

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Learning React

Kirupa Chinnathambi

Acquisitions Editor

Mark Taber

Development Editor

Chris Zahn

Copy Editor

Abigail Manheim

Indexer

Erika Millen

Technical Reviewers

Trevor McCauley
Kyle Murray

Cover Designer

Chuti Prasertsith

Learning React

Copyright © 2017 Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-134-54631-5

ISBN-10: 0-134-54631-8

Library of Congress Control Number: 2016917161

Printed in the United States of America

First printing: November 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearsoned.com.

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web
Edition, which provides several special online-only features:

 ■ The complete text of the book

 ■ Bonus material on animating content with React Motion and making
Ajax/server-related calls

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with
any modern web browser that supports HTML5.

To get access to the Learning React Web Edition all you need to do is register this
book:

1. Go to www.informit.com/register

2. Sign in or create a new account.

3. Enter ISBN: 9780134546315

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your
Account page. Click the Launch link to access the product.

http://www.informit.com/register

❖

To my dad!

(Who always believed in me—even if what I was often doing
made no sense to him...or to me for that matter! :P)

❖

Contents

 1 Introducing React 1

Old School Multi-Page Design 2

New School Single-Page Apps 3

Meet React 6

Automatic UI State Management 7

Lightning-fast DOM Manipulation 8

APIs to Create Truly Composable UIs 9

Visuals Defined Entirely in JavaScript 9

Just the V in an MVC Architecture 11

Conclusion 11

 2 Building Your First React App 13

Dealing with JSX 14

Getting Your React On 15

Displaying Your Name 16

It’s All Still Familiar 18

Changing the Destination 18

Styling It Up! 19

Conclusion 21

 3 Components in React 23

A Quick Review of Functions 24

Changing How We Deal with the UI 26

Meet the React Component 29

Creating a Hello, World! Component 30

Specifying Properties 32

Dealing with Children 34

Conclusion 36

 4 Styling in React 37

Displaying Some Vowels 37

Styling React Content Using CSS 40

Understand the Generated HTML 40

Just Style It Already! 41

vi Contents

Styling Content the React Way 42

Creating a Style Object 43

Actually Styling Our Content 43

You Can Omit the “px” Suffix 45

Making the Background Color Customizable 45

Conclusion 47

 5 Creating Complex Components 49

From Visuals to Components 49

Identifying the Major Visual Elements 51

Identifying the Components 53

Creating the Components 56

The Card Component 58

The Square Component 60

The Label Component 61

Passing Properties, Again! 63

Why Component Composability Rocks 66

Conclusion 66

 6 Transferring Properties (Props) 69

Problem Overview 69

Detailed Look at the Problem 74

Meet the Spread Operator 78

Properly Transferring Properties 78

Conclusion 80

 7 Meet JSX—Again! 81

What Happens with JSX? 81

JSX Quirks to Remember 83

You Can Only Return A Single Root Node 83

You Can’t Specify CSS Inline 84

Reserved Keywords and className 85

Comments 86

Capitalization, HTML Elements, and Components 87

Your JSX Can Be Anywhere 88

Conclusion 88

viiContents

 8 Dealing with State 89

Using State 89

Our Starting Point 90

Getting Our Counter On 93

Setting the Initial State Value 93

Starting Our Timer and Setting State 94

Rendering the State Change 96

Optional: The Full Code 96

Conclusion 98

 9 Going from Data to UI 99

The Example 99

Your JSX Can Be Anywhere—Part II 102

Dealing with Arrays in the Context of JSX 103

Conclusion 105

 10 Working with Events 107

Listening and Reacting to Events 107

Starting Point 108

Making the Button Click Do Something 110

Event Properties 112

Doing Stuff With Event Properties 114

More Eventing Shenanigans 115

Listening to Regular DOM Events 117

The Meaning of this Inside the Event Handler 119

React...Why? Why?! 120

Browser Compatibility 120

Improved Performance 120

Conclusion 121

 11 The Component Lifecycle 123

Meet the Lifecycle Methods 123

See the Lifecycle Methods in Action 124

The Initial Rendering Phase 127

The Updating Phase 129

The Unmounting Phase 132

Conclusion 133

viii Contents

 12 Accessing DOM Elements 135

Meet Refs 137

Conclusion 142

 13 Creating a Single-Page App Using React Router 143

The Example 144

Building the App 146

Displaying the Initial Frame 147

Displaying the Home Page 149

Interim Cleanup Time 151

Displaying the Home Page Correctly 154

Creating the Navigation Links 155

Adding the Stuff and Contact Views 157

Creating Active Links 159

Conclusion 161

 14 Building a Todo List App 163

Getting Started 164

Creating the UI 165

Creating the Functionality 168

Initializing our State Object 169

Handling the Form Submit 169

Populating Our State 171

Displaying the Tasks 173

Adding the Finishing Touches 176

Conclusion 178

 15 Setting Up Your React Development Environment 179

Meet the Tools 182

Node.js 182

Babel 182

webpack 183

Your Code Editor 183

ixContents

It Is Environment Setup Time! 184

Setting up our Initial Project Structure 184

Installing and Initializing Node.js 187

Installing the React Dependencies 190

Adding our JSX File 191

Going from JSX to JavaScript 193

Building and Testing Our App 197

Conclusion 198

 16 The End 199

Index 201

Acknowledgments

First, none of this would be possible without the support and encouragement of my awesome
wife, Meena. If she didn’t put her goals on hold to allow me to spend six months designing,
writing, and re-writing everything you see here, me writing this book would have been a
distant dream.

Next, I’d like to thank my parents for always encouraging me to aimlessly wander and enjoy
free time to do what I liked—such as teaching complete strangers over the internet in the late
1990s how to do cool things with programming. I wouldn’t be half the rugged indoorsman/
scholar/warrior I am today without them both :P

On the publishing side, writing the words you see here is the easy part. Getting the book
into your hands is an amazingly complex process. The more I learn about all the moving
pieces involved, the more impressed I am at all the individuals who work tirelessly behind
the scenes to keep this amazing machinery running. To everyone at Pearson who made this
possible, thank you! There are a few people I’d like to explicitly call out, though. First, I’d like
to thank Mark Taber for continuing to give me opportunities to work together, Chris Zahn
for patiently addressing my numerous questions/concerns, Abby Manheim for turning my
version of English into something human-understandable, and Loretta Yates for helping make
the connections a long time ago that made all of this happen. The technical content of this
book has been reviewed in great detail by my long-time friends and online collaborators, Kyle
Murray (aka Krilnon) and Trevor McCauley (aka senocular). I can’t thank them enough for
their thorough (and frequently, humorous!) feedback.

About the Author

Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on kirupa.com. In the
years since then, he has written hundreds of articles, written a few books (none as good as
this one, of course!), and recorded a bunch of videos you can find on YouTube. When he isn’t
writing or talking about web development, he spends his waking hours helping make the Web
more awesome as a Program Manager in Microsoft. In his non-waking hours, he is probably
sleeping...or writing about himself in the third person.

You can find him on Twitter (twitter.com/kirupa), Facebook (facebook.com/kirupa), or
e-mail (kirupa@kirupa.com). Feel free to contact him anytime.

1
Introducing React

Ignoring for a moment that web apps today both look and feel nicer than they did back in
the day, there is something even more fundamental that has changed. The way we architect
and build web apps is very different now. To highlight this, let’s take a look at the app shown
in Figure 1-1.

Figure 1-1 An app.

This app is a simple catalog browser for something. Like any app of this sort, you have your
usual set of pages revolving around a home page, a search results page, a details page, and
so on. In the following sections, let’s look at the two approaches we have for building this
app. Yes, in some mysterious fashion, this leads to us getting an overview of React as well!

Onwards!

2 Chapter 1 Introducing React

Old School Multi-Page Design

If you had to build this app a few years ago, you may have taken an approach that involved
multiple, individual pages. The flow would have looked something like what is shown
in Figure 1-2.

Figure 1-2 Multi-page design.

3New School Single-Page Apps

For almost every action that changes what the browser displays, the web app will navigate you
to a whole different page. This is a big deal beyond the less-than-stellar user experience that users
will see as pages get torn down and redrawn. This has a big impact on how you maintain your
app state. Outside of storing some user data via cookies and some server-side mechanism, you
simply don’t need to care. Life is good.

New School Single-Page Apps

Today, going with a web app model that requires navigating between individual pages seems
dated...like, really dated, like what is shown in Figure 1-3.

Figure 1-3 The individual page model is a bit dated—like this steam engine.

Source: New Catechism of the Steam Engine, 1904

Instead, modern apps tend to adhere to what is known as a Single-page app (SPA) model. This
is a world where you never navigate to different pages or ever even reload a page. Instead, the
different views of your app are loaded and unloaded into the same page itself.

For our app, this may look something like Figure 1-4.

4 Chapter 1 Introducing React

Figure 1-4 Single-page app.

As users interact with our app, we replace the contents of the dotted red region with the data
and HTML that matches what the user is trying to do. The end result is a much more fluid
experience. You can even use a lot of visual techniques to have your new content transition in
nicely just like you might see in cool apps on your mobile device or desktop. This sort of stuff
is simply not possible when navigating to different pages.

All of this may sound a bit crazy if you’ve never heard of single-page apps before, but there is
a very good chance you’ve run into some of them in the wild. If you’ve ever used popular web
apps like Gmail, Facebook, Instagram, or Twitter, you were using a single-page app. In all those
apps, the content gets dynamically displayed without requiring you to refresh or navigate to a
different page.

Now, I am making these single-page apps seem really complicated. That’s not entirely the
case. Thanks to a lot of great improvements in both JavaScript and a variety of third party
 frameworks and libraries, building single-page apps has never been easier. That doesn’t mean
there is no room for improvement, though.

5New School Single-Page Apps

When building single-page apps, there are three major issues that you’ll encounter:

 ■ In a single-page application, the bulk of your time will be spent keeping your
data in sync with your UI. For example, if a user loads new content, do we explicitly
clear out the search field? Do we keep the active tab on a navigation element still
visible? Which elements do we keep on the page, and which do we destroy?

These are all problems unique to single-page apps. When navigating between pages in
the old model, we just assumed everything in our UI would be destroyed and just built
back up again. This was never a problem.

 ■ Manipulating the DOM is really REALLY slow. Manually querying elements, adding
children (see Figure 1-5 below), removing subtrees, and performing other DOM
operations are some of the slowest things you can do in your browser. Unfortunately, in a
single-page app, you’ll be doing a lot of this. Manipulating the DOM is the primary way
you are able to respond to user actions and display new content.

Figure 1-5 Adding children.

6 Chapter 1 Introducing React

 ■ Working with HTML templates can be a pain. Navigation in a single-page app is nothing
more than you dealing with fragments of HTML to represent whatever it is you wish to
display. These fragments of HTML are often known as templates, and using JavaScript to
manipulate them and fill them out with data gets really complicated really quickly.

To make things worse, depending on the framework you are using, the way your
templates look and interact with data can vary wildly. For example, this is what using a
template in Mustache looks like:

var view = {
 title: "Joe",
 calc: function () {
 return 2 + 4;
 }
};

var output = Mustache.render("{{title}} spends {{calc}}", view);

Sometimes, your templates may look like some clean HTML that you can proudly show off
in front of the class. Other times, your templates might be unintelligible, with a boatload of
custom tags designed to help map your HTML elements to some data.

Despite these shortcomings, single-page apps aren’t going anywhere. They are a part of the
present, and they will fully form the future of how web apps are built. That doesn’t mean that
we have to tolerate these shortcomings. To address this, meet React!

Meet React

Facebook (and Instagram) decided that enough is enough. Given their abundance of experience
with single-page apps, they released a library called React (the React logo is shown in
Figure 1-6) to not only address these shortcomings, but to also change how we think about
building single-page apps.

7Meet React

Figure 1-6 The React logo.

In the following sections, let’s look at the big things React brings to the table.

