, therefore, need to be parsed differently.

These cases are handled elegantly by using the MultipleInputs class, which allows you
to specify the InputFormat and Mapper to use on a per-path basis. For example, if we
had weather data from the UK Met Office# that we wanted to combine with the NCDC
data for our maximum temperature analysis, then we might set up the input as follows:

MultipleInputs.addInputPath(conf, ncdcInputPath,
TextInputFormat.class, MaxTemperatureMapper.class)

MultipleInputs.addInputPath(conf, metOfficeInputPath,
TextInputFormat.class, MetOfficeMaxTemperatureMapper.class);

#Met Office data is generally available only to the research and academic community. However, there is a
small amount of monthly weather station data available at http://'www.metoffice.gov.uk/climate/uk/
stationdatal.

214 | Chapter7: MapReduce Typesand Formats

http://www.metoffice.gov.uk/climate/uk/stationdata/
http://www.metoffice.gov.uk/climate/uk/stationdata/

This code replaces the usual calls to FileInputFormat.addInputPath() and conf.setMap
perClass(). Both Met Office and NCDC data is text-based, so we use TextInputFor
mat for each. But the line format of the two data sources is different, so we use two
different mappers. The MaxTemperatureMapper reads NCDC input data and extracts the
year and temperature fields. The MetOfficeMaxTemperatureMapper reads Met Office in-
put data and extracts the year and temperature fields. The important thing is that the
map outputs have the same types, since the reducers (which are all of the same type)
see the aggregated map outputs and are not aware of the different mappers used to
produce them.

TheMultipleInputs class hasan overloaded version of addInputPath() that doesn’t take
a mapper:

public static void addInputPath(JobConf conf, Path path,
Class<? extends InputFormat> inputFormatClass)

This is useful when you only have one mapper (set using the JobConf’s setMapper
Class() method) but multiple input formats.

Database Input (and Output)

DBInputFormat is an input format for reading data from a relational database, using
JDBC. Because it doesn’t have any sharding capabilities, you need to be careful not to
overwhelm the database you are reading from by running too many mappers. For this
reason, it is best used for loading relatively small datasets, perhaps for joining with
larger datasets from HDFS, using MultipleInputs. The corresponding output format is
DBOutputFormat, which is useful for dumping job outputs (of modest size) into a
database.”

For an alternative way of moving data between relational databases and HDFS, consider
using Sqoop, which is described in Chapter 15.

HBase’s TableInputFormat is designed to allow a MapReduce program to operate on
data stored in an HBase table. TableOutputFormat is for writing MapReduce outputs
into an HBase table.

Output Formats

Hadoop has output data formats that correspond to the input formats covered in the
previous section. The OutputFormat class hierarchy appears in Figure 7-4.

* Instructions for how to use these formats are provided in “Database Access with Hadoop,” http://www
.cloudera.com/blog/2009/03/06/database-access-with-hadoop/, by Aaron Kimball.

Output Formats | 215

http://www.cloudera.com/blog/2009/03/06/database-access-with-hadoop/
http://www.cloudera.com/blog/2009/03/06/database-access-with-hadoop/

TextOutputFormat<K, V>

cnterface» FileOutputFormat SequenceFile SequenceFileAsBi
Q.. quenceFileAsBinary
D%”Jﬂﬁ"gﬂ}ﬂgﬁaﬁd <]_ OutputFormat<K, V> OutputFormat

MapFileQutputFormat

MultipleQutputFormat MultipleTextOutputFormat
<K, V> <K, V>

E MultipleSequencefile
E OutputFormat<K, V>

NullOutputFormat
<K V>

DBOutputFormat<K, V>

FilterOutputFormat

V> < LazyOutputFormat<K, V>

Figure 7-4. OutputFormat class hierarchy

Text Output

The default output format, TextOutputFormat, writes records as lines of text. Its keys
and values may be of any type, since TextOutputFormat turns them to strings by calling
toString() on them. Each key-value pair is separated by a tab character, although that
may be changed using the mapred. textoutputformat.separator property. The counter-
part to TextOutputFormat for reading in this case is KeyValueTextInputFormat, since it
breaks lines into key-value pairs based on a configurable separator (see “KeyValue-
TextInputFormat” on page 211).

You can suppress the key or the value (or both, making this output format equivalent
to NullOutputFormat, which emits nothing) from the output using a NullWritable type.
This also causes no separator to be written, which makes the output suitable for reading
in using TextInputFormat.

Binary Output

SequenceFileQutputFormat

As the name indicates, SequenceFileOutputFormat writes sequence files for its output.
This is a good choice of output if it forms the input to a further MapReduce job, since

216 | Chapter7: MapReduce Types and Formats

it is compact and is readily compressed. Compression is controlled via the static
methods on SequenceFileOutputFormat, as described in “Using Compression in Map-
Reduce” on page 84. For an example of how to use SequenceFileOutputFormat, see
“Sorting” on page 232.

SequenceFileAsBinaryOutputFormat

SequenceFileAsBinaryOutputFormat is the counterpart to SequenceFileAsBinaryInput
Format, and it writes keys and values in raw binary format into a SequenceFile container.

MapFileQutputFormat

MapFileOutputFormat writes MapFiles as output. The keys in a MapFile must be added
in order, so you need to ensure that your reducers emit keys in sorted order.

W
og The reduce input keys are guaranteed to be sorted, but the output keys
are under the control of the reduce function, and there is nothing in the
98 general MapReduce contract that states that the reduce output keys have
" to be ordered in any way. The extra constraint of sorted reduce output

keys is just needed for MapFileOutputFormat.

Multiple Outputs

FileOutputFormat and its subclasses generate a set of files in the output directory. There
is one file per reducer, and files are named by the partition number: part-00000,
part-00001, etc. There is sometimes a need to have more control over the naming of
the files or to produce multiple files per reducer. MapReduce comes with two libraries
to help you do this: MultipleOutputFormat and MultipleOutputs.

An example: Partitioning data

Consider the problem of partitioning the weather dataset by weather station. We would
like to run a job whose output is a file per station, with each file containing all the
records for that station.

One way of doing this is to have a reducer for each weather station. To arrange this,
we need to do two things. First, write a partitioner that puts records from the same
weather station into the same partition. Second, set the number of reducers on the job
to be the number of weather stations. The partitioner would look like this:

public class StationPartitioner implements Partitioner<LongWritable, Text> {
private NcdcRecordParser parser = new NcdcRecordParser();

@verride

public int getPartition(LongWritable key, Text value, int numPartitions) {
parser.parse(value);
return getPartition(parser.getStationId());

Output Formats | 217

}

private int getPartition(String stationId) {

-

@0verride
public void configure(JobConf conf) { }
}

The getPartition(String) method, whose implementation is not shown, turns the
station ID into a partition index. To do this, it needs a list of all the station IDs and
then just returns the index of the station ID in the list.

There are two drawbacks to this approach. The first is that since the number of parti-
tions needs to be known before the job is run, so does the number of weather stations.
Although the NCDC provides metadata about its stations, there is no guarantee that
the IDs encountered in the data match those in the metadata. A station that appears in
the metadata but not in the data wastes a reducer slot. Worse, a station that appears
in the data but not in the metadata doesn’t get a reducer slot—it has to be thrown away.
One way of mitigating this problem would be to write a job to extract the unique station
IDs, but it’s a shame that we need an extra job to do this.

The second drawback is more subtle. It is generally a bad idea to allow the number of
partitions to be rigidly fixed by the application, since it can lead to small or uneven-
sized partitions. Having many reducers doing a small amount of work isn’t an efficient
way of organizing a job: it’s much better to get reducers to do more work and have
fewer of them, as the overhead in running a task is then reduced. Uneven-sized parti-
tions can be difficult to avoid, too. Different weather stations will have gathered a
widely varying amount of data: compare a station that opened one year ago to one that
has been gathering data for one century. If a few reduce tasks take significantly longer
than the others, they will dominate the job execution time and cause it to be longer
than it needs to be.

There are two special cases when it does make sense to allow the ap-
plication to set the number of partitions (or equivalently, the number
s of reducers):

Zero reducers
This is a vacuous case: there are no partitions, as the application
needs to run only map tasks.

One reducer
It can be convenient to run small jobs to combine the output of
previous jobs into a single file. This should only be attempted when
the amount of data is small enough to be processed comfortably
by one reducer.