Automatic UI State Management

With single-page apps, keeping track of your UI and maintaining state is hard—and very
time-consuming. With React, you need to worry only about one thing: the final state your
UI is in. It doesn’t matter what state your UI started out in. It doesn’t matter what series of
steps your users may have taken to change the UI. All that matters is where your UI ended
up (see Figure 1-7).

Figure 1-7 The final or end state of your UI is what matters in React.

8 Chapter 1 Introducing React

React takes care of everything else. It figures out what needs to happen to ensure your UI is
represented properly, so all of that state management stuff is no longer your concern.

Lightning-fast DOM Manipulation

Because DOM modifications are really slow, you never modify the DOM directly using React.
Instead, you modify an in-memory virtual DOM instead. Figure 1-8 symbolizes that in-memory
virtual DOM.

Figure 1-8 Imagine an in-memory virtual DOM.

Manipulating this virtual DOM is extremely fast, and React takes care of updating the real DOM
when the time is right. It does so by comparing the changes between your virtual DOM and the
real DOM, figuring out which changes actually matter, and making the least amount of DOM
changes needed to keep everything up-to-date in a process called reconciliation.

9Meet React

APIs to Create Truly Composable UIs

Instead of treating the visual elements in your app as one monolithic chunk, React encourages
you to break your visual elements into smaller and smaller components.

Just like everything else in programming, it is a good idea to have things be modular, compact,
and self-contained. React extends that well-established idea to how we should think about user
interfaces as well. Many of React’s core APIs make it easier to create smaller visual components
that can later be combined with other visual components to make larger and more complex
visual components—kind of like Russian Matryoshka dolls (see Figure 1-9).

Figure 1-9 Russian Matryoshka dolls by Gnomz007.

Source: https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

This is one of the major ways React simplifies (and changes) how we think about building the
visuals for our web apps.

Visuals Defined Entirely in JavaScript

While this sounds ridiculously crazy and outrageous, hear me out. Besides using a really weird
syntax, HTML templates traditionally suffered from another major problem. The variety of
things you can do inside them other than simply displaying data is limited. If you wanted
to choose which piece of UI to display based on a particular condition, for example, you had to
write JavaScript somewhere else in your app or use some weird framework-specific templating
command to make it work.

https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

10 Chapter 1 Introducing React

For example, here is what a conditional statement inside an EmberJS template looks like:

{{#if person}}
 Welcome back, {{person.firstName}} {{person.lastName}}!
{{else}}
 Please log in.
{{/if}}

What React does is pretty neat. By having your UI defined entirely in JavaScript, you get to
use all of the rich functionality JavaScript provides for doing all sorts of things inside your
templates (as you will see in a few chapters). You are limited only by what JavaScript supports
as opposed to any limitations imposed by your templating framework.

Now, when you think of visuals defined entirely in JavaScript, you are probably thinking some-
thing horrible involving quotation marks, escape characters, and a whole lot of createEle-
ment calls. Don’t worry. React gives you the option to specify your visuals using an HTML-like
syntax known as JSX that lives fully alongside your JavaScript. Instead of writing code to define
your UI, you are basically specifying markup:

ReactDOM.render(
 <div>
 <h1>Batman</h1>
 <h1>Iron Man</h1>
 <h1>Nicolas Cage</h1>
 <h1>Mega Man</h1>
 </div>,
 destination
);

This same code defined in JavaScript would look like this:

ReactDOM.render(React.createElement(
 "div",
 null,
 React.createElement(
 "h1",
 null,
 "Batman"
),
 React.createElement(
 "h1",
 null,
 "Iron Man"
),
 React.createElement(
 "h1",
 null,
 "Nicolas Cage"
),

11Conclusion

 React.createElement(
 "h1",
 null,
 "Mega Man"
)
), destination);

Yikes! By using JSX, you are able to define your visuals very easily using a syntax that is very
familiar, while still getting all the power and flexibility that JavaScript provides. Best of all,
in React, your visuals and JavaScript often live in the same location. You no longer have to
jump between multiple files to define the look and behavior of one visual component. This is
templating done right.

Just the V in an MVC Architecture

We are almost done here! React is not a full-fledged framework that has an opinion on how
everything in your app should behave. Instead, React works primarily in the View layer where
all of its worries and concerns revolve around your visual elements and keeping them up to
date. This means you are free to use whatever you want for the M and C part of your MVC
architecture. This flexibility enables you to pick and choose what technologies you are familiar
with, and this makes React useful not only for new web apps you create but also for existing
apps you’d like to enhance without removing and refactoring a whole bunch of code.

Conclusion

As new web frameworks and libraries go, React is quite the runaway success. It not only deals
with the most common problems developers faced when building single-page apps, it throws
in a few additional tricks that make building the visuals for your single-page apps much
MUCH easier. Since it came out in 2013, React has steadily found its way into popular web sites
and apps that you probably use. Besides Facebook and Instagram, some of the notable ones
include the BBC, Khan Academy, PayPal, Reddit, The New York Times, Yahoo, and many more:
https://github.com/facebook/react/wiki/Sites-Using-React

The intent of this chapter is to provide you with an introduction to what React does and why
it does it. In tutorials in subsequent chapters we’ll dive deeper into everything you’ve seen here
and cover the technical details that will help you successfully use React in your own projects.
Stick around.

https://github.com/facebook/react/wiki/Sites-Using-React

This page intentionally left blank

2
Building Your

First React App

By now, thanks to the previous chapter, you probably know all about the backstory of React
and how it helps even your most complex user interfaces sing performantly. For all the
awesomeness that React brings to the table, getting started with it (kinda like this sentence)
is not the most straightforward thing. It has a steep learning curve filled with many small and
big hurdles:

In this chapter, we start at the very beginning and get our hands dirty by building a simple
React app. We encounter some of these hurdles head-on, and some of these hurdles we skip
over—for now. By the end of this chapter, not only will we have built something you can
proudly show off to your friends and family, we’ll have set ourselves up nicely for diving
deeper into all that React offers in future chapters.

14 Chapter 2 Building Your First React App

Dealing with JSX

Before we start building our app, there is an important thing we should cover first. React
isn’t like many JavaScript libraries you may have used. It isn’t very happy when you simply
refer to code you’ve written for it using a script tag. React is annoyingly special that way,
and it has to do with how React apps are built.

As you know, your web apps (and everything else your browser displays) are made up of HTML,
CSS, and JavaScript:

It doesn’t matter if your web app was written using React or some other library like Angular,
Knockout, or jQuery. The end result has to be some combination of HTML, CSS, and JavaScript.
Otherwise, your browser really won’t know what to do.

Now, here is where the special nature of React comes in. Besides normal HTML, CSS, and
JavaScript, the bulk of your React code will be written in something known as JSX. JSX, as I
mentioned in Chapter 1, is a language that allows you to easily mix JavaScript and HTML-like
tags to define user interface (UI) elements and their functionality. That sounds cool and all (and
we will see JSX in action in just a few moments), but there is a slight problem. Your browser
has no idea what to do with JSX.

To build a web app using React, we need a way to take our JSX and convert it into plain old
JavaScript that your browser can understand.

If we didn’t do this, our React app simply wouldn’t work. That’s not cool. Fortunately, there are
two solutions to this:

 ■ Set up a development environment around Node and a handful of build-tools.
In this environment, every time you perform a build, all of your JSX is automatically
converted into JS and placed on disk for you to reference like any plain JavaScript file.

 ■ Let your browser rely on a JavaScript library to automatically convert JSX to
something it understands. You specify your JSX directly just like you would any old
piece of JavaScript, and your browser takes care of the rest.

Both of these solutions have a place in our world, but let’s talk about the impact of each.

15Getting Your React On

The first solution, while a bit complicated and time-consuming at first, is the way modern web
development is done these days. Besides compiling (transpiling to be more accurate) your JSX
to JS, this approach enables you to take advantage of modules, better build tools, and a bunch
of other features that make building complex web apps somewhat manageable.

The second solution provides a quick and direct path where you initially spend more time
writing code and less time fiddling with your development environment. To use this solution,
all you do is reference a script file. This script file takes care of turning the JSX into JS on page
load, and your React app comes to life without you having to do anything special to your
development environment.

For our introductory look at React, we are going to use the second solution. You may be wondering
why we don’t use the second solution always. The reason is that your browser takes a performance
hit each time it spends time translating JSX into JS. That is totally acceptable when learning how
to use React, but that is totally not acceptable when deploying your app for real-life use. Because
of that un-acceptableness, we will revisit all of this and look at the first solution and how to set up
your development environment later, once you’ve gotten your feet comfortably wet in React.

Getting Your React On

In the previous section, we looked at the two ways you have for ensuring your React app ends
up as something your browser understands. In this section, we are going to put all of those
words into practice. First, we will need a blank HTML page that will act as our starting point.

If you don’t have a blank HTML page handy, feel free to use the following:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
</head>

<body>
 <script>

 </script>
</body>

</html>

This page has nothing interesting or exciting going for it, but let’s fix that by adding a refer-
ence to the React library. Just below the title, add these two lines:

<script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>

16 Chapter 2 Building Your First React App

These two lines bring in both the core React library as well as the various things React needs to
work with the DOM. Without them, you aren’t building a React app at all. Now, we aren’t done
yet. There is one more library we need to reference. Just below these two script tags, add the
following line:

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

What we are doing here is adding a reference to the Babel JavaScript compiler (http://babeljs
.io/). Babel does many cool things, but the one we care about is its capability to turn JSX into
JavaScript.

At this point, our HTML page should look as follows:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>
</head>

<body>
 <script>

 </script>
</body>

</html>

If you preview your page right now, you’ll notice that this page is still blank with nothing
visible going on. That’s OK. We are going to fix that next.

Displaying Your Name

The first thing we are going to do is use React to display our name on screen. The way we do
that is by using a method called render. Inside your script tag, add the following:

ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);

Don’t worry if none of this makes sense at this point. Our goal is to get something to display
on screen first, and we’ll make sense of what we did shortly afterwards. Now, before we preview
this in our page to see what happens, we need to designate this script block as something

http://babeljs.io/
http://babeljs.io/

17Displaying Your Name

that Babel can do its magic on. The way we do that is by setting the type attribute on the
script tag to a value of text/babel:

<script type="text/babel">
 ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);
</script>

Once you’ve made that change, now preview what you have in your browser. What you’ll see
are the words Sherlock Holmes printed in giant letters. Congratulations! You just built an app
using React.

As apps go, this isn’t all that exciting. Chances are your name isn’t even Sherlock Holmes.
While this app doesn’t have much going for it, it does introduce you to one of the most
frequently used methods you’ll use in the React universe—the ReactDOM.render method.

The render method takes two arguments:

 ■ The HTML-like elements (aka JSX) you wish to output

 ■ The location in the DOM that React will render the JSX into

Here is what our render method looks like:

ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);

Our first argument is the text Sherlock Holmes wrapped inside some h1 tags. This HTML-like
syntax inside your JavaScript is what JSX is all about. While we will spend a lot more time
 drilling into JSX a bit later, I should mention this up front—It is every bit as crazy as it looks.
Whenever I see brackets and slashes in JavaScript, a part of me dies on the inside because of all
the string escaping and quotation mark gibberish I will need to do. With JSX, you do none of
that. You just place your HTML-like content as-is just like what we’ve done here. Magically (like
the super-awesome kind involving dragons and laser beams), it all works.

The second argument is document.body. There is nothing crazy or bizarre about this argument.
It simply specifies where the converted markup from the JSX will end up living in our DOM.
In our example, when the render method runs, the h1 tag (and everything inside it) is
placed in our document’s body element.

Now, the goal of this exercise wasn’t to display a name on the screen. It was to display your name.
Go ahead and modify your code to do that. In my case, the render method will look as follows:

ReactDOM.render(
 <h1>Batman</h1>,
 document.body
);

18 Chapter 2 Building Your First React App

Well—it would look like that if my name was Batman! Anyway, if you preview your page now,
you will see your name displayed instead of Sherlock Holmes.