218 | Chapter7: MapReduce Typesand Formats

It is much better to let the cluster drive the number of partitions for a job—the idea
being that the more cluster reduce slots are available the faster the job can complete.
This is why the default HashPartitioner works so well, as it works with any number of
partitions and ensures each partition has a good mix of keys leading to more even-sized
partitions.

If we go back to using HashPartitioner, each partition will contain multiple stations,
so to create a file per station, we need to arrange for each reducer to write multiple files,
which is where MultipleOutputFormat comes in.

MultipleOutputFormat

MultipleOutputFormat allows you to write data to multiple files whose names are de-
rived from the output keys and values. MultipleOutputFormat is an abstract class with
two concrete subclasses, MultipleTextOutputFormat and MultipleSequenceFileOutput
Format, which are the multiple file equivalents of TextOutputFormat and
SequenceFileOutputFormat. MultipleOutputFormat provides a few protected methods
that subclasses can override to control the output filename. In Example 7-5, we create
a subclass of MultipleTextOutputFormat to override the generateFileNameForKey
Value() method to return the station ID, which we extracted from the record value.

Example 7-5. Partitioning whole dataset into files named by the station ID using
MultipleOutputFormat

public class PartitionByStationUsingMultipleOutputFormat extends Configured
implements Tool {

static class StationMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

parser.parse(value);
output.collect(new Text(parser.getStationId()), value);
}
}

static class StationReducer extends MapReduceBase
implements Reducer<Text, Text, NullWritable, Text> {

@0verride
public void reduce(Text key, Iterator<Text> values,
OutputCollector<NullWritable, Text> output, Reporter reporter)
throws IOException {
while (values.hasNext()) {
output.collect(NullWritable.get(), values.next());

}

Output Formats | 219

}
}

static class StationNameMultipleTextOutputFormat
extends MultipleTextOutputFormat<NullWritable, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

protected String generateFileNameForKeyValue(NullWritable key, Text value,
String name) {
parser.parse(value);
return parser.getStationId();

}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setMapperClass(StationMapper.class);
conf.setMapOutputKeyClass(Text.class);
conf.setReducerClass(StationReducer.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputFormat(StationNameMultipleTextOutputFormat.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(
new PartitionByStationUsingMultipleOutputFormat(), args);
System.exit(exitCode);

}

StationMapper pulls the station ID from the record and uses it as the key. This causes
records from the same station to go into the same partition. StationReducer replaces
the key with a NullWritable so that when the final output is written using StationName
MultipleTextOutputFormat (which like TextOutputFormat drops NullWritable keys), it
consists solely of weather records (and not the station ID key).

The overall effect is to place all the records for one station in a file named by the station
ID. Here are a few lines of output after running the program over a subset of the total
dataset:

-Iw-r--r-- 3 root supergroup 2887145 2009-04-17 10:34 /output/010010-99999
-Iw-r--r-- 3 root supergroup 1395129 2009-04-17 10:33 /output/010050-99999
-Iw-r--r-- 3 root supergroup 2054455 2009-04-17 10:33 /output/010100-99999
-Iw-r--r-- 3 root supergroup 1422448 2009-04-17 10:34 /output/010280-99999
-Iw-r--r-- 3 root supergroup 1419378 2009-04-17 10:34 /output/010550-99999

220 | Chapter7: MapReduce Typesand Formats

-Iw-r--r-- 3 root supergroup 1384421 2009-04-17 10:33 /output/010980-99999
-Iw-r--r-- 3 root supergroup 1480077 2009-04-17 10:33 /output/011060-99999
-Iw-r--r-- 3 root supergroup 1400448 2009-04-17 10:33 /output/012030-99999
-Iw-r--r-- 3 root supergroup 307141 2009-04-17 10:34 /output/012350-99999
-rw-r--r-- 3 root supergroup 1433994 2009-04-17 10:33 /output/012620-99999

The filename returned by generateFileNameForKeyValue() is actually a path that is
interpreted relative to the output directory. It’s possible to create subdirectories of
arbitrary depth. For example, the following modification partitions the data by station
and year so that each year’s data is contained in a directory named by the station ID:
protected String generateFileNameForKeyValue(NullWritable key, Text value,
String name) {
parser.parse(value);
return parser.getStationId() + "/" + parser.getYear();

}

MultipleOutputFormat has more features that are not discussed here, such as the ability
to copy the input directory structure and file naming for a map-only job. Please consult
the Java documentation for details.

MultipleOutputs

There’s a second library in Hadoop for generating multiple outputs, provided by the
MultipleOutputs class. Unlike MultipleQutputFormat, MultipleOutputs can emit differ-
ent types for each output. On the other hand, there is less control over the naming of
outputs. The program in Example 7-6 shows how to use MultipleOutputs to partition
the dataset by station.

Example 7-6. Partitioning whole dataset into files named by the station ID using MultipleOutputs

public class PartitionByStationUsingMultipleOutputs extends Configured
implements Tool {

static class StationMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

parser.parse(value);
output.collect(new Text(parser.getStationId()), value);
}
}

static class MultipleOutputsReducer extends MapReduceBase
implements Reducer<Text, Text, NullWritable, Text> {

private MultipleOutputs multipleOutputs;

Output Formats | 221

@0verride
public void configure(JobConf conf) {
multipleOutputs = new MultipleOutputs(conf);

}

public void reduce(Text key, Iterator<Text> values,
OutputCollector<NullWritable, Text> output, Reporter reporter)
throws IOException {

OutputCollector collector = multipleOutputs.getCollector(“station”,
key.toString().replace("-", ""), reporter);
while (values.hasNext()) {
collector.collect(NullWritable.get(), values.next());
}
}

@0verride
public void close() throws IOException {
multipleOutputs.close();
}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setMapperClass(StationMapper.class);
conf.setMapOutputKeyClass(Text.class);
conf.setReducerClass(MultipleOutputsReducer.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputFormat(NullOutputFormat.class); // suppress empty part file

MultipleOutputs.addMultiNamedOutput(conf, "station", TextOutputFormat.class,
NullWritable.class, Text.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new PartitionByStationUsingMultipleOutputs(),

args);

System.exit(exitCode);

}

}

222 | Chapter7: MapReduce Typesand Formats

The MultipleOutputs class is used to generate additional outputs to the usual output.
Outputs are given names and may be written to a single file (called single named out-
put) or to multiple files (called multinamed output). In this case, we want multiple files,
one for each station, so we use a multi named output, which we initialize in the driver
by calling the addMultiNamedOutput() method of MultipleOutputs to specify the name
of the output (here "station"), the output format, and the output types. In addition,
we set the regular output format to be NullOutputFormat in order to suppress the usual
output.

In the reducer, where we generate the output, we construct an instance of MultipleOut
puts in the configure() method and assign it to an instance variable. We use the
MultipleOutputs instance in the reduce() method to retrieve an OutputCollector for the
multinamed output. The getCollector() method takes the name of the output
("station" again) as well as a string identifying the part within the multinamed output.
Here we use the station identifier, with the “-” separator in the key removed, since only
alphanumeric characters are allowed by MultipleOutputs.

The overall effect is to produce output files with the naming scheme station <station
identifier>-r-<part _number>. The r appears in the name because the output is pro-
duced by the reducer, and the part number is appended to be sure that there are no
collisions resulting from different partitions (reducers) writing output for the same
station. Since we partition by station, it cannot happen in this case (but it can in the
general case).

In one run, the first few output files were named as follows (other columns from the
directory listing have been dropped):

/output/station_01001099999-r-00027
/output/station_01005099999-r-00013
/output/station_01010099999-r-00015
/output/station_01028099999-r-00014
/output/station_01055099999-r-00000
/output/station_01098099999-r-00011
/output/station_01106099999-r-00025
/output/station_01203099999-r-00029
/output/station_01235099999-r-00018
/output/station_01262099999-r-00004

Output Formats | 223

What's the Difference Between MultipleOutputFormat and
MultipleOutputs?

It’s unfortunate (although not necessarily unusual in an open source project) to have
two libraries that do almost the same thing, since it is confusing for users. To help you
choose which to use, here is a brief comparison:

Feature MultipleOutputFormat ~ MultipleOutputs
Complete control over names of files and directories ~ Yes No
Different key and value types for different outputs No Yes
Use from map and reduce in the same job No Yes
Multiple outputs per record No Yes
Use with any OutputFormat No, need to subclass Yes

So in summary, MultipleOutputs is more fully featured, but MultipleOutputFormat has
more control over the output directory structure and file naming.

In the new MapReduce API, the situation is improved, since there is only MultipleOut
puts, which supports all the features of the two multiple output classes in the old APL

Lazy Output

FileOutputFormat subclasses will create output (part-nnnnn) files, even if they are empty.
Some applications prefer that empty files not be created, which is where LazyOutput
Format helps. It is a wrapper output format that ensures that the output file is created
only when the first record is emitted for a given partition. To use it, call its setOutput
FormatClass() method with the JobConf and the underlying output format.

Streaming and Pipes support a -lazyOutput option to enable LazyOutputFormat.

Database Output

The output formats for writing to relational databases and to HBase are mentioned in
“Database Input (and Output)” on page 215.

t LazyOutputFormat is available from release 0.21.0 of Hadoop.

224 | Chapter7: MapReduce Typesand Formats

CHAPTER 8
MapReduce Features

This chapter looks at some of the more advanced features of MapReduce, including
counters and sorting and joining datasets.

Counters

There are often things you would like to know about the data you are analyzing but
that are peripheral to the analysis you are performing. For example, if you were counting
invalid records and discovered that the proportion of invalid records in the whole da-
taset was very high, you might be prompted to check why so many records were being
marked as invalid—perhaps there is a bug in the part of the program that detects invalid
records? Or if the data were of poor quality and genuinely did have very many invalid
records, after discovering this, you might decide to increase the size of the dataset so
that the number of good records was large enough for meaningful analysis.

Counters are a useful channel for gathering statistics about the job: for quality control
or for application level-statistics. They are also useful for problem diagnosis. If you are
tempted to put a log message into your map or reduce task, then it is often better to
see whether you can use a counter instead to record that a particular condition occurred.
In addition to counter values being much easier to retrieve than log output for large
distributed jobs, you get a record of the number of times that condition occurred, which
is more work to obtain from a set of logfiles.

Built-in Counters

Hadoop maintains some built-in counters for every job (Table 8-1), which report var-
ious metrics for your job. For example, there are counters for the number of bytes and
records processed, which allows you to confirm that the expected amount of input was
consumed and the expected amount of output was produced.

225

Table 8-1. Built-in counters

Group

Map-Reduce
Framework

File Systems

Counter

Map input records

Map skipped records

Map input bytes

Map output records

Map output bytes

Combine input records

Combine output
records

Reduce input groups

Reduce input records

Reduce output records

Reduce skipped groups

Reduce skipped records
Spilled records

Filesystem bytes read

Filesystem bytes written

Description

The number of input records consumed by all the maps in the job. Incremented
every time a record is read from a RecordReader and passed to the map’s
map () method by the framework.

The number of input records skipped by all the maps in the job. See “Skipping
Bad Records” on page 185.

The number of bytes of uncompressed input consumed by all the maps in the
job.Incremented every timearecordisread fromaRecordReader and passed
to the map’s map () method by the framework.

The number of map output records produced by all the maps in the job.
Incremented every time the collect () method is called on a map’s
OutputCollector.

The number of bytes of uncompressed output produced by all the maps in the
job. Incremented every time the collect () method is called on a map’s
OutputCollector.

The number of input records consumed by all the combiners (if any) in the job.
Incremented every time a valueis read from the combiner’s iterator over values.
Note that this count is the number of values consumed by the combiner, not the
number of distinct key groups (which would not be a useful metric, since there
is not necessarily one group per key for a combiner; see “Combiner Func-
tions” on page 30, and also “Shuffle and Sort” on page 177).

The number of output records produced by all the combiners (if any) in the job.
Incremented every time the collect () method is called on a combiner’s
OutputCollector.

The number of distinct key groups consumed by all the reducers in the job.
Incremented every time the reducer’s reduce () method is called by the
framework.

Thenumberofinputrecordsconsumedbyallthereducersinthejob. Incremented
every time a value is read from the reducer’s iterator over values. If reducers
consume all of their inputs, this count should be the same as the count for Map
output records.

The number of reduce output records produced by all the maps in the job.
Incremented every time the collect () method is called on a reducer’s
OutputCollector.

The number of distinct key groups skipped by all the reducers in the job. See
“Skipping Bad Records” on page 185.

The number of input records skipped by all the reducers in the job.
The number of records spilled to disk in all map and reduce tasks in the job.

The number of bytes read by each filesystem by map and reduce tasks. There is
a counter for each filesystem: Filesystem may be Local, HDFS, S3, KFS, etc.

The number of bytes written by each filesystem by map and reduce tasks.

226 | Chapter8: MapReduce Features

Group Counter Description

Job Counters Launched map tasks The number of map tasks that were launched. Includes tasks that were started
speculatively.

Launched reduce tasks The number of reduce tasks that were launched. Includes tasks that were started
speculatively.

Failed map tasks The number of map tasks that failed. See “Task Failure” on page 173 for potential
causes.

Failed reduce tasks The number of reduce tasks that failed.

Data-local map tasks The number of map tasks that ran on the same node as their input data.

Rack-local map tasks The number of map tasks that ran on a node in the same rack as their input data.

Other local map tasks The number of map tasks that ran on a node in a different rack to their input

data. Inter-rack bandwidth is scarce, and Hadoop tries to place map tasks close
to their input data, so this count should be low.

Counters are maintained by the task with which they are associated, and periodically
sent to the tasktracker and then to the jobtracker, so they can be globally aggregated.
(This is described in “Progress and Status Updates” on page 170.) The built-in Job
Counters are actually maintained by the jobtracker, so they don’t need to be sent across
the network, unlike all other counters, including user-defined ones.

A task’s counters are sent in full every time, rather than sending the counts since the
last transmission, since this guards against errors due to lost messages. Furthermore,
during a job run, counters may go down if a task fails. Counter values are definitive
only once a job has successfully completed.

User-Defined Java Counters

MapReduce allows user code to define a set of counters, which are then incremented
as desired in the mapper or reducer. Counters are defined by a Java enum, which serves
to group related counters. A job may define an arbitrary number of enums, each with
an arbitrary number of fields. The name of the enum is the group name, and the enum’s
fields are the counter names. Counters are global: the MapReduce framework aggre-
gates them across all maps and reduces to produce a grand total at the end of the job.

We created some counters in Chapter 5 for counting malformed records in the weather
dataset. The program in Example 8-1 extends that example to count the number of
missing records and the distribution of temperature quality codes.

Counters | 227

Example 8-1. Application to run the maximum temperature job, including counting missing and
malformed fields and quality codes

public class MaxTemperatureWithCounters extends Configured implements Tool {

enum Temperature {
MISSING,
MALFORMED

}

static class MaxTemperatureMapperWithCounters extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {

private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);

if (parser.isValidTemperature()) {
int airTemperature = parser.getAirTemperature();
output.collect(new Text(parser.getYear()),

new IntWritable(airTemperature));

} else if (parser.isMalformedTemperature()) {
System.err.println("Ignoring possibly corrupt input:
reporter.incrCounter(Temperature.MALFORMED, 1);

} else if (parser.isMissingTemperature()) {
reporter.incrCounter (Temperature.MISSING, 1);

}

+ value);

// dynamic counter
reporter.incrCounter("TemperatureQuality”, parser.getQuality(), 1);

}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(MaxTemperatureMapperWithCounters.class);
conf.setCombinerClass(MaxTemperatureReducer.class);
conf.setReducerClass(MaxTemperatureReducer.class);

JobClient.runJob(conf);
return 0;

228 | Chapter8: MapReduce Features

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureWithCounters(), args);
System.exit(exitCode);

}

The best way to see what this program does is run it over the complete dataset:

% hadoop jar job.jar MaxTemperatureWithCounters input/ncdc/all output-counters
When the job has successfully completed, it prints out the counters at the end (this is
done by JobClient’s runJob() method). Here are the ones we are interested in:

09/04/20 06:33:36 INFO mapred.JobClient: TemperatureQuality

09/04/20 06:33:36 INFO mapred.JobClient: 2=1246032

09/04/20 06:33:36 INFO mapred.JobClient: 1=973422173

09/04/20 06:33:36 INFO mapred.JobClient: 0=1

09/04/20 06:33:36 INFO mapred.JobClient: 6=40066

09/04/20 06:33:36 INFO mapred.JobClient: 5=158291879

09/04/20 06:33:36 INFO mapred.JobClient: 4=10764500

09/04/20 06:33:36 INFO mapred.JobClient: 9=66136858

09/04/20 06:33:36 INFO mapred.JobClient: Air Temperature Records
09/04/20 06:33:36 INFO mapred.JobClient: Malformed=3

09/04/20 06:33:36 INFO mapred.JobClient: Missing=66136856

Dynamic counters

The code makes use of a dynamic counter—one that isn’t defined by a Java enum.
Since a Java enum’s fields are defined at compile time, you can’t create new counters
on the fly using enums. Here we want to count the distribution of temperature quality
codes, and though the format specification defines the values that it can take, it is more
convenient to use a dynamic counter to emit the values that it actually takes. The
method we use on the Reporter object takes a group and counter name using String
names:

public void incrCounter(String group, String counter, long amount)

The two ways of creating and accessing counters—using enums and using Strings—
are actually equivalent since Hadoop turns enums into Strings to send counters over
RPC. Enums are slightly easier to work with, provide type safety, and are suitable for
most jobs. For the odd occasion when you need to create counters dynamically, you
can use the String interface.

Readable counter names

By default, a counter’s name is the enum’s fully qualified Java classname. These names
are not very readable when they appear on the web UI, or in the console, so Hadoop
provides a way to change the display names using resource bundles. We’ve done this
here, so we see “Air Temperature Records” instead of “TemperaturesMISSING.” For
dynamic counters, the group and counter names are used for the display names, so this
is not normally an issue.

Counters | 229

The recipe to provide readable names is as follows. Create a properties file named after
the enum, using an underscore as a separator for nested classes. The properties file
should be in the same directory as the top-level class containing the enum. The file is
named MaxTemperatureWithCounters_Temperature.properties for the counters in Ex-
ample 8-1.

The properties file should contain a single property named CounterGroupName, whose
value is the display name for the whole group. Then each field in the enum should have
a corresponding property defined for it, whose name is the name of the field suffixed
with .name, and whose value is the display name for the counter. Here are the contents
of MaxTemperatureWithCounters_Temperature.properties:

CounterGroupName=Air Temperature Records

MISSING.name=Missing
MALFORMED. name=Malformed

Hadoop uses the standard Java localization mechanisms to load the correct properties
for the locale you are running in, so, for example, you can create a Chinese version of
the properties in a file named MaxTemperatureWithCounters_Tempera-
ture_zh_CN.properties, and they will be used when running in the zh_CN locale. Refer
to the documentation for java.util.PropertyResourceBundle for more information.

Retrieving counters

In addition to being available via the web Ul and the command line (using hadoop job
-counter), you can retrieve counter values using the Java APIL. You can do this while
the job is running, although it is more usual to get counters at the end of a job run,
when they are stable. Example 8-2 shows a program that calculates the proportion of
records that have missing temperature fields.

Example 8-2. Application to calculate the proportion of records with missing temperature fields

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class MissingTemperatureFields extends Configured implements Tool {

@0verride
public int run(String[] args) throws Exception {
if (args.length != 1) {
JobBuilder.printUsage(this, "<job ID>");
return -1;
}
JobClient jobClient = new JobClient(new JobConf(getConf()));
String jobID = args[o];
RunningJob job = jobClient.getJob(JobID.forName(jobID));
if (job == null) {
System.err.printf("No job with ID %s found.\n", jobID);
return -1;

}

230 | Chapter8: MapReduce Features

if (!job.isComplete()) {
System.err.printf("Job %s is not complete.\n", jobID);
return -1;

}

Counters counters = job.getCounters();
long missing = counters.getCounter(
MaxTemperatureWithCounters.Temperature.MISSING);

long total = counters.findCounter("org.apache.hadoop.mapred.Task$Counter"”,
"MAP_INPUT_RECORDS").getCounter();

System.out.printf("Records with missing temperature fields: %.2f%%\n",
100.0 * missing / total);
return 0;

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MissingTemperatureFields(), args);
System.exit(exitCode);

}

First we retrieve a RunningJob object from a JobClient, by calling the getJob() method
with the job ID. We check whether there is actually a job with the given ID. There may
not be, either because the ID was incorrectly specified or because the jobtracker no
longer has a reference to the job (only the last 100 jobs are kept in memory, controlled
by mapred.jobtracker.completeuserjobs.maximum, and all are cleared out if the job-
tracker is restarted).

After confirming that the job has completed, we call the RunningJob’s getCounters()
method, which returns a Counters object, encapsulating all the counters for a job. The
Counters class provides various methods for finding the names and values of counters.
We use the getCounter () method, which takes an enum to find the number of records
that had a missing temperature field.

There are also findCounter() methods, all of which return a Counter object. We use
this form to retrieve the built-in counter for map input records. To do this, we refer to
the counter by its group name—the fully qualified Java classname for the enum—and
counter name (both strings).

Finally, we print the proportion of records that had a missing temperature field. Here’s
what we get for the whole weather dataset:

% hadoop jar job.jar MissingTemperatureFields job_200904200610 0003
Records with missing temperature fields: 5.47%

* The built-in counter’s enums are not currently a part of the public API, so this is the only way to retrieve
them. From release 0.21.0, counters are available via the JobCounter and TaskCounter enums in the
org.apache.hadoop.mapreduce package.

Counters | 231

User-Defined Streaming Counters

A Streaming MapReduce program can increment counters by sending a specially for-
matted line to the standard error stream, which is co-opted as a control channel in this
case. The line must have the following format:

reporter:counter:group,counter,amount
This snippet in Python shows how to increment the “Missing” counter in the “Tem-
perature” group by one:

sys.stderr.write("reporter:counter:Temperature,Missing,1\n")

In a similar way, a status message may be sent with a line formatted like this:

reporter:status:message

Sorting

The ability to sort data is at the heart of MapReduce. Even if your application isn’t
concerned with sorting per se, it may be able to use the sorting stage that MapReduce
provides to organize its data. In this section, we will examine different ways of sorting
datasets and how you can control the sort order in MapReduce.

Preparation

We are going to sort the weather dataset by temperature. Storing temperatures as
Text objects doesn’t work for sorting purposes, since signed integers don’t sort
lexicographically. Instead, we are going to store the data using sequence files whose
IntWritable keys represent the temperature (and sort correctly), and whose Text values
are the lines of data.

The MapReduce job in Example 8-3 is a map-only job that also filters the input to
remove records that don’t have a valid temperature reading. Each map creates a single
block-compressed sequence file as output. It is invoked with the following command:

% hadoop jar job.jar SortDataPreprocessor input/ncdc/all input/ncdc/all-seq

Example 8-3. A MapReduce program for transforming the weather data into SequenceFile format

public class SortDataPreprocessor extends Configured implements Tool {

static class CleanerMapper extends MapReduceBase
implements Mapper<LongWritable, Text, IntWritable, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

1 One commonly used workaround for this problem—particularly in text-based Streaming applications—is
to add an offset to eliminate all negative numbers, and left pad with zeros, so all numbers are the same number
of characters. However, see “Streaming” on page 245 for another approach.

232 | Chapter8: MapReduce Features

public void map(LongWritable key, Text value,
OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException {

parser.parse(value);
if (parser.isValidTemperature()) {
output.collect(new IntWritable(parser.getAirTemperature()), value);
}
}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setMapperClass(CleanerMapper.class);
conf.setOutputKeyClass(IntWritable.class);
conf.setOutputValueClass(Text.class);
conf.setNumReduceTasks(0);
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setCompressOutput(conf, true);
SequenceFileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);
SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);

JobClient.runJob(conf);
return 0;

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortDataPreprocessor(), args);
System.exit(exitCode);

Partial Sort

In “The Default MapReduce Job” on page 192, we saw that, by default, MapReduce
will sort input records by their keys. Example 8-4 is a variation for sorting sequence
files with IntWritable keys.