It’s All Still Familiar

While the JavaScript looks new and shiny thanks to JSX, the end result your browser sees is
nice, clean HTML, CSS, and JavaScript. To see this for yourself, let’s make a few alterations to
how our app behaves and looks.

Changing the Destination

The first thing we’ll do is change where our JSX gets output. Using JavaScript to place things
directly in your body element is never a good idea. A lot can go wrong—especially if you are
going to be mixing React with other JS libraries and frameworks. The recommended path is to
create a separate element that you will treat as a new root element. This element will serve as
the destination our render method will use. To make this happen, go back to the HTML and
add a div element with an id value of container.

Instead of showing you the full HTML for this one minor change, here is what just our body
element looks like:

<body>
 <div id="container"></div>
 <script type="text/babel">
 ReactDOM.render(
 <h1>Batman</h1>,
 document.body
);
 </script>
</body>

With our container div element safely defined, let’s modify the render method to use it
instead of document.body. Here is one way of doing this:

ReactDOM.render(
 <h1>Batman</h1>,
 document.querySelector("#container")
);

Another way of doing this is by doing some things outside of the render method itself:

var destination = document.querySelector("#container");

ReactDOM.render(
 <h1>Batman</h1>,
 destination
);

19It’s All Still Familiar

Notice that the destination variable stores the reference to our container DOM element.
Inside the render method, we simply reference the same destination variable instead
of writing the full element-finding syntax as part of the argument itself. The reason I want to
do this is simple. I want to show you that you are still writing JavaScript and render is just
another boring old method that happens to take two arguments.

Styling It Up!

Time for our last change before we call it a day. Right now, our names show up in whatever
default h1 styling our browser provides. That is just terrible, so let’s fix it by adding some CSS.
Inside your head tag, add a style block with the following CSS:

#container {
 padding: 50px;
 background-color: #EEE;
}
#container h1 {
 font-size: 48px;
 font-family: sans-serif;
 color: #0080A8;
}

After you have added all of this, preview your page. Notice that our text appears with a
little more purpose than it did earlier when it relied entirely on the browser’s default styling
(see Figure 2-1).

Figure 2-1 The result of adding the CSS.

20 Chapter 2 Building Your First React App

The reason this works is that our DOM’s body, after running all of the React code, contains
our container element with an h1 tag inside it. It doesn’t matter that the h1 tag was defined
entirely inside JavaScript in this JSX syntax or that your CSS was defined well outside of the
render method. The end result is that your React app is still going to be made up of some
100% organic (and cage-free!) HTML, CSS, and JavaScript:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #EEE;
 }
 #container h1 {
 font-size: 144px;
 font-family: sans-serif;
 color: #0080a8;
 }
 </style>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">
 var destination = document.querySelector("#container");

 ReactDOM.render(React.createElement(
 "h1",
 null,
 "Batman"
), destination);
 </script>
</body>

</html>

Notice that there is nary a trace of React-like code in sight. Also, we should use the word nary
more often in everyday conversation!

21Conclusion

Conclusion

If this is your first time building a React app, we covered a lot of ground here. One of the
biggest takeaways is that React is different than other libraries because it uses a whole new
language called JSX to define what the visuals will look like. We got a very small glimpse of
that here when we defined the h1 tag inside the render method.

JSX’s impact goes beyond how you define your UI elements. It also alters how you build
your app as a whole. Because your browser can’t understand JSX in its native representation,
you need to use an intermediate step to convert that JSX into JavaScript. One approach
is to build your app to generate the transpiled JavaScript output to correspond to the JSX
source. Another approach (aka the one we used here) is to use the Babel library to translate
the JSX into JavaScript on the browser itself. While the performance hit of doing that is not
 recommended for live/production apps, when familiarizing yourself with React, you can’t beat
the convenience.

In future chapters, we’ll spend some time diving deeper into JSX and going beyond the render
method as we look at all the important things that make React tick.

This page intentionally left blank

3
Components in React

Components are one of the things that make React, well, React! They are one of the primary
ways you have for defining the visuals and interactions that make up what people see when
they use your app. Let’s say Figure 3-1 shows what your finished app looks like.

Figure 3-1 Your hypothetical finished app.

This is the finished sausage. During development, viewed from the lens of you as a React
 developer, things might look a little less appealing. Almost every part of this app’s visuals
would be wrapped inside a self-contained module known as a component. To highlight
what “almost every” means here, take a look at the diagram in Figure 3-2.

24 Chapter 3 Components in React

Figure 3-2 Diagrammatic representation of the app components.

Each dotted line represents an individual component that is responsible for both what you
see as well as any interactions that it may be responsible for. Don’t let this scare you. While this
looks really complicated, as you will see shortly, it will start to make a whole lot of sense once
you’ve had a chance to play with components and some of the awesome things that they
do—or at least try really hard to do.

Onwards!

A Quick Review of Functions

In JavaScript, you have these things known as functions. They enable you to make your code
a bit cleaner and more reusable. Now, there is reason why we are taking some time to look at
functions, and it isn’t to annoy you—I swear! Functions, conceptually speaking, share a lot of
surface area with React components, and the easiest way to understand what components do is
by taking a quick look at functions first.

In a terrible world where functions do not exist, you may have some code that looks as follows:

var speed = 10;
var time = 5;
alert(speed * time);

25A Quick Review of Functions

var speed1 = 85;
var time1 = 1.5;
alert(speed1 * time1);

var speed2 = 12;
var time2 = 9;
alert(speed2 * time2);

var speed3 = 42;
var time3 = 21;
alert(speed3 * time3);

In a really chill world that involves functions, you can condense all of that duplicated text into
something simple like the following:

function getDistance(speed, time) {
 var result = speed * time;
 alert(result);
}

Our getDistance function removes all of the duplicated code you saw earlier, and it
takes speed and time as arguments to enable you to customize the calculation that gets
returned.

To call this function, all you have to do is this:

getDistance(10, 5);
getDistance(85, 1.5);
getDistance(12, 9);
getDistance(42, 21);

Doesn’t this look nicer? Now there is another great value functions provide. Your functions
(like the alert inside getDistance) can call other functions as part of their running. Here is
us using a formatDistance function to change what gets returned by getDistance:

1 function formatDistance(distance) {
2 return distance + "km";
3 }
4
5 function getDistance(speed, time) {
6 var result = speed * time;
7 alert(formatDistance(result));
8 }

This capability to have functions call other functions enables us to cleanly separate what functions
do. You don’t need to have one monolithic function that does everything under the sun. You can
distribute the functionality across many functions specialized for a particular type of task.

Best of all, after you make changes to how your functions work, you don’t have to do anything
extra to see the results of those changes. If the function signature did not change, any existing
calls to that function will just magically work and automatically pick up any new changes you

26 Chapter 3 Components in React

made to the function itself. For example, our existing getDistance calls will see the result of
the formatDistance function even if the formatDistance function didn’t exist when the
calls were first defined. That’s pretty awesome.

In a nutshell, functions are awesome. I know that. You know that. That’s why all of the code
we write has them all over the place.

Changing How We Deal with the UI

I don’t think anybody will disagree with the good things functions bring to the table. They
really make it possible to structure the code for your apps in a sane way. That same level of care
we use in writing our code isn’t always possible when it comes to writing our UIs. For various
technical and non-technical reasons, we’ve always tolerated a certain level of sloppiness with
how we typically work with our UI elements.

I realize that is a pretty controversial statement, so let me highlight what I mean by looking
at some examples. We are going to go back and look at the render method we used in the
 previous chapter:

var destination = document.querySelector("#container");

ReactDOM.render(
 <h1>Batman</h1>,
 destination
);

What you see on the screen is the word Batman printed in giant letters—thanks to the h1
element. Let’s change things up a bit and say that we want to print the names of several other
superheroes. To do this, let’s modify our render method to now look as follows:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h1>Batman</h1>
 <h1>Iron Man</h1>
 <h1>Nicolas Cage</h1>
 <h1>Mega Man</h1>
 </div>,
 destination
);

Notice what you see here. We emit a div that contains the four h1 elements with our superhero
names.

27Changing How We Deal with the UI

JSX Gotcha: Outputting Multiple Elements

There is an important JSX detail to call out here. The div that wraps our h1 elements isn’t
there because it looks like a good idea. It is there because it has to be there. In React, you
can’t output multiple adjacent elements as shown in the following:

var destination = document.querySelector("#container");

ReactDOM.render(
 <h1>Batman</h1>
 <h1>Iron Man</h1>
 <h1>Nicolas Cage</h1>
 <h1>Mega Man</h1>,
 destination
);

Even though this is valid HTML, it isn’t valid in the eyes of the unholy alliance between JSX and
JavaScript. That may sound like a terrible limitation, but the workaround is really easy. While
you can only output one element, this one element can have as many children as needed. That
is why we wrap our h1 elements inside the div. We do this because of how JSX gets turned
into JavaScript. The details of that are something we will look at later, but it isn’t important
enough right this moment to distract us from learning about components.

Ok, so what we have now are four h1 elements that each contain the name of a superhero.
What if we want to change our h1 element to something like an h3 instead? We can manually
update all of these elements as follows:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h3>Batman</h3>
 <h3>Iron Man</h3>
 <h3>Nicolas Cage</h3>
 <h3>Mega Man</h3>
 </div>,
 destination
);

If you preview what we have, you’ll see something that looks a bit unstyled and plain
(see Figure 3-3).

28 Chapter 3 Components in React

Figure 3-3 Plain vanilla super hero names.

We don’t want to go crazy with the styling here. All we want to do is just italicize all of
these names by using the <i> tag, so let’s manually update what we render by making this
change:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h3><i>Batman</i></h3>
 <h3><i>Iron Man</i></h3>
 <h3><i>Nicolas Cage</i></h3>
 <h3><i>Mega Man</i></h3>
 </div>,
 destination
);

We went through each h3 element and wrapped the content inside some i tags. Can you
start to see the problem here? What we are doing with our UI is no different than having code
that looks as follows:

var speed = 10;
var time = 5;
alert(speed * time);

var speed1 = 85;
var time1 = 1.5;
alert(speed1 * time1);

var speed2 = 12;
var time2 = 9;
alert(speed2 * time2);

29Meet the React Component

var speed3 = 42;
var time3 = 21;
alert(speed3 * time3);

Every change we want to make to our h1 or h3 elements needs to be duplicated for every
instance of it. What if we want to do something even more complex than just modifying the
appearance of our elements? What if we want to represent something more complex than
the simple examples we are using so far? What we are doing right now won’t scale because
 manually updating every copy of what we want to modify is time consuming. It is also boring.

Now, here is a crazy thought: What if everything awesome we looked at about functions
can somehow be applied to how we define our app’s visuals? Wouldn’t that solve all of the
 inefficiencies we’ve highlighted in this section? Well, as it turns out, the answer to that “What
if” forms the core of what React is all about. It is time for you to meet the component.

Meet the React Component

The solution to all of our problems (even the existential ones we grapple with!) can be found in
React components. React components are reusable chunks of JavaScript that output (via JSX) HTML
elements. That sounds really pedestrian for something capable of solving great problems and doing
great things, but as we start to build components and gradually turn up the complexity, you’ll see
that components are really powerful and every bit as awesome as I’ve portrayed them to you.

Let’s start by building a couple of components together. To follow along, start with a blank
React document:

<!DOCTYPE html>
<html>

<head>
 <title>React Components</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">

 </script>
</body>

</html>

There is nothing exciting going on this page. Nearly identical to what we had in our earlier
chapter, this page is pretty barebones, with just a reference to the React and Babel libraries and
a div element who proudly sports an id value of container.