Example 8-4. A MapReduce program for sorting a SequenceFile with IntWritable keys using the
default HashPartitioner

public class SortByTemperatureUsingHashPartitioner extends Configured
implements Tool {

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

Sorting | 233

}

conf.setInputFormat(SequenceFileInputFormat.class);

conf.setOutputKeyClass(IntWritable.class);

conf.setOutputFormat(SequenceFileOutputFormat.class);

SequenceFileOutputFormat.setCompressOutput(conf, true);

SequenceFileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);

SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortByTemperatureUsingHashPartitioner(),
args);
System.exit(exitCode);

Controlling Sort Order
The sort order for keys is controlled by a RawComparator, which is found as follows:

1. If the property mapred.output.key.comparator.class is set, an instance of that class
is used. (The setOutputKeyComparatorClass() method on JobConf is a convenient
way to set this property.)

2. Otherwise, keys must be a subclass of WritableComparable, and the registered
comparator for the key class is used.

3. If there is no registered comparator, then a RawComparator is used that deserializes
the byte streams being compared into objects and delegates to the WritableCompar
able’s compareTo() method.

These rules reinforce why it’s important to register optimized versions of RawCompara
tors for your own custom Writable classes (which is covered in “Implementing a Raw-
Comparator for speed” on page 99), and also that it’s straightforward to override the
sort order by setting your own comparator (we do this in “Secondary
Sort” on page 241).

Suppose we run this program using 30 reducers:¥

% hadoop jar job.jar SortByTemperatureUsingHashPartitioner \
-D mapred.reduce.tasks=30 input/ncdc/all-seq output-hashsort

1 See “Sorting and merging SequenceFiles” on page 122 for how to do the same thing using the sort program
example that comes with Hadoop.

234 | Chapter8: MapReduce Features

This command produces 30 output files, each of which is sorted. However, there is no
easy way to combine the files (by concatenation, for example, in the case of plain-text
files) to produce a globally sorted file. For many applications, this doesn’t matter. For
example, having a partially sorted set of files is fine if you want to do lookups.

An application: Partitioned MapFile lookups

To perform lookups by key, for instance, having multiple files works well. If we change
the output format to be a MapFileOutputFormat, as shown in Example 8-5, then the
output is 30 map files, which we can perform lookups against.

Example 8-5. A MapReduce program for sorting a SequenceFile and producing MapFiles as output

public class SortByTemperatureToMapFile extends Configured implements Tool {

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setInputFormat(SequenceFileInputFormat.class);

conf.setOutputKeyClass(InthWritable.class);

conf.setOutputFormat(MapFileOutputFormat.class);

SequenceFileOutputFormat.setCompressOutput(conf, true);

SequenceFileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);

SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new SortByTemperatureToMapFile(), args);
System.exit(exitCode);

}

MapFileOutputFormat provides a pair of convenience static methods for performing
lookups against MapReduce output; their use is shown in Example 8-6.

Example 8-6. Retrieve the first entry with a given key from a collection of MapFiles

public class LookupRecordByTemperature extends Configured implements Tool {

@0verride
public int run(String[] args) throws Exception {
if (args.length != 2) {
JobBuilder.printUsage(this, "<path> <key>");
return -1;

}

Sorting | 235

Path path = new Path(args[o]);
IntWritable key = new IntWritable(Integer.parseInt(args[1]));
FileSystem fs = path.getFileSystem(getConf());

Reader[] readers = MapFileOutputFormat.getReaders(fs, path, getConf());
Partitioner<IntWritable, Text> partitioner =
new HashPartitioner<IntWritable, Text>();
Text val = new Text();
Writable entry =
MapFileOutputFormat.getEntry(readers, partitioner, key, val);
if (entry == null) {
System.err.println("Key not found:
return -1;
}
NcdcRecordParser parser = new NcdcRecordParser();
parser.parse(val.toString());
System.out.printf("%s\t%s\n", parser.getStationId(), parser.getYear());
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new LookupRecordByTemperature(), args);
System.exit(exitCode);
}
}

+ key);

The getReaders() method opens a MapFile.Reader for each of the output files created
by the MapReduce job. The getEntry() method then uses the partitioner to choose the
reader for the key and finds the value for that key by calling Reader’s get() method. If
getEntry() returns null, it means no matching key was found. Otherwise, it returns
the value, which we translate into a station ID and year.

To see this in action, let’s find the first entry for a temperature of —10°C (remember
that temperatures are stored as integers representing tenths of a degree, which is why
we ask for a temperature of -100):

% hadoop jar job.jar LookupRecordByTemperature output-hashmapsort -100
357460-99999 1956

We can also use the readers directly, in order to get all the records for a given key. The
array of readers that is returned is ordered by partition, so that the reader for a given
key may be found using the same partitioner that was used in the MapReduce job:

Reader reader = readers[partitioner.getPartition(key, val, readers.length)];

Then once we have the reader, we get the first key using MapFile’s get() method, then
repeatedly call next() to retrieve the next key and value, until the key changes. A pro-
gram to do this is shown in Example 8-7.

Example 8-7. Retrieve all entries with a given key from a collection of MapFiles

public class LookupRecordsByTemperature extends Configured implements Tool {

@0verride

236 | Chapter8: MapReduce Features

public int run(String[] args) throws Exception {
if (args.length != 2) {
JobBuilder.printUsage(this, "<path> <key>");
return -1;
}
Path path = new Path(args[0]);
IntWritable key = new IntWritable(Integer.parseInt(args[1]));
FileSystem fs = path.getFileSystem(getConf());

Reader[] readers = MapFileOutputFormat.getReaders(fs, path, getConf());
Partitioner<IntWritable, Text> partitioner =

new HashPartitioner<IntWritable, Text>();
Text val = new Text();

Reader reader = readers[partitioner.getPartition(key, val, readers.length)];
Writable entry = reader.get(key, val);
if (entry == null) {
System.err.println("Key not found:
return -1;
}
NcdcRecordParser parser = new NcdcRecordParser();
IntWritable nextKey = new IntWritable();
do {
parser.parse(val.toString());
System.out.printf("%s\t%s\n", parser.getStationId(), parser.getYear());
} while(reader.next(nextKey, val) &% key.equals(nextKey));
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new LookupRecordsByTemperature(), args);
System.exit(exitCode);
}
}

+ key);

And here is a sample run to retrieve all readings of —10°C and count them:

% hadoop jar job.jar LookupRecordsByTemperature output-hashmapsort -100 \
2> /dev/null | wc -1
1489272

Total Sort

How can you produce a globally sorted file using Hadoop? The naive answer is to use
a single partition.8 But this is incredibly inefficient for large files, since one machine
has to process all of the output, so you are throwing away the benefits of the parallel
architecture that MapReduce provides.

§A better answer is to use Pig (“Sorting Data” on page 359) or Hive (“Sorting and
Aggregating” on page 395), both of which can sort with a single command.

Sorting | 237

Instead, it is possible to produce a set of sorted files that, if concatenated, would form
a globally sorted file. The secret to doing this is to use a partitioner that respects the
total order of the output. For example, if we had four partitions, we could put keys for
temperatures less than —10°C in the first partition, those between —10°C and 0°C in the
second, those between 0°C and 10°C in the third, and those over 10°C in the fourth.

Although this approach works, you have to choose your partition sizes carefully to
ensure that they are fairly even so that job times aren’t dominated by a single reducer.
For the partitioning scheme just described, the relative sizes of the partitions are as
follows:

Temperature range <-=10°C [-10°C,0°0) [0°C,10°C) >=10°C
Proportion of records 11% 13% 17% 59%

These partitions are not very even. To construct more even partitions, we need to have
a better understanding of the temperature distribution for the whole dataset. It’s fairly
easy to write a MapReduce job to count the number of records that fall into a collection
of temperature buckets. For example, Figure 8-1 shows the distribution for buckets of
size 1°C, where each point on the plot corresponds to one bucket.

2e+07 Je+07 de+07
| 1 |
=]

Number of readings

1e+07

Oe+00
|

Temperature

Figure 8-1. Temperature distribution for the weather dataset

238 | Chapter8: MapReduce Features

While we could use this information to construct a very even set of partitions, the fact
that we needed to run a job that used the entire dataset to construct them is not ideal.
It’s possible to get a fairly even set of partitions, by sampling the key space. The idea
behind sampling is that you look at a small subset of the keys to approximate the key
distribution, which is then used to construct partitions. Luckily, we don’t have to write
the code to do this ourselves, as Hadoop comes with a selection of samplers.