30 Chapter 3 Components in React

Creating a Hello, World! Component

We are going to start really simple. What we want to do is use a component to help us print
the famous “Hello, world!” text to the screen. As we already know, by using just the render
method of ReactDOM, the code would look as follows:

1 ReactDOM.render(
2 <div>
3 <p>Hello, world!</p>
4 </div>,
5 document.querySelector("#container")
6);

Let’s recreate all of this by using a component. You have several ways of creating components
in React, but the way we are going to create them initially is by using React.createClass. Go
ahead and add the following highlighted code just above our existing render method:

var HelloWorld = React.createClass({

});

ReactDOM.render(
 <div>
 <p>Hello, world!</p>
 </div>,
 document.querySelector("#container")
);

What we have done is create a new component called HelloWorld. This HelloWorld
component doesn’t do anything right now. In fact, it is basically an empty JavaScript
object at this point. Inside this object, you can put all sorts of properties to further define
what HelloWorld does. Some properties you define are special and used by React to help your
components work their magic. One such mandatory property is render.

Go ahead and modify our HelloWorld component by adding a render property as shown in
the following:

var HelloWorld = React.createClass({
 render: function() {

 }
});

Just like the render method of we saw a few moments earlier as part of ReactDOM.render,
the render method inside a component is also responsible for dealing with JSX. Let’s modify
our render method to return Hello, componentized world!, so go ahead and add the
 following highlighted lines:

var HelloWorld = React.createClass({
 render: function() {

31Meet the React Component

 return (
 <p>Hello, componentized world!</p>
);
 }
});

What we’ve done is told our render method to return the JSX that represents our Hello,
componentized world! text. All that remains is to actually use this component. The way you
use a component once you’ve defined it is by calling it, and we are going to call it from our
old friend, the ReactDOM.render method:

ReactDOM.render(
 <HelloWorld/>,
 document.querySelector("#container")
);

That isn’t a typo! The JSX we use for calling our HelloWorld component is the very HTML-
like <HelloWorld/>. If you preview your page in your browser, you’ll see the text Hello,
componentized world! showing up on your screen. If you held your breath in suspense, you
can relax.

If you have difficulty relaxing after seeing the syntax we used for calling HelloWorld, stare at
the following circle for a few moments:

32 Chapter 3 Components in React

Ok, back to reality. What we’ve done so far might seem crazy, but simply think of
your <HelloWorld/> component as a cool and new HTML tag whose functionality you have
full control over. This means you can do all sorts of HTML-ey things to it.

For example, go ahead and modify our ReactDOM.render method to look as follows:

ReactDOM.render(
 <div>
 <HelloWorld/>
 </div>,
 document.querySelector("#container")
);

We wrapped our call to the HelloWorld component inside a div element, and if you preview
this in your browser, everything still works. Let’s go one step further! Instead of having just a
single call to HelloWorld, let’s make a bunch of calls. Modify our ReactDOM.render method
to now look as follows:

ReactDOM.render(
 <div>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 </div>,
 document.querySelector("#container")
);

What you will see now is a bunch of Hello, componentized world! text instances
appear. Let’s do one more thing before we move on to something shinier. Go back to
our HelloWorld component declaration, and change the text we return to the more tradi-
tional Hello, world! value:

var HelloWorld = React.createClass({
 render: function() {
 return (
 <p>Hello, world!</p>
);
 }
});

Just make this one change and preview your example. This time around, all of the
various HelloWorld calls we specified earlier now return Hello, world! to the screen. There was
no manually modifying every HelloWorld call. That’s a good thing!

Specifying Properties

Right now, our component does just one thing. It prints Hello, world! to our screen and only
that! That’s the equivalent of having a JavaScript function that looks like this:

33Meet the React Component

function getDistance() {
 alert("42km");
}

Except for one very particular case, that JavaScript function doesn’t seem very useful, does it?
The way to increase the usefulness of this function is by modifying it to take arguments:

function getDistance(speed, time) {
 var result = speed * time;
 alert(result);
}

Now, your function can be used more generally for a variety of situations—not just one where
the output will be 42km.

Something similar applies to your components as well. Just like with functions, you can pass
in arguments that alter what your component does. There is a slight terminology update you
need to be on top of. What we call arguments in the function world are going to be known as
properties in the component world. Let’s see these properties in action!

We are going to modify our HelloWorld component to enable you to specify who or what you
greet besides the generic World. For example, imagine being able to specify Bono as part of
the HelloWorld call and seeing Hello, Bono! appear on screen.

To add properties to a component, there are two parts you need to follow.

First Part: Updating the Component Definition

Right now, our HelloWorld component is hard coded to always send out Hello, world! as
part of its return value. The first thing we are going to do is change that behavior by
having return print out the value passed in by a property. We need a name to give our
 property, and for this example, we are going to call our property greetTarget.

To specify the value of greetTarget as part of our component, here is the modification we
need to make:

var HelloWorld = React.createClass({
 render: function() {
 return (
 <p>Hello, {this.props.greetTarget}!</p>
);
 }
});

The way you access a property is by calling it via the props property that every component has
access to. Notice how we specify this property. We place it inside curly brackets {and }. In JSX,
if you want something to get evaluated as an expression, you need to wrap that something inside curly
brackets. If you don’t do that, you’ll see the raw text this.props.greetTarget printed out.

34 Chapter 3 Components in React

Second Part: Modifying the Component Call

Once you’ve updated the component definition, all that remains is to pass in the property
value as part of the component call. That is done by adding an attribute with the same name
as our property, followed by the value you want to pass in. In our example, that would involve
modifying the HelloWorld call with the greetTarget attribute and the value we want to
give it.

Go ahead and modify our HelloWorld calls as follows:

ReactDOM.render(
 <div>
 <HelloWorld greetTarget="Batman"/>
 <HelloWorld greetTarget="Iron Man"/>
 <HelloWorld greetTarget="Nicolas Cage"/>
 <HelloWorld greetTarget="Mega Man"/>
 <HelloWorld greetTarget="Bono"/>
 <HelloWorld greetTarget="Catwoman"/>
 </div>,
 document.querySelector("#container")
);

Each of our HelloWorld calls now has the greetTarget attribute along with the name of a
superhero (or equivalent mythical being!) that we wish to greet. If you preview this example in
the browser, you’ll see the greetings happily printed out on screen.

One last thing to call out before we move on. You are not limited to just having a single prop-
erty on a component. You can have as many properties as you want, and your props property
will easily accommodate any property requests you have without making any fuss.

Dealing with Children

A few sections ago, I mentioned that our components (in JSX) are very similar to regular HTML
elements. We saw that for ourselves when we wrapped a component inside a div element or
specified an attribute and value as part of specifying properties. There is one more thing you
can do with components just like you can with many HTML elements. Your components can
have children.

What this means is that you can do something like this:

<CleverComponent foo="bar">
 <p>Something!</p>
</CleverComponent>

You have a component very cleverly called CleverComponent, and it has a p element as a
child. From within CleverComponent, you have the capability to access the p child element
(and any children it may have) via the children property accessed by this.props.children.

35Meet the React Component

To make sense of all this, let’s fiddle with another really simple example. This time around, we
have a component called Buttonify that wraps its children inside a button. The component
looks like this:

var Buttonify = React.createClass({
 render: function() {
 return (
 <div>
 <button type={this.props.behavior}>{this.props.children}</button>
 </div>
);
 }
});

The way you can use this component is by just calling it via the ReactDOM.render method
as shown here:

ReactDOM.render(
 <div>
 <Buttonify behavior="Submit">SEND DATA</Buttonify>
 </div>,
 document.querySelector("#container")
);

When this code runs, given what the JSX in the Buttonify component’s render method
looked like, what you will see are the words “SEND DATA” wrapped inside a button element.
With the appropriate styling, the result could look comically large like in Figure 3-4.

Figure 3-4 A large send data button.

36 Chapter 3 Components in React

Anyway, getting back to the JSX, notice that we specify a custom property called behavior.
This property enables us to specify the button element’s type attribute, and you can see us
accessing it via this.props.behavior in the component definition’s render method.

There is more to accessing a component’s children than what we’ve seen here. For example, if
your child element is the root of a deeply nested structure, the this.props.children property
will return an array. If your child element is just a single element (like in our example),
the this.props.children property returns a single component NOT wrapped inside an
array. There are a few more things to call out, but instead of enumerating all the various cases
and boring you, we’ll naturally touch upon those cases as part of looking at more elaborate
examples later on.

Conclusion

If you want to build an app using React, you can’t wander too far without having to use a
component. Trying to build a React app without using a component is kinda like building a
JavaScript-based app without using functions. I am not saying that it can’t be done. It is just
one of those things you don’t do...kinda like the Bad Idea part of the popular Animaniacs Good
Idea / Bad Idea sketches you can find here: https://www.youtube.com/watch?v=2dJOIf4mdus:

If this witty video doesn’t convince you why you should learn to embrace components, I don’t
know what will...except for maybe a future chapter on creating complex components! :P

https://www.youtube.com/watch?v=2dJOIf4mdus:

4
Styling in React

For generations, mankind (and probably really smart dolphins) have styled their HTML content
using CSS (aka Cascading Style Sheets). Things were good. With CSS, you had a good separation
between the content and the presentation. The selector syntax gave you a lot of flexibility in
choosing which elements to style and which ones to skip. You couldn’t even find too many
issues to hate about the whole cascading thing that CSS is all about.

Well, don’t tell React that. While React doesn’t actively hate CSS, it has a different view when
it comes to styling content. As we’ve seen so far, one of React’s core ideas is to have our app’s
visual pieces be self-contained and reusable. That is why the HTML elements and the JavaScript
that impacts them are in the same bucket we call a component. We got a taste of that in the
previous chapter.

What about how the HTML elements look (aka their styling)? Where should that go? You can
probably guess where I am going with this. You can’t have a self-contained piece of UI when
the styling for it is defined somewhere else. That’s why React encourages you to specify how
your elements look right along side the HTML and the JavaScript. In this tutorial, you learn all
about this mysterious (and possibly scandalous!) approach to styling your content. Of course,
we also look at how to use CSS as well. There is room for both approaches—even if React may
sorta kinda not think so :P

Onwards!

Displaying Some Vowels

To learn how to style our React content, let’s work together on a (totally sweet and exciting!)
example that simply displays vowels on a page. First, you’ll need a blank HTML page that will
host our React content. If you don’t have one, feel free to use the following markup:

<!DOCTYPE html>
<html>

<head>
 <title>Styling in React</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>

38 Chapter 4 Styling in React

 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

<body>
 <div id="container"></div>

</body>

</html>

All this markup does is load in our React and Babel libraries and specify a div with an id value
of container. To display the vowels, we’re going to add some React-specific code.

Just below the container div element, add the following:

<script type="text/babel">

 var Letter = React.createClass({
 render: function() {
 return (
 <div>
 {this.props.children}
 </div>
);
 }
 });

 var destination = document.querySelector("#container");

 ReactDOM.render(
 <div>
 <Letter>A</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>
 </div>,
 destination
);

</script>

39Displaying Some Vowels

From what we learned about components, nothing here should be a mystery. We create a
component called Letter that is responsible for wrapping our vowels inside a div element.
All of this is anchored in our HTML via a script tag whose type designates it as something
Babel will know what to do with.

If you preview your page, you’ll see something boring that looks like Figure 4-1.

Figure 4-1 A boring output of what you see.

Don’t worry, we’ll make it look a little less boring in a few moments. After we’ve had a run at
these letters, you will see something that looks more like Figure 4-2.

Figure 4-2 The letters arranged horizontally and with a yellow background.

Our vowels will be wrapped in a yellow background, aligned horizontally, and sport a fancy
monospace font. Let’s look at how to do all of this in both CSS as well as React’s new-fangled
approach.

40 Chapter 4 Styling in React

Styling React Content Using CSS

Using CSS to style our React content is actually as straightforward as you can imagine it to be.
Because React ends up spitting out regular HTML tags, all of the various CSS tricks you’ve
learned over the years to style HTML still apply. There are just a few minor things to keep in
mind.

Understand the Generated HTML

Before you can use CSS, you need to first get a feel for what the HTML that React spits out
is going to look like. You can easily figure that out by looking at the JSX defined inside
the render methods. The parent render method is our ReactDOM based one, and it looks as
follows:

<div>
 <Letter>A</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>
</div>

We have our various Letter components wrapped inside a div. Nothing too exciting here.
The render method inside our Letter component isn’t that much different either:

<div>
 {this.props.children}
</div>

As you can see, each individual vowel is wrapped inside its own set of div tags. If you had to
play this all out (such as, previewing our example in a browser), the final DOM structure for
our vowels looks like Figure 4-3.

Figure 4-3 The preview from inside the browser.

41Styling React Content Using CSS

Ignore the data-reacroot attribute (that you may not even see depending on your
version of React!) on the container div, but pay attention to the rest of the things you
see. What we have is simply an HTML-ized expansion of the various JSX fragments we
saw in the render method a few moments ago with our vowels nested inside a bunch
of div elements.

Just Style It Already!

Once you understand the HTML arrangement of the things you want to style, the hard part is
done. Now comes the fun and familiar part of defining style selectors and specifying the prop-
erties you want to set. To affect our inner div elements, add the following inside our style tag:

div div div {
 padding: 10px;
 margin: 10px;
 background-color: #ffde00;
 color: #333;
 display: inline-block;
 font-family: monospace;
 font-size: 32px;
 text-align: center;
}

The div div div selector will ensure we style the right things. The end result will
be our vowels styled to look exactly like we saw earlier. With that said, a style selector
of div div div looks a bit odd, doesn’t it? It is too generic. In apps with more than three
nested div elements (which will be very common), you may end up styling the wrong things.
It is at times like this where you will want to change the HTML that React generates to make
our content more easily style-able.

The way we are going to address this is by giving our inner div elements a class value
of letter. Here is where JSX differs from HTML. Make the following highlighted change:

var Letter = React.createClass({
 render: function() {
 return (
 <div className="letter">
 {this.props.children}
 </div>
);
 }
});

Notice that we designate the class value by using the className attribute instead of
the class attribute. The reason has to do with the word class being a special keyword in
JavaScript. If that doesn’t make any sense why it is important, don’t worry about it for now.
We’ll cover that later.

42 Chapter 4 Styling in React

Anyway, once you’ve given your div a className attribute value of letter, there is just one
more thing to do. Modify the CSS selector to target our div elements more cleanly:

.letter {
 padding: 10px;
 margin: 10px;
 background-color: #ffde00;
 color: #333;
 display: inline-block;
 font-family: monospace;
 font-size: 32px;
 text-align: center;
}

As you can see, using CSS is a perfectly viable way to style the content in your React-based
apps. In the next section, we’ll look at how to style our content using the approach preferred
by React.

Styling Content the React Way

React favors an inline approach for styling content that doesn’t use CSS. While that seems a bit
strange at first, it is designed to help make your visuals more reusable. The goal is to have your
components be little black boxes where everything related to how your UI looks and works gets
stashed there. Let’s see this for ourselves.

Continuing our example from earlier, remove the .letter style rule. Once you have done
this, your vowels will return to their unstyled state when you preview your app in the
browser. For completeness, you should remove the className declaration from our Letter
 component’s render function as well. There is no point having our markup contain things we
won’t be using.

Right now, our Letter component is back to its original state:

var Letter = React.createClass({
 render: function() {
 return (
 <div>
 {this.props.children}
 </div>
);
 }
});

The way you specify styles inside your component is by defining an object whose content
is the CSS properties and their values. Once you have that object, you assign that object to
the JSX elements you wish to style by using the style attribute. This will make more sense
once we perform these two steps ourselves, so let’s apply all of this to style the output of
our Letter component.

43Styling Content the React Way

Creating a Style Object

Let’s get right to it by defining our object that contains the styles we wish to apply:

var Letter = React.createClass({
 render: function() {
 var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: "#ffde00",
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: 32,
 textAlign: "center"
 };

 return (
 <div>
 {this.props.children}
 </div>
);
 }
});

We have an object called letterStyle, and the properties inside it are just CSS property
names and their value. If you’ve never defined CSS properties in JavaScript before (i.e., by
setting object.style), the formula for converting them into something JavaScript-friendly is
pretty simple:

 ■ Single word CSS properties (like padding, margin, color) remain unchanged.

 ■ Multi-word CSS properties with a dash in them (like background-color, font-
family, border-radius) are turned into one camelcase word with the dash removed
and the words following the dash capitalized. For example, using our example
properties, background-color would become backgroundColor, font-family would
become fontFamily, and border-radius would become borderRadius.

Our letterStyle object and its properties are pretty much a direct JavaScript translation of
the .letter style rule we looked at a few moments ago. All that remains now is to assign this
object to the element we wish to style.

Actually Styling Our Content

Now that we have our object containing the styles we wish to apply, the rest is very easy.
Find the element we wish to apply the style to and set the style attribute to refer to that
object. In our case, that will be the div element returned by our Letter component’s render
function.

44 Chapter 4 Styling in React

Take a look at the highlighted line to see how this is done for our example:

var Letter = React.createClass({
 render: function() {
 var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: "#ffde00",
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: "32",
 textAlign: "center"
 };

 return (
 <div style={letterStyle}>
 {this.props.children}
 </div>
);
 }
});

Our object is called letterStyle, so that is what we specify inside the curly brackets to let
React know to evaluate the expression. That’s all there is to it. Go ahead and run the example
in the browser to ensure everything works properly and all of our vowels are properly styled.

For some extra validation, if you inspect the styling applied to one of the vowels using
your browser developer tool of choice, you’ll see that the styles are infact applied inline
(see Figure 4-4).

Figure 4-4 The styles are applied inline.

45Styling Content the React Way

While this is no surprise, it might be difficult for those of us used to styles being inside style
rules to swallow. As they say, the Times They Are A Changin’ (https://www.youtube.com/
watch?v=e7qQ6_RV4VQ).

You Can Omit the "px" Suffix

When programmatically setting styles, it’s a pain to deal with numbers that need a pixel value
suffix. In order to generate these values, you need to do some string concatenation on your
number to add a px. To convert from a pixel value back to a number, you need to parse out
the px. All of this isn’t extremely complicated or time consuming, but it is a distraction.

To help with this, React allows you to omit the px suffix for a bunch of CSS properties. If you
recall, our letterStyle object looks as follows:

 1 var letterStyle = {
 2 padding: 10,
 3 margin: 10,
 4 backgroundColor: "#ffde00",
 5 color: "#333",
 6 display: "inline-block",
 7 fontFamily: "monospace",
 8 fontSize: "32",
 9 textAlign: "center"
10 };=

Notice that for some of the properties with a numerical value such as padding, margin, and
fontSize, we didn’t specify the px suffix at all. That is because, at runtime, React will add the
px suffix automatically.

The only number-related properties React won’t add a pixel suffix to automatically are the
following properties: animationIterationCount, boxFlex, boxFlexGroup, boxOrdinal-
Group, columnCount, fillOpacity, flex, flexGrow, flexPositive, flexShrink, flex-
Negative, flexOrder, fontWeight, lineClamp, lineHeight, opacity, order, orphans,
stopOpacity, strokeDashoffset, strokeOpacity, strokeWidth, tabSize, widows, zIndex,
and zoom. While I wish I could tell you that I walk around with this information memorized,
I actually just referred to this article: https://facebook.github.io/react/tips/style-props-value-px
.html Please hold your applause :P

While pixel values are great for many things, you may want to use percentages, ems, vh, etc. to
represent your values. For these non-pixel values, you still have to manually ensure the suffix
is dealt with. React won’t help you out there, so if you aren’t a fan of pixel values, this nicety
doesn’t gain you much.

Making the Background Color Customizable

The last thing we are going to do before we wrap things up is take advantage of how React
works with styles. By having our styles defined in the same vicinity as the JSX, we can make
the various style values easily customizable by the parent (aka the consumer of the compo-
nent). Let’s see this in action.

https://www.youtube.com/watch?v=e7qQ6_RV4VQ
https://www.youtube.com/watch?v=e7qQ6_RV4VQ
https://facebook.github.io/react/tips/style-props-value-px.html
https://facebook.github.io/react/tips/style-props-value-px.html

46 Chapter 4 Styling in React

Right now, all of our vowels have a yellow background. Wouldn’t it be cool if we could specify
the background color as part of each Letter declaration? To do this, in our ReactDOM.render
method, first add a bgcolor attribute and specify some colors as shown in the following
 highlighted lines:

ReactDOM.render(
 <div>
 <Letter bgcolor="#58B3FF">A</Letter>
 <Letter bgcolor="#FF605F">E</Letter>
 <Letter bgcolor="#FFD52E">I</Letter>
 <Letter bgcolor="#49DD8E">O</Letter>
 <Letter bgcolor="#AE99FF">U</Letter>
 </div>,
 destination
);

Next, we need to use this property. In our letterStyle object, set the value of background-
Color to this.props.bgColor:

 1 var letterStyle = {
 2 padding: 10,
 3 margin: 10,
 4 backgroundColor: this.props.bgcolor,
 5 color: "#333",
 6 display: "inline-block",
 7 fontFamily: "monospace",
 8 fontSize: "32",
 9 textAlign: "center"
10 };

This will ensure that the backgroundColor value is inferred from what we set via
the bgColor attribute as part of the Letter declaration. If you preview this in your browser,
you will now see our same vowels sporting some totally sweet background colors as shown in
Figure 4-5.

Figure 4-5 Our vowels with background colors!

47Conclusion

What we’ve just done is something that is going to be very hard to replicate using plain
CSS. Now, as we start to look at components whose contents change based on state or user
 interaction, you’ll see more such examples where the React way of styling things has a lot of
good merit.

Conclusion

As we dive in further and learn more about React, you’ll see several more cases where React
does things quite differently than what we’ve been told is the correct way of doing things on
the web. In this tutorial, we saw React promoting inline styles in JavaScript as a way to style
content as opposed to using CSS style rules. Earlier, we looked at JSX and how the entirety
of your UI can be declared in JavaScript using an XML-like syntax that sorta kinda looks
like HTML.

In all of these cases, if you look deeper beneath the surface, the reasons for why React diverges
from conventional wisdom makes a lot of sense. Building apps with their very complex UI
requirements requires a new way of solving the challenges associated with complex UIs. HTML,
CSS, and JavaScript techniques that probably made a lot of sense when dealing with web pages
and documents may not be applicable in the web app world where components are re-used
inside other components.

With that said, you should pick and choose the techniques that make the most sense for your
situation. While I am biased towards React’s way of solving our UI development problems, I’ll
do my best to highlight alternate or conventional methods as well. Tying that back to what we
saw here, using CSS style rules with your React content is totally OK as long as you make the
decision knowing the things you gain as well as lose by doing so.

This page intentionally left blank

5
Creating Complex

Components

In Chapter 3, you learned about components and all the awesome things that they do.
You learned that components are the primary ways through which React enables our visual
elements to behave like little reusable bricks that contain all of the HTML, JavaScript, and
styling needed to run themselves. Beyond reusability, there is another major advantage
 components bring to the table. They make possible composability. You can combine
 components to create more complex components.

In this chapter, we look at what all of this means. More specifically, we look at two things:

 ■ The boring technical stuff that you need to know.

 ■ The boring stuff you need to know about how to identify components when you look at
a bunch of visual elements.

OK, what you are going to learn isn’t actually that boring. I am just setting your expectations
really low :P

From Visuals to Components

The various examples we’ve looked at so far have been pretty basic. They were great for
 highlighting technical concepts (see Figure 5-1), but they weren’t great for preparing you for
the real world.

50 Chapter 5 Creating Complex Components

Figure 5-1 Great for highlighting technical concepts, but...

In the real world, what you’ll be asked to implement in React will never be so simple as a list
of names or colorful blocks of vowels. Instead, you’ll be given a visual representation of some
complex user interface. That visual can take many forms—a scribble, diagram, screenshot,
video, redline, comp, etc. It is up to you to bring all of those static pixels to life, and we are
going to get some hands-on practice in doing just that.

What we are going to do is build a simple color palette card (see Figure 5-2).