The InputSampler class defines a nested Sampler interface whose implementations
return a sample of keys given an InputFormat and JobConf:

public interface Sampler<K,V> {
K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException;

This interface is not usually called directly by clients. Instead, the writePartition
File() static method on InputSampler is used, which creates a sequence file to store the
keys that define the partitions:

public static <K,V> void writePartitionFile(JobConf job,
Sampler<K,V> sampler) throws IOException

The sequence file is used by TotalOrderPartitioner to create partitions for the sort job.
Example 8-8 puts it all together.

Example 8-8. A MapReduce program for sorting a SequenceFile with IntWritable keys using the
TotalOrderPartitioner to globally sort the data

public class SortByTemperatureUsingTotalOrderPartitioner extends Configured
implements Tool {

@0verride
public int run(String[] args) throws Exception {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setInputFormat(SequenceFileInputFormat.class);

conf.setOutputKeyClass(IntWritable.class);

conf.setOutputFormat(SequenceFileOutputFormat.class);

SequenceFileOutputFormat.setCompressOutput(conf, true);

SequenceFileOutputFormat.setOutputCompressorClass(conf, GzipCodec.class);

SequenceFileOutputFormat.setOutputCompressionType(conf,
CompressionType.BLOCK);

conf.setPartitionerClass(TotalOrderPartitioner.class);

InputSampler.Sampler<IntWritable, Text> sampler =
new InputSampler.RandomSampler<IntWritable, Text>(0.1, 10000, 10);

Path input = FileInputFormat.getInputPaths(conf)[0];
input = input.makeQualified(input.getFileSystem(conf));

Path partitionFile = new Path(input, " partitions");

Sorting | 239

TotalOrderPartitioner.setPartitionFile(conf, partitionFile);
InputSampler.writePartitionFile(conf, sampler);

// Add to DistributedCache

URI partitionUri = new URI(partitionFile.toString() + "# partitions");
DistributedCache.addCacheFile(partitionUri, conf);
DistributedCache.createSymlink(conf);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(
new SortByTemperatureUsingTotalOrderPartitioner(), args);
System.exit(exitCode);

}

We use a RandomSampler, which chooses keys with a uniform probability—here, 0.1.
There are also parameters for the maximum number of samples to take and the maxi-
mum number of splits to sample (here, 10,000 and 10, respectively; these settings are
the defaults when InputSampler is run as an application), and the sampler stops when
the first of these limits is met. Samplers run on the client, making it important to limit
the number of splits that are downloaded, so the sampler runs quickly. In practice, the
time taken to run the sampler is a small fraction of the overall job time.

The partition file that InputSampler writes is called _partitions, which we have set to be
in the input directory (it will not be picked up as an input file since it starts with an
underscore). To share the partition file with the tasks running on the cluster, we add
it to the distributed cache (see “Distributed Cache” on page 253).

On one run, the sampler chose —5.6°C, 13.9°C, and 22.0°C as partition boundaries (for
four partitions), which translates into more even partition sizes than the earlier choice
of partitions:

Temperature range <=56°C [-5.6°C,13.9°C) [13.9°C,22.0°0) >=22.0°C
Proportion of records 29% 24% 23% 24%

Your input data determines the best sampler for you to use. For example, SplitSam
pler, which samples only the first n records in a split, is not so good for sorted datal
because it doesn’t select keys from throughout the split.

[l In some applications, it’s common for some of the input to already be sorted, or at least partially sorted. For
example, the weather dataset is ordered by time, which may introduce certain biases, making the
RandomSampler a safer choice

240 | Chapter8: MapReduce Features

On the other hand, IntervalSampler chooses keys at regular intervals through the split
and makes a better choice for sorted data. RandomSampler is a good general-purpose
sampler. If none of these suits your application (and remember that the point of sam-
pling is to produce partitions that are approximately equal in size), you can write your
own implementation of the Sampler interface.

One of the nice properties of InputSampler and TotalOrderPartitioner is that you are
free to choose the number of partitions. This choice is normally driven by the number
of reducer slots in your cluster (choose a number slightly fewer than the total, to allow
for failures). However, TotalOrderPartitioner will work only if the partition
boundaries are distinct: one problem with choosing a high number is that you may get
collisions if you have a small key space.

Here’s how we run it:

% hadoop jar job.jar SortByTemperatureUsingTotalOrderPartitioner \
-D mapred.reduce.tasks=30 input/ncdc/all-seq output-totalsort

The program produces 30 output partitions, each of which is internally sorted; in ad-
dition, for these partitions, all the keys in partition i are less than the keys in partition
i+ 1.

Secondary Sort

The MapReduce framework sorts the records by key before they reach the reducers.
For any particular key, however, the values are not sorted. The order that the values
appear is not even stable from one run to the next, since they come from different map
tasks, which may finish at different times from run to run. Generally speaking, most
MapReduce programs are written so as not to depend on the order that the values
appear to the reduce function. However, it is possible to impose an order on the values
by sorting and grouping the keys in a particular way.

To illustrate the idea, consider the MapReduce program for calculating the maximum
temperature for each year. If we arranged for the values (temperatures) to be sorted in
descending order, we wouldn’t have to iterate through them to find the maximum—
we could take the first for each year and ignore the rest. (This approach isn’t the most
efficient way to solve this particular problem, butitillustrates how secondary sort works
in general.)

To achieve this, we change our keys to be composite: a combination of year and
temperature. We want the sort order for keys to be by year (ascending) and then by
temperature (descending):

1900 35°C

1900 34°C
1900 34°C

1901 36°C
1901 35°C

Sorting | 241

If all we did was change the key, then this wouldn’t help since now records for the same
year would not (in general) go to the same reducer since they have different keys. For
example, (1900, 35°C) and (1900, 34°C) could go to different reducers. By setting a
partitioner to partition by the year part of the key, we can guarantee that records for
the same year go to the same reducer. This still isn’t enough to achieve our goal,
however. A partitioner ensures only that one reducer receives all the records for a year;
it doesn’t change the fact that the reducer groups by key within the partition:

Partition Group

1900 35°C |
1900 34°C
1900 34°C

190136 | I
190135°C

The final piece of the puzzle is the setting to control the grouping. If we group values
in the reducer by the year part of the key, then we will see all the records for the same

year in one reduce group. And since they are sorted by temperature in descending order,
the first is the maximum temperature:

Partition Group
1900 35C |

1900 34°C
1900 34°C

1901 36°C
1901 35°C

To summarize, there is a recipe here to get the effect of sorting by value:

* Make the key a composite of the natural key and the natural value.

* The key comparator should order by the composite key, that is, the natural key
and natural value.

* The partitioner and grouping comparator for the composite key should consider
only the natural key for partitioning and grouping.

Java code
Putting this all together results in the code in Example 8-9. This program uses the plain-

text input again.

Example 8-9. Application to find the maximum temperature by sorting temperatures in the key

public class MaxTemperatureUsingSecondarySort
extends Configured implements Tool {

static class MaxTemperatureMapper extends MapReduceBase

242 | Chapter8: MapReduce Features

implements Mapper<LongWritable, Text, IntPair, NullWritable> {
private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<IntPair, NullWritable> output, Reporter reporter)
throws IOException {

parser.parse(value);
if (parser.isValidTemperature()) {
output.collect(new IntPair(parser.getYearInt(),
+ parser.getAirTemperature()), NullWritable.get());
}
}
}

static class MaxTemperatureReducer extends MapReduceBase
implements Reducer<IntPair, NullWritable, IntPair, NullWritable> {

public void reduce(IntPair key, Iterator<NullWritable> values,
OutputCollector<IntPair, NullWritable> output, Reporter reporter)
throws IOException {

output.collect(key, NullWritable.get());

}
}

public static class FirstPartitioner
implements Partitioner<IntPair, NullWritable> {

@0verride
public void configure(JobConf job) {}

@0verride
public int getPartition(IntPair key, NullWritable value, int numPartitions) {
return Math.abs(key.getFirst() * 127) % numPartitions;
}
}

public static class KeyComparator extends WritableComparator {
protected KeyComparator() {
super(IntPair.class, true);
}
@0Override
public int compare(WritableComparable wi, WritableComparable w2) {
IntPair ip1 = (IntPair) wi;
IntPair ip2 = (IntPair) w2;
int cmp = IntPair.compare(ipil.getFirst(), ip2.getFirst());
if (cmp != 0) {
return cmp;