Figure 5-2 A simple color palette card.

51From Visuals to Components

If you are not sure what these are, these are small rectangular cards that help you match a
color with a particular type of paint. You’ll frequently see them in home improvement stores
or anywhere paint is sold. Your designer friend probably has a giant closet dedicated to them in
their place. Anyway, our mission is to recreate one of these cards using React.

There are several ways to go about this, but I am going to show you a very systematic approach
that will help you simplify and make sense of even the most complex user interfaces. This
approach involves two steps:

1. Identify the major visual elements

2. Figure out what the components will be

Both of these steps sound really complex, but as we walk through this, you’ll see that it is
nothing to be worried about.

Identifying the Major Visual Elements

The first step is to identify all of the visual elements we are dealing with. No visual element is
too minor to omit—at least not initially. The easiest way to start identifying the relevant pieces
is to start with the obvious visual elements and then dive into the less obvious ones.

The first thing you will see in our example is the card itself (see Figure 5.3).

Figure 5-3 The card.

52 Chapter 5 Creating Complex Components

Within the card, you’ll see that there are two distinct regions. The top region is a rectangular
area that displays a particular color. The bottom region is a white area that displays a hex value.

Let’s call out these two visual elements and arrange them into a tree-like structure as shown
in Figure 5-4.

Figure 5-4 Tree-like structure.

Arranging your visuals into this tree-like structure (aka a visual hierarchy) is a good way to get
a better feel for how your visual elements are grouped. The goal of this exercise is to identify
the important visual elements and break them into a parent/child arrangement until you can
divide them no further.

Try to Ignore Implementation Details

While it is hard, do not think of implementation details yet. Don’t focus on dividing your visual
elements based on what combination of HTML and CSS would be required. There is plenty of
time for that later!

53From Visuals to Components

Continuing on, we can see that our colorful rectangle isn’t something that we can divide
further. That doesn’t mean we are done, though. We can further divide the label from the white
region that surrounds it. Right now, our visual hierarchy looks as shown in Figure 5-5 with our
label and white region occupying a separate spot in our tree.

Figure 5-5 Dividing things further into the label and the white region that surrounds it.

At this point, we have nothing else to divide any further. We are done with identifying and
dividing up our visual elements, so the next step is to use what we’ve found here to help us
identify the components.

Identifying the Components

This is where things get a little interesting. We need to figure out which of the visual elements
we’ve identified will be turned into a component and which ones will not. Not every visual
element will need to be turned into a component, and we certainly don’t want to create only a
few extremely complex components either. There needs to be a balance (see Figure 5-6).

54 Chapter 5 Creating Complex Components

Figure 5-6 Not too few and not too many components.

There is an art to figuring out what visual elements become part of a component and
which ones don’t. The general rule is that our components should do just one thing. If you find
that your potential component will end up doing too many things, you probably want
to break your component into multiple components. On the flip side, if your potential
 component does too little, you probably want to skip making that visual element a
 component altogether.

Let’s try to figure out which elements would make for good components in our example. From
looking at our visual hierarchy, right off the bat, both the card and the colored rectangle seem
like they fit the bill for making a great component. The card acts as the outer container, and
the colored rectangle simply displays a color.

That just puts a question mark around our label and the white region it is surrounded by
though (see Figure 5-7).

55From Visuals to Components

Figure 5-7 Question mark around the label and the white space around it.

The important part here is the label itself. Without it, we can’t see the hex value. That leaves
just the white region. The purpose it serves is negligible. It is simply empty space, and the
responsibility for that can easily be handed off to our label itself. Brace yourself for what I am
about to say next. Sadly, our white rectangular region will not be turned into a component.

At this point, we have identified our three components, and the component hierarchy looks
as in Figure 5-8.

56 Chapter 5 Creating Complex Components

Figure 5-8 The three components.

An important thing to note is that the component hierarchy has more to do with helping
us define our code than it does with how the finished product will look. You’ll notice that it
looks a bit different than the visual hierarchy we started off with. For visual details, you should
always refer to your source material (aka your visual comps, redlines, screenshots, and other
related items). For figuring out which components to create, you should use the component
hierarchy.

Ok, now that we’ve identified our components and the relationship between all of them, it is
time to start bringing our color palette card to life.

Creating the Components

This is the easy part—sort of! It is time for us to start writing some code. The first thing we
need is a mostly-empty HTML page that will serve as our starting point:

<!DOCTYPE html>
<html>

<head>
 <title>More Components!</title>

57Creating the Components

 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">

 ReactDOM.render(
 <div>

 </div>,
 document.querySelector("#container")
);
 </script>
</body>

</html>

Take a moment to see what this page has going on. There isn’t much—just the bare minimum
needed to have React render an empty div into our container element.

After you’ve done this, it is time to define our three components. The names we will go
with for our components will be Card, Label, and Square. Go ahead and add the following
 highlighted lines just above the ReactDOM.render function:

var Square = React.createClass({
 render: function() {
 return(
 <p>Nothing</p>
);
 }
});

var Label = React.createClass({
 render: function() {
 return (
 <p>Nothing</p>
);

58 Chapter 5 Creating Complex Components

 }
});

var Card = React.createClass({
 render: function() {
 return (

);
 }
});

ReactDOM.render(
 <div>

 </div>,
 document.querySelector("#container")
);

Within our three components, we also threw in the render function that each component
absolutely needs to function. Other than that, our components are empty. In the following
sections, we will fix that by filling them in.

The Card Component

We are going to start at the top of our component hierarchy and focus on our Card component
first. This component will act as the the container that our Square and Label components
will live in.

To implement it, go ahead and make the following highlighted modifications:

 1 var Card = React.createClass({
 2 render: function() {
 3 var cardStyle = {
 4 height: 200,
 5 width: 150,
 6 padding: 0,
 7 backgroundColor: "#FFF",
 8 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
 9 filter: "drop-shadow(0px 0px 5px #666)"
10 };
11
12 return (
13 <div style={cardStyle}>
14
15 </div>
16);
17 }
18 });

59Creating the Components

While this seems like a lot of changes, the bulk of the lines are going into styling the output of
our Card component via the cardStyle object. Inside the object, notice that we specify a
vendor-prefixed version of the CSS filter property with WebkitFilter. That’s not the inter-
esting detail. The interesting detail is the capitalization. Instead of the first letter being camel-
cased as webkitFilter, the W is actually capitalized. That isn’t how other normal CSS properties
are represented, so keep that in mind if you ever need to specify a vendor-prefixed property.

The rest of the changes are pretty unimpressive. We return a div element, and that
element’s style attribute is set to our cardStyle object. Now, to see our Card component in
action, we need to display it in our DOM as part of the ReactDOM.render function. To make
that happen, go ahead and make the following highlighted change:

 1 ReactDOM.render(
 2 <div>
 3 <Card/>
 4 </div>,
 5 document.querySelector("#container")
 6);

All we are doing is telling the ReactDOM.render function to render the output of
our Card component by invoking it. If everything worked out properly, you’ll see the same
thing as in Figure 5-9 if you test your app.

Figure 5-9 The result of your test—the outline of the color palette card.

Yes, it is just the outline of our color palette card, but that is definitely more than what we
started out with just a few moments ago!

60 Chapter 5 Creating Complex Components

The Square Component

It’s time to go one level down in our component hierarchy and look at our Square component.
This is a pretty straightforward one, so make the following highlighted changes:

 1 var Square = React.createClass({
 2 render: function() {
 3 var squareStyle = {
 4 height: 150,
 5 backgroundColor: "#FF6663"
 6 };
 7 return(
 8 <div style={squareStyle}>
 9
10 </div>
11);
12 }
13 });

Just like with our Card component, we are returning a div element whose style attribute is
set to a style object that defines how this component looks. To see our Square
component in action, we need to get it onto our DOM just like we did with the Card component
earlier. The difference this time around is that we won’t be calling the Square component
via our ReactDOM.render function. Instead, we’ll call the Square component from inside
the Card component. To see what I mean, go back to our Card component’s render function,
and make the following change:

var Card = React.createClass({
 render: function() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
 filter: "drop-shadow(0px 0px 5px #666)"
 };

 return (
 <div style={cardStyle}>
 <Square/>
 </div>
);
 }
});

At this point, if you preview our app, you’ll see a colorful square making an appearance
(see Figure 5-10).

61Creating the Components

Figure 5-10 The red portion appears.

The cool thing to call out is that we called our Square component from inside the Card
component! This is an example of component composability where one component relies
on the output of another component. The final thing you see is the result of these two
 components colluding with each other. Isn’t collusion just beautiful—at least in this context?

The Label Component

The last component that remains is our Label. Go ahead and make the following highlighted
changes:

 1 var Label = React.createClass({
 2 render: function() {
 3 var labelStyle = {
 4 fontFamily: "sans-serif",
 5 fontWeight: "bold",
 6 padding: 13,
 7 margin: 0
 8 };
 9
10 return (
11 <p style={labelStyle}>#FF6663</p>
12);
13 }
14 });

62 Chapter 5 Creating Complex Components

The pattern of what we are doing should be routine to you by now. We have a style object that
we assign to what we return. What we return is a p element whose content is the string #FF6663.
To have what we return ultimately make it to our DOM, we need to call our Label component via
our Card component. Go ahead and make the following highlighted change:

 1 var Card = React.createClass({
 2 render: function() {
 3 var cardStyle = {
 4 height: 200,
 5 width: 150,
 6 padding: 0,
 7 backgroundColor: "#FFF",
 8 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
 9 filter: "drop-shadow(0px 0px 5px #666)"
10 };
11
12 return (
13 <div style={cardStyle}>
14 <Square/>
15 <Label/>
16 </div>
17);
18 }
19 });

Notice that our Label component lives just under the Square component we added to
our Card component’s return function earlier. If you preview your app in the browser now,
you should see something that looks like Figure 5-11.

Figure 5-11 The label appears.

63Creating the Components

Yes, that’s right! Our color palette card is done and visible, thanks to the efforts of our Card,
Square, and Label components. That doesn’t mean we are done yet, though. There are a few
more things to cover.

Passing Properties, Again!

In our current example, we hard-coded the color value that is used by our Square and Label
components. That is an odd thing to do—which may or may not have been done deliberately
for dramatic effect, but fixing it is straightforward. It just involves us specifying a property
name and accessing it via this.props. We’ve seen all this before. What is different is the
number of times we will have to do this.

There is no way to properly specify a property on a parent component and have all descendants
automatically gain access to that property. There are many improper ways to deal with this
such as defining global objects, setting the value on a component property directly, and so on.
We won’t concern ourselves with such improper solutions right now. We aren’t animals!

Anyway, the proper way to pass a property value to a child component is to have each inter-
mediate parent component pass on the property as well. To see this in action, take a look at
the highlighted changes to our current code where we move away from a hard-coded color and
define our card’s color using a color property instead:

 1 var Square = React.createClass({
 2 render: function() {
 3 var squareStyle = {
 4 height: 150,
 5 backgroundColor: this.props.color
 6 };
 7 return(
 8 <div style={squareStyle}>
 9
10 </div>
11);
12 }
13 });
14
15 var Label = React.createClass({
16 render: function() {
17 var labelStyle = {
18 fontFamily: "sans-serif",
19 fontWeight: "bold",
20 padding: 13,
21 margin: 0
22 };
23
24 return (
25 <p style={labelStyle}>{this.props.color}</p>

64 Chapter 5 Creating Complex Components

26);
27 }
28 });
29
30 var Card = React.createClass({
31 render: function() {
32 var cardStyle = {
33 height: 200,
34 width: 150,
35 padding: 0,
36 backgroundColor: "#FFF",
37 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
38 filter: "drop-shadow(0px 0px 5px #666)"
39 };
40
41 return (
42 <div style={cardStyle}>
43 <Square color={this.props.color}/>
44 <Label color={this.props.color}/>
45 </div>
46);
47 }
48 });
49
50 ReactDOM.render(
51 <div>
52 <Card color="#FF6663"/>
53 </div>,
54 document.querySelector("#container")
55);

Once you have made this change, you can specify any hex color you want as part of calling
the Card component:

 1 ReactDOM.render(
 2 <div>
 3 <Card color="#FFA737"/>
 4 </div>,
 5 document.querySelector("#container")
 6);

The resulting color palette card will feature the color you specified (see Figure 5-12).