}

return -IntPair.compare(ipi.getSecond(), ip2.getSecond()); //reverse

Sorting | 243

public static class GroupComparator extends WritableComparator {
protected GroupComparator() {
super(IntPair.class, true);

@0verride

public int compare(WritableComparable wi, WritableComparable w2) {
IntPair ip1 = (IntPair) wi;
IntPair ip2 = (IntPair) w2;
return IntPair.compare(ipl.getFirst(), ip2.getFirst());

}
}

@0verride
public int run(String[] args) throws IOException {
JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
if (conf == null) {
return -1;

}

conf.setMapperClass(MaxTemperatureMapper.class);
conf.setPartitionerClass(FirstPartitioner.class);
conf.setOutputKeyComparatorClass(KeyComparator.class);
conf.setOutputValueGroupingComparator (GroupComparator.class);
conf.setReducerClass(MaxTemperatureReducer.class);
conf.setOutputKeyClass(IntPair.class);
conf.setOutputValueClass(NullWritable.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new MaxTemperatureUsingSecondarySort(), args);
System.exit(exitCode);

}

In the mapper, we create a key representing the year and temperature, using an IntPair
Writable implementation. (IntPair is like the TextPair class we developed in “Imple-
menting a Custom Writable” on page 96.) We don’t need to carry any information in
the value, since we can get the first (maximum) temperature in the reducer from the
key, so we use a NullWritable. The reducer emits the first key, which due to the sec-
ondary sorting, is an IntPair for the year and its maximum temperature. IntPair’s
toString() method creates a tab-separated string, so the output is a set of tab-separated
year-temperature pairs.

Many applications need to access all the sorted values, not just the first
value as we have provided here. To do this, you need to populate the
o3 value fields since in the reducer you can retrieve only the first key. This
necessitates some unavoidable duplication of information between key
and value.

244 | Chapter8: MapReduce Features

We set the partitioner to partition by the first field of the key (the year), using a custom
partitioner. To sort keys by year (ascending) and temperature (descending), we use a
custom key comparator that extracts the fields and performs the appropriate compar-
isons. Similarly, to group keys by year, we set a custom comparator, using setOutput
ValueGroupingComparator (), to extract the first field of the key for comparison.*

Running this program gives the maximum temperatures for each year:

% hadoop jar job.jar MaxTemperatureUsingSecondarySort input/ncdc/all \
> output-secondarysort
% hadoop fs -cat output-secondarysort/part-* | sort | head

1901 317
1902 244
1903 289
1904 256
1905 283
1906 294
1907 283
1908 289
1909 278
1910 294
Streaming

To doasecondary sortin Streaming, we can take advantage of a couple of library classes
that Hadoop provides. Here’s the driver that we can use to do a secondary sort:

hadoop jar $HADOOP_INSTALL/contrib/streaming/hadoop-*-streaming.jar \

-D stream.num.map.output.key.fields=2 \

-D mapred.text.key.partitioner.options=-k1,1 \

-D mapred.output.key.comparator.class=\
org.apache.hadoop.mapred.lib.KeyFieldBasedComparator \

-D mapred.text.key.comparator.options="-kin -k2nr" \

-input input/ncdc/all \

-output output_secondarysort_streaming \

-mapper ch08/src/main/python/secondary sort_map.py \

-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \

-reducer cho8/src/main/python/secondary sort reduce.py \

-file cho8/src/main/python/secondary sort map.py \

-file cho8/src/main/python/secondary sort_reduce.py

Our map function (Example 8-10) emits records with year and temperature fields. We
want to treat the combination of both of these fields as the key, so we set
stream.num.map.output.key.fields to 2. This means that values will be empty, just like
in the Java case.

#For simplicity, these custom comparators as shown are not optimized; see “Implementing a RawComparator
for speed” on page 99 for the steps we would need to take to make them faster.

Sorting | 245

Example 8-10. Map function for secondary sort in Python
#!/usr/bin/env python

import re
import sys

for line in sys.stdin:
val = line.strip()
(year, temp, q) = (val[15:19], int(val[87:92]), val[92:93])
if temp == 9999:
sys.stderr.write("reporter:counter:Temperature,Missing,1\n")
elif re.match("[01459]", q):
print "%s\t%s" % (year, temp)

However, we don’t want to partition by the entire key, so we use the KeyFieldBased
Partitioner partitioner, which allows us to partition by a part of the key. The specifi-
cation mapred.text.key.partitioner.options configures the partitioner. The value
-k1,1 instructs the partitioner to use only the first field of the key, where fields are
assumed to be separated by a string defined by the map.output.key.field.separator
property (a tab character by default).

Next, we want a comparator that sorts the year field in ascending order and the tem-
perature field in descending order, so that the reduce function can simply return the
first record in each group. Hadoop provides KeyFieldBasedComparator, which is ideal
for this purpose. The comparison order is defined by a specification that is like the one
used for GNU sort. It is set using the mapred.text.key.comparator.options property.
The value -kin -k2nr used in this example means “sort by the first field in numerical
order, then by the second field in reverse numerical order.” Like its partitioner cousin,
KeyFieldBasedPartitioner, it wuses the separator defined by the map.out
put.key.field.separator to split a key into fields.

In the Java version, we had to set the grouping comparator; however, in Streaming,
groups are not demarcated in any way, so in the reduce function we have to detect the
group boundaries ourselves by looking for when the year changes (Example 8-11).

Example 8-11. Reducer function for secondary sort in Python

#!/usr/bin/env python
import sys

last_group = None
for line in sys.stdin:
val = line.strip()
(year, temp) = val.split("\t")
group = year
if last_group != group:
print val
last_group = group

When we run the streaming program, we get the same output as the Java version.

246 | Chapter8: MapReduce Features

Finally, note that KeyFieldBasedPartitioner and KeyFieldBasedComparator are not con-
fined to use in Streaming programs—they are applicable to Java MapReduce programs,
t0o.

Joins

MapReduce can perform joins between large datasets, but writing the code to do joins
from scratch is fairly involved. Rather than writing MapReduce programs, you might
consider using a higher-level framework such as Pig, Hive, or Cascading, in which join
operations are a core part of the implementation.

Let’s briefly consider the problem we are trying to solve. We have two datasets; for
example, the weather stations database and the weather records—and we want to rec-
oncile the two. For example, we want to see each station’s history, with the station’s
metadata inlined in each output row. This is illustrated in Figure 8-2.

How we implement the join depends on how large the datasets are and how they are
partitioned. If one dataset is large (the weather records) but the other one is small
enough to be distributed to each node in the cluster (as the station metadata is), then
the join can be effected by a MapReduce job that brings the records for each station
together (a partial sort on station ID, for example). The mapper or reducer uses the
smaller dataset to look up the station metadata for a station ID, so it can be written out
with each record. See “Side Data Distribution” on page 252 for a discussion of this
approach, where we focus on the mechanics of distributing the data to tasktrackers.

If the join is performed by the mapper, it is called a map-side join, whereas if it is
performed by the reducer it is called a reduce-side join.

If both datasets are too large for either to be copied to each node in the cluster, then
we can still join them using MapReduce with a map-side or reduce-side join, depending
on how the data is structured. One common example of this case is a user database and
a log of some user activity (such as access logs). For a popular service, it is not feasible
to distribute the user database (or the logs) to all the MapReduce nodes.

Map-Side Joins

A map-side join between large inputs works by performing the join before the data
reaches the map function. For this to work, though, the inputs to each map must be
partitioned and sorted in a particular way. Each input dataset must be divided into the
same number of partitions, and it must be sorted by the same key (the join key) in each
source. All the records for a particular key must reside in the same partition. This may
sound like a strict requirement (and it is), butit actually fits the description of the output
of a MapReduce job.

Joins | 247

Stations Records
Station ID Station Name Station ID Timestamp Temperature
011990-99999 STHCCAJAVRI 012650-99999 | 194903241200 |111
012650-99999 | TYNSET-HANSMOEN 012650-99999 194903241800 |78
011990-99999 195005150700 | O
011990-99999 | 195005151200 | 22
011990-99999 195005151800 | -11
Join
Station ID Station Name Timestamp Temperature
011990-99999 | STHCCAJAVRI 195005150700 | 0O
011990-99999 | STHCCAJAVRI 195005151200 | 22
011990-99999 | STHCCAJAVRI 195005151800 | -11
012650-99999 | TYNSET-HANSMOEN 194903241200 | 111
012650-99999 | TYNSET-HANSMOEN 194903241800 |78

Figure 8-2. Inner join of two datasets

A map-sidejoin can be used to join the outputs of several jobs that had the same number
of reducers, the same keys, and output files that are not splittable (by being smaller
than an HDFS block, or by virtue of being gzip compressed, for example). In the context
of the weather example, if we ran a partial sort on the stations file by station ID, and
another, identical sort on the records, again by station ID, and with the same number
of reducers, then the two outputs would satisfy the conditions for running a map-side
join.

Use a CompositeInputFormat from the org.apache.hadoop.mapred.join package to run
a map-side join. The input sources and join type (inner or outer) for CompositeInput
Format are configured through a join expression that is written according to a simple
grammar. The package documentation has details and examples.

248 | Chapter8: MapReduce Features

The org.apache.hadoop.examples.Join example is a general-purpose command-line
program for running a map-side join, since it allows you to run a MapReduce job for
any specified mapper and reducer over multiple inputs that are joined with a given join
operation.

Reduce-Side Joins

A reduce-side join is more general than a map-side join, in that the input datasets don’t
have to be structured in any particular way, but it is less efficient as both datasets have
to go through the MapReduce shuffle. The basicidea is that the mapper tags each record
with its source and uses the join key as the map output key, so that the records with
the same key are brought together in the reducer. We use several ingredients to make
this work in practice:

Multiple inputs
The input sources for the datasets have different formats, in general, so it is very
convenient to use the MultipleInputs class (see “Multiple Inputs” on page 214) to
separate the logic for parsing and tagging each source.

Secondary sort

As described, the reducer will see the records from both sources that have same
key, but they are not guaranteed to be in any particular order. However, to perform
the join, it is important to have the data from one source before another. For the
weather data join, the station record must be the first of the values seen for each
key, so the reducer can fill in the weather records with the station name and emit
them straightaway. Of course, it would be possible to receive the records in any
order if we buffered them in memory, but this should be avoided, since the number
of records in any group may be very large and exceed the amount of memory avail-
able to the reducer.”

We saw in “Secondary Sort” on page 241 how to impose an order on the values
for each key that the reducers see, so we use this technique here.

To tag each record, we use TextPair from Chapter 4 for the keys, to store the station
ID, and the tag. The only requirement for the tag values is that they sort in such a way
that the station records come before the weather records. This can be achieved by
tagging station records as 0 and weather records as 1. The mapper classes to do this are
shown in Examples 8-12 and 8-13.

Example 8-12. Mapper for tagging station records for a reduce-side join

public class JoinStationMapper extends MapReduceBase
implements Mapper<LongWritable, Text, TextPair, Text> {
private NcdcStationMetadataParser parser = new NcdcStationMetadataParser();

* The data_join package in the contrib directory implements reduce-side joins by buffering records in memory,
so it suffers from this limitation.

Joins | 249

public void map(LongWritable key, Text value,
OutputCollector<TextPair, Text> output, Reporter reporter)
throws IOException {

if (parser.parse(value)) {
output.collect(new TextPair(parser.getStationId(), "0"),
new Text(parser.getStationName()));
}

}
}

Example 8-13. Mapper for tagging weather records for a reduce-side join

public class JoinRecordMapper extends MapReduceBase
implements Mapper<LongWritable, Text, TextPair, Text> {
private NcdcRecordParser parser = new NcdcRecordParser();

public void map(LongWritable key, Text value,
OutputCollector<TextPair, Text> output, Reporter reporter)
throws IOException {

parser.parse(value);
output.collect(new TextPair(parser.getStationId(), "1"), value);

}
}

The reducer knows that it will receive the station record first, so it extracts its name
from the value and writes it out as a part of every output record (Example 8-14).

Example 8-14. Reducer for joining tagged station records with tagged weather records

public class JoinReducer extends MapReduceBase implements
Reducer<TextPair, Text, Text, Text> {

public void reduce(TextPair key, Iterator<Text> values,
OutputCollector<Text, Text> output, Reporter reporter)
throws IOException {

Text stationName = new Text(values.next());

while (values.hasNext()) {
Text record = values.next();
Text outValue = new Text(stationName.toString() + "\t" + record.toString());
output.collect(key.getFirst(), outValue);

}
}
}

The code assumes that every station ID in the weather records has exactly one matching
record in the station dataset. If this were not the case, we would need to generalize the
code to put the tag into the value objects, by using another TextPair. The reduce()
method would then be able to tell which entries were station names and detect (and
handle) missing or duplicate entries, before processing the weather records.

250 | Chapter8: MapReduce Features

Because objects in the reducer’s values iterator are re-used (for efficiency
purposes), it is vital that the code makes a copy of the first Text object

from the values iterator:

Text stationName = new Text(values.next());

If the copy is not made, then the stationName reference will refer to the
value just read when it is turned into a string, which is a bug.

Tying the job together is the driver class, shown in Example 8-15. The essential point
is that we partition and group on the first part of the key, the station ID, which we do
with a custom Partitioner (KeyPartitioner) and a custom comparator, FirstCompara
tor (from TextPair).

Example 8-15. Application to join weather records with station names

public class JoinRecordWithStationName extends Configured implements Tool {

public static class KeyPartitioner implements Partitioner<TextPair, Text> {
@0verride
public void configure(JobConf job) {}

@0verride
public int getPartition(TextPair key, Text value, int numPartitions) {
return (key.getFirst().hashCode() & Integer.MAX VALUE) % numPartitions;

}

@0verride
public int run(String[] args) throws Exception {
if (args.length !=3) {
JobBuilder.printUsage(this, "<ncdc input> <station input> <output>");
return -1;

}

JobConf conf = new JobConf(getConf(), getClass());
conf.setJobName("Join record with station name");

Path ncdcInputPath = new Path(args[o0]);
Path stationInputPath = new Path(args[1]);
Path outputPath = new Path(args[2]);

MultipleInputs.addInputPath(conf, ncdcInputPath,
TextInputFormat.class, JoinRecordMapper.class);

MultipleInputs.addInputPath(conf, stationInputPath,
TextInputFormat.class, JoinStationMapper.class);

FileOutputFormat.setOutputPath(conf, outputPath);

conf.setPartitionerClass(KeyPartitioner.class);
conf.setOutputValueGroupingComparator (TextPair.FirstComparator.class);

conf.setMapOutputKeyClass(TextPair.class);

conf.setReducerClass(JoinReducer.class);

Joins | 251

conf.setOutputKeyClass(Text.class);

JobClient.runJob(conf);
return 0;

}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);
System.exit(exitCode);

}

Running the program on the sample data yields the following output:
011990-99999 SIHCCAJAVRI 0067011990999991950051507004+68750. . .
011990-99999 SIHCCAJAVRI 0043011990999991950051512004+68750. . .
011990-99999 SIHCCAJAVRI 0043011990999991950051518004+68750. . .
012650-99999 TYNSET-HANSMOEN 0043012650999991949032412004+62300. . .
012650-99999 TYNSET-HANSMOEN 0043012650999991949032418004+62300. . .

Side Data Distribution

Side data can be defined as extra read-only data needed by a job to process the main
dataset. The challenge is to make side data available to all the map or reduce tasks
(which are spread across the cluster) in a convenient and efficient fashion.

In addition to the distribution mechanisms described in this section, it is possible to
cache side-data in memory in a static field, so that tasks of the same job that run in
succession on the same tasktracker can share the data. “Task JVM Re-
use” on page 184 describes how to enable this feature. If you take this approach, be
aware of the amount of memory that you are using, as it might affect the memory needed
by the shuffle (see “Shuffle and Sort” on page 177).

Using the Job Configuration

You can set arbitrary key-value pairs in the job configuration using the various setter
methods on JobConf (inherited from Configuration). This is very useful if you need to
pass a small piece of metadata to your tasks. To retrieve the values in the task, override
the configure() method in the Mapper or Reducer and use a getter method on the
JobConf object passe