65Creating the Components

Figure 5-12 The color for hex value #FFA737.

Now, let’s go back to the changes we made. Even though the color property is only consumed
by the Square and Label components, the parent Card component is responsible for passing
the property on to them. For even more deeply nested situations, you’ll have more intermedi-
ate components that will be responsible for transferring properties. It gets worse. When you
have multiple properties that you would like to pass around multiple levels of components, the
amount of typing (or copying/pasting) you do increases a lot as well. There are ways to mitigate
this, and we’ll look at those mitigation strategies in much greater detail in a future chapter.

66 Chapter 5 Creating Complex Components

Why Component Composability Rocks

When we are heads-down in React, we often tend to forgot that what we are ultimately creating
is just plain and boring HTML, CSS, and JavaScript. The generated HTML for our color palette
card looks as follows:

<div id="container">
 <div data-reactid=".0">
 <div style="height:200px;
 width:150px;
 padding:0;
 background-color:#FFF;
 -webkit-filter:drop-shadow(0px 0px 5px #666);
 filter:drop-shadow(0px 0px 5px #666);">
 <div style="height:150px;
 background-color:#FF6663;"></div>
 <p style="font-family:sans-serif;
 font-weight:bold;
 padding:13px;
 margin:0;">#FF6663</p>
 </div>
 </div>
</div>

This markup has no idea of how it got there. It doesn’t know about which components were
responsible for what. It doesn’t care about component composability or the frustrating way we
had to transfer the color property from parent to child. That brings up an important point to
make.

If we had to generalize the end result of what components do, all they do is return blobs
of HTML to whatever called it. Each component’s render function returns some HTML to
another component’s render function. All of this HTML keeps accumulating until a giant blob
of HTML is pushed (very efficiently) to our DOM. That simplicity is why component re-use
and composability works so well. Each blob of HTML works independently from other blobs of
HTML—especially if you specify inline styles as React recommends. This enables you to easily
create visual elements from other visual elements without having to worry about anything.
ANYTHING! Isn’t that pretty freaking awesome?

Conclusion

As you may have realized by now, we are slowly shifting focus towards the more advanced
scenarios that React thrives in. Actually, advanced isn’t the right word. The correct word
is realistic. In this chapter, we started by learning how to look at a piece of UI and identify the
components in a way that you can later implement. That is a situation you will find yourself
in all the time. While the approach we employed seemed really formal, as you get more expe-
rienced with creating things in React, you can ratchet down the formality. If you can quickly

67Conclusion

identify the components and their parent/child relationships without creating a visual and
component hierarchy, then that is one more sign that you are getting really good at working
with React!

Identifying the components is only one part of the equation. The other part is bringing those
components to life. Most of the technical stuff we saw here was just a minor extension of what
we’ve already seen earlier. We looked at one level of components in an earlier chapter, and here
we looked at how to work with multiple levels of components. We looked at how to pass prop-
erties between one parent and one child in an earlier chapter, and here we looked at how to
pass properties between multiple parents and multiple children. Maybe in a future chapter we’ll
do something groundbreaking like drawing multiple color palette cards to the screen! Or, we
can maybe specify two properties instead of just a single one. Who knows?

This page intentionally left blank

6
Transferring Properties

(Props)

There is a frustrating side to working with properties. We kinda saw this side in the previous
chapter. Passing properties from one component to another is nice and simple when you are
dealing with only one layer of components. When you wish to send a property across multiple
layers of components, things start getting complicated.

Things getting complicated is never a good thing, so in this chapter, let’s see what we can do to
make working with properties across multiple layers of components easy.

Problem Overview

Let’s say that you have a deeply nested component, and its hierarchy (modeled as awesomely
colored circles) looks like Figure 6-1.

70 Chapter 6 Transferring Properties (Props)

Figure 6-1 The component hierarchy.

What you want to do is pass a property from your red circle all the way down to our purple
circles where it will be used. What we can’t do is the very obvious and straightforward thing
shown in Figure 6-2.

71Problem Overview

Figure 6-2 Can’t do this.

You can’t pass a property directly to the component or components that you wish to target.
The reason has to do with how React works. React enforces a chain of command where properties
have to flow down from a parent component to an immediate child component. This means you can’t
skip a layer of children when sending a property. This also means your children can’t send a
property back up to a parent. All communication is one-way from the parent to the child.

Under these guidelines, passing a property from our red circle to our purple circle looks a little
bit like Figure 6-3.

72 Chapter 6 Transferring Properties (Props)

Figure 6-3 The property is passed from parent to child.

Every component that lies on the intended path has to receive the property from its parent
and then re-send that property to its child. This process repeats until your property reaches its
intended destination. The problem is in this receiving and re-sending step.

If we had to send a property called color from the component representing our red circle to
the component representing our purple circle, its path to the destination would look something
like Figure 6-4.

73Problem Overview

Figure 6-4 Sending the color property.

Now, imagine we have two properties that we need to send, as in Figure 6-5.

Figure 6-5 Sending two properties.

74 Chapter 6 Transferring Properties (Props)

What if we wanted to send three properties? Or four?

We can quickly see that this approach is neither scalable nor maintainable. For every additional
property we need to communicate, we are going to have to add an entry for it as part of
 declaring each component. If we decide to rename our properties at some point, we will have
to ensure that every instance of that property is renamed as well. If we remove a property, we
need to remove the property from every component that relied on it. Overall, these are the
kinds of situations we try to avoid when writing code. What can we do about this?

Detailed Look at the Problem

In the previous section, we talked at a high level about what the problem is. Before we can
dive into figuring out a solution, we need to go beyond diagrams and look at a more detailed
example with real code. We need to take a look at something like the following:

var Display = React.createClass({
 render: function() {
 return(
 <div>
 <p>{this.props.color}</p>
 <p>{this.props.num}</p>
 <p>{this.props.size}</p>
 </div>
);
 }
});

var Label = React.createClass({
 render: function() {
 return (
 <Display color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
);
 }
});

var Shirt = React.createClass({
 render: function() {
 return (
 <div>
 <Label color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
 </div>
);
 }
});

75Detailed Look at the Problem

ReactDOM.render(
 <div>
 <Shirt color="steelblue" num="3.14" size="medium"/>
 </div>,
 document.querySelector("#container")
);

Take a few moments to understand what is going on. Once you have done that, let’s walk
through this example together.

What we have is a Shirt component that relies on the output of the Label component which
relies on the output of the Display component. (Try saying that sentence five time fast!)
Anyway, the component hierarchy can be seen in Figure 6-6.

Figure 6-6 The component hierarchy.

76 Chapter 6 Transferring Properties (Props)

When you run this code, what gets output is nothing special. It is just three lines of text
(see Figure 6-7).

Figure 6-7 The three lines of text.

The interesting part is how the text gets there. Each of the three lines of text that you see maps
to a property we specified at the very beginning inside ReactDOM.render:

<Shirt color="steelblue" num="3.14" size="medium"/>

The color, num, and size properties (and their values) make a journey all the way to
the Display component that would make even the most seasoned world traveler jealous. Let’s
follow these properties from their inception to when they get consumed, and I do realize that
a lot of this will be a review of what you’ve already seen. If you find yourself getting bored, feel
free to skip on to the next section. With that said, onwards and upwards!

Life for our properties starts inside ReactDOM.render when our Shirt component gets called
with the color, num, and size properties specified:

ReactDOM.render(
 <div>
 <Shirt color="steelblue" num="3.14" size="medium"/>
 </div>,
 document.querySelector("#container")
);

77Detailed Look at the Problem

We not only define the properties, we also initialize them with the values they will carry.

Inside the Shirt component, these properties are stored inside the props object. To transfer
these properties on, we need to explicitly access these properties from the props object and list
them as part of the component call. The following is an example of what that looks like when
our Shirt component calls our Label component:

var Shirt = React.createClass({
 render: function() {
 return (
 <div>
 <Label color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
 </div>
);
 }
});

Notice that the color, num, and size properties are listed again. The only difference from what
we saw with the ReactDOM.render call is that the values for each property are taken from their
respective entry in the props object as opposed to being manually entered.

When our Label component goes live, it has its props object properly filled out with
the color, num, and size properties stored. You can probably see a pattern forming here. If you
need to let out a big yawn, feel free to.

The Label component continues the tradition by repeating the same steps and calling
the Display component:

var Label = React.createClass({
 render: function() {
 return (
 <Display color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
);
 }
});

Phew. All we wanted to do was have our Display component display some values
for color, num, and size. The only complication was that the values we wanted to display
were originally defined as part of ReactDOM.render. The annoying solution is the one you see
here where every component along the path to the destination needs to access and re-define
each property as part of passing it along. That’s just terrible. We can do better than this, and
you will see how in a few moments!

78 Chapter 6 Transferring Properties (Props)

Meet the Spread Operator

The solution to all of our problems lies in something new to JavaScript known as the spread
operator. What the spread operator does is a bit bizarre to explain without some context, so I’ll
first give you an example and then bore you with a definition.

Take a look at the following snippet:

var items = ["1", "2", "3"];

function printStuff(a, b, c) {
 console.log("Printing: " + a + " " + b + " " + c);
}

We have an array called items that contains three values. We also have a function
called printStuff that takes three arguments. What we want to do is specify the three values
from our items array as arguments to the printStuff function. Sounds simple enough, right?

Here is one really common way of doing that:

printStuff(items[0], items[1], items[2]);

We access each array item individually and pass it in to our printStuff function. With the
spread operator, we now have an easier way. You don’t have to specify each item in the array
individually at all. You can just do something like this:

printStuff(...items);

The spread operator is the ... characters before our items array, and using ...items is
 identical to listing items[0], items[1], and items[2] individually like we did earlier.
The printStuff function will run and print the numbers 1, 2, and 3 to our console. Pretty
cool, right?

Now that you’ve seen the spread operator in action, it’s time to define it. The spread operator
enables you to unwrap an array into its individual elements. The spread operator does a few more
things as well, but that’s not important for now. We are going to only use this particular side of
the spread operator to solve our property transferring problem!

Properly Transferring Properties

We just saw an example where we used the spread operator to avoid having to enumerate every
single item in our array as part of passing it to a function:

var items = ["1", "2", "3"];

function printStuff(a, b, c) {
 console.log("Printing: " + a + " " + b + " " + c);
}

79Properly Transferring Properties

// using the spread operator
printStuff(...items);

// without using the spread operator
printStuff(items[0], items[1], items[2]);

The situation we are facing with transferring properties across components is very similar to
our problem of accessing each array item individually. Allow me to elaborate.

Inside a component, our props object looks as follows:

var props = {
 color: "steelblue",
 num: "3.14",
 size: "medium"
}

As part of passing these property values to a child component, we manually access each item
from our props object:

<Display color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>

Wouldn’t it be great if there was a way to unwrap an object and pass on the property/value
pairs just like we were able to unwrap an array using the spread operator?

As it turns out, there is a way. It actually involves the spread operator as well. I’ll explain how
later, but what this means is that we can call our Display component by using ...props:

<Display {...props}/>

By using ...props, the runtime behavior is the same as specifying the color, num,
and size properties manually. This means our earlier example can be simplified as follows (pay
attention to the highlighted lines):

var Display = React.createClass({
 render: function() {
 return(
 <div>
 <p>{this.props.color}</p>
 <p>{this.props.num}</p>
 <p>{this.props.size}</p>
 </div>
);
 }
});

var Label = React.createClass({
 render: function() {
 return (

80 Chapter 6 Transferring Properties (Props)

 <Display {...this.props}/>
);
 }
});

var Shirt = React.createClass({
 render: function() {
 return (
 <div>
 <Label {...this.props}/>
 </div>
);
 }
});

ReactDOM.render(
 <div>
 <Shirt color="steelblue" num="3.14" size="medium"/>
 </div>,
 document.querySelector("#container")
);

If you run this code, the end result is going to be unchanged from what we had earlier. The
biggest difference is that we are no longer passing in expanded forms of each property as part
of calling each component. This solves all the problems we originally set out to solve.

By using the spread operator, if you ever decide to add properties, rename properties,
remove properties, or do any other sort of property-related shenanigans, you don’t have to
make a billion different changes. You make one change at the spot where you define your
 property. You make another change at the spot you consume the property. That’s it. All of the
 intermediate components that merely transfer the properties on will remain untouched, for
the {...this.props} expression contains no details of what goes on inside it.

Conclusion

As designed by the ES6/ES2015 committee, the spread operator is designed to work only on
arrays and array-like creatures (aka that which has a Symbol.iterator property). The fact
that it works on object literals like our props object is due to React extending the standard.
As of now, no browser currently supports using the spread object on object literals. The reason
our example works is because of Babel. Besides turning all of our JSX into something our
browser understands, Babel also turns cutting-edge and experimental features into something
 cross-browser friendly. That is why we are able to get away with using the spread operator on
an object literal, and that is why we are able to elegantly solve the problem of transferring
properties across multiple layers of components!

7
Meet JSX—Again!

As you probably noticed by now, we’ve been using a lot of JSX in the previous chapters. What
we really haven’t done is taken a good look at what JSX actually is. How does it actually work?
Why do we not just call it HTML? What quirks does it have up its sleeve? In this chapter,
we answer all of those questions and more! We do some serious backtracking (and some
forwardtracking!) to get a deeper look at what we need to know about JSX in order to be
dangerous.

What Happens with JSX?

One of the biggest things we’ve glossed over is trying to figure out what happens with our JSX
after we’ve written it. How does it end up as HTML that we see in our browser? Take a look at
the following example where we define a component called Card:

var Card = React.createClass({
 render: function() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
 filter: "drop-shadow(0px 0px 5px #666)"
 };

 return (
 <div style={cardStyle}>
 <Square color={this.props.color}/>
 <Label color={this.props.color}/>
 </div>
);
 }
});

82 Chapter 7 Meet JSX—Again!

We can quickly spot the JSX here. It is the following four lines:

<div style={cardStyle}>
 <Square color={this.props.color}/>
 <Label color={this.props.color}/>
</div>

The thing to keep in mind is that our browsers have no idea what to do with JSX. They
probably think you are crazy if you ever even try to describe JSX to them. That is why
we have been relying on things like Babel to turn that JSX into something the browsers
understand: JavaScript.

What this means is that the JSX we write is for human (and well-trained cats') eyes only. When
this JSX reaches our browser, it ends up getting turned into pure JavaScript:

return React.createElement(
 "div",
 { style: cardStyle },
 React.createElement(Square, { color: this.props.color }),
 React.createElement(Label, { color: this.props.color })
);

All of those neatly nested HTML-like elements, their attributes, and their children all get
turned into a series of createElement calls with default initialization values. Here is what our
entire Card component looks like when it gets turned into JavaScript:

var Card = React.createClass({
 displayName: "Card",

 render: function render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 WebkitFilter: "drop-shadow(0px 0px 5px #666)",
 filter: "drop-shadow(0px 0px 5px #666)"
 };

 return React.createElement(
 "div",
 { style: cardStyle },
 React.createElement(Square, { color: this.props.color }),
 React.createElement(Label, { color: this.props.color })
);
 }
});

83JSX Quirks to Remember

Notice that there is no trace of JSX anywhere! All of these changes between what you wrote
and what our browser sees are part of the transpiling step we've talked about in the first
chapter. That transpilation is something that happens entirely behind-the-scenes thanks to
Babel, which we've been to perform this JSX→JS transformation entirely in the browser. We'll
eventually look at using Babel as part of a more-involved build environment where we will just
generate a transformed JS file, but more on that when we get there in the future.

But yeah, there you have it. An answer to what exactly happens to all of our JSX. It gets turned
into sweet SWEET JavaScript.

JSX Quirks to Remember

As we've been working with JSX, you probably noticed that we ran into some arbitrary rules
and exceptions to what you can and can't do. In this section, let's put all of those quirks
together in one area and maybe even run into some brand new ones!

You Can Only Return A Single Root Node

This is probably the first quirk we ran into. In JSX, what you return or render can't be made up
of multiple root elements:

ReactDOM.render(
 <Letter>B</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>,
 document.querySelector("#container")
);

If you want to do something like this, you need to wrap all of your elements into a single
parent element first:

ReactDOM.render(
 <div>
 <Letter>A</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>
 </div>,
 document.querySelector("#container")
);

This seemed like a bizarre requirement when we looked at it before, but you can
blame createElement for why we do this. With the render and return functions, what

84 Chapter 7 Meet JSX—Again!

you are ultimately returning is a single createElement call (which in turn might have
many nested createElement calls). Here is what our earlier JSX looks like when turned into
JavaScript:

ReactDOM.render(React.createElement(
 "div",
 null,
 React.createElement(
 Letter,
 null,
 "A"
),
 React.createElement(
 Letter,
 null,
 "E"
),
 React.createElement(
 Letter,
 null,
 "I"
),
 React.createElement(
 Letter,
 null,
 "O"
),
 React.createElement(
 Letter,
 null,
 "U"
)
), document.querySelector("#container"));

Having multiple root elements would break how functions return values and
how createElement works, so that is why you can specify only one return (root) element! You
can now sleep better knowing this.

You Can't Specify CSS Inline

As we saw in Chapter 4, the style attribute in your JSX behaves differently from
the style attribute in HTML. In HTML, you can specify CSS properties directly as values on
your style attribute:

<div style="font-family:Arial;font-size:24px">
 <p>Blah!</p>
</div>

85JSX Quirks to Remember

In JSX, the style attribute can't contain CSS inside it. Instead, it needs to refer to an object
that contains styling information instead:

var Letter = React.createClass({
 render: function() {
 var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: this.props.bgcolor,
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: "32",
 textAlign: "center"
 };

 return (
 <div style={letterStyle}>
 {this.props.children}
 </div>
);
 }
});

Notice that we have an object called letterStyle that that contains all of the CSS properties
(in camelcase JavaScript form) and their values. That object is what we then specify to the
style attribute.

Reserved Keywords and className
JavaScript has a bunch of keywords and values that you can't use as identifiers. Those keywords
currently (as of ES2016) are:

break case class catch const continue

debugger default delete do else export

extends finally for function if import

in instanceof new return super switch

this throw try typeof var void

while with yield

When you are writing JSX, you should be careful to not use these keywords as part of any
 identifiers that you create as well. That can be difficult when certain really popular keywords
like class are commonly used in HTML despite also being in JavaScript's reserved keywords list.

86 Chapter 7 Meet JSX—Again!

Take a look at the following:

ReactDOM.render(
 <div class="slideIn">
 <p class="emphasis">Gabagool!</p>
 <Label/>
 </div>,
 document.querySelector("#container")
);

Ignoring JavaScript's reservations about class (like what we've done here) won't work. What
you need to do is use the DOM API version of the class attribute called className instead:

ReactDOM.render(
 <div className="slideIn">
 <p className="emphasis">Gabagool!</p>
 <Label/>
 </div>,
 document.querySelector("#container")
);

You can see the full list of supported tags and attributes at the following Facebook article
(https://facebook.github.io/react/docs/tags-and-attributes.html), and notice that all of the attributes
are camelcase. That detail is important, for using the lowercase version of an attribute won't work.
If you are ever pasting a large chunk of HTML that you want JSX to deal with, be sure to go back
to your pasted HTML and make these minor adjustments to turn it into valid JSX.

This brings up another point. Because of these minor deviations from HTML behavior, we tend
to say that JSX supports an HTML-like syntax as opposed to just saying that JSX supports HTML.
This is a deliberate React-ism. The clearest answer to the relationship between JSX and HTML
comes from React team member, Ben Alpert, who stated the following (http://qr.ae/RUKaON) as
part of a Quora answer:

...our thinking is that JSX's primary advantage is the symmetry of matching closing
tags which makes [sic] code easier to read, not the direct resemblance to HTML or
XML. It's convenient to copy/paste HTML directly, but other minor differences (in
self-closing tags, for example) make this a losing battle and we have a HTML to JSX
converter to help you anyway. Finally, to translate HTML to idiomatic React code, a
fair amount of work is usually involved in breaking up the markup into components
that make sense, so changing class to className is only a small part of that anyway.

Comments

Just like it is a good idea to comment your HTML, CSS, and JavaScript, it is a good idea to
provide comments inside your JSX as well. Specifying comments in JSX is very similar to how
you would comment in JavaScript (https://www.kirupa.com/html5/comments.htm) ...except
for one exception. If you are specifying a comment as a child of a tag, you need to wrap your
comment by the { and } curly brackets to ensure it is parsed as an expression:

https://facebook.github.io/react/docs/tags-and-attributes.html
http://qr.ae/RUKaON
https://www.kirupa.com/html5/comments.htm

87JSX Quirks to Remember

ReactDOM.render(
 <div class="slideIn">
 <p class="emphasis">Gabagool!</p>
 {/* I am a child comment */}
 <Label/>
 </div>,
 document.querySelector("#container")
);

Our comment in this case is a child of our div element. If you specify a comment wholly
inside a tag, you can just specify your single-or multi-line comment without having to use
the { and } angle brackets:

ReactDOM.render(
 <div class="slideIn">
 <p class="emphasis">Gabagool!</p>
 <Label
 /* This comment
 goes across
 multiple lines */
 className="colorCard" // end of line
 />
 </div>,
 document.querySelector("#container")
);

In this snippet, you can see an example of what both multi-line comments and a comment
at the end of a line look like. Now that you know all of this, you have one less excuse to not
comment your JSX :P

Capitalization, HTML Elements, and Components

Capitalization is important. To represent HTML elements, ensure the HTML tag is lower-case:

ReactDOM.render(
 <div>
 <section>
 <p>Something goes here!</p>
 </section>
 </div>,
 document.querySelector("#container")
);

When wishing to represent components, the component name must be capitalized, both in JSX
as well as when you define them:

ReactDOM.render(
 <div>
 <MyCustomComponent/>

88 Chapter 7 Meet JSX—Again!

 </div>,
 document.querySelector("#container")
);

If you get the capitalization wrong, React will not render your content properly. The compo-
nent will not be found. Trying to identify capitalization issues is probably the last thing you'll
think about when things aren't working, so keep this little tip in mind.

Your JSX Can Be Anywhere

In many situations, your JSX will not be neatly arranged inside a render or return function
like in the examples we've seen so far. Take a look at the following example:

var swatchComponent = <Swatch color="#2F004F"></Swatch>;

ReactDOM.render(
 <div>
 {swatchComponent}
 </div>,
 document.querySelector("#container")
);

We have a variable called swatchComponent that is initialized to a line of JSX. When
our swatchComponent variable is placed inside the render function, our Swatch component
gets initialized. All of this is totally valid, and we will do more such things in the future when
we learn how to generate and manipulate JSX using JavaScript.

Conclusion

With this chapter, we've finally pieced together in one location the various bits of JSX
 information that the previous chapters introduced. The most important thing to remember is
that JSX is not HTML. It looks like HTML and behaves like it in many common scenarios, but
it is ultimately designed to be translated into JavaScript. This means you can do things that
you could never imagine doing using just plain HTML. Being able to evaluate expressions or
programmatically manipulate entire chunks of JSX is just the beginning. In upcoming chapters,
we'll explore this intersection of JavaScript and JSX further.

8
Dealing with State

Up until this point, the components we’ve created have been stateless. They have properties
(aka props) that are passed in from their parent, but nothing (usually) changes about them
once the components come alive. Your properties are considered immutable once they have
been set. For many interactive scenarios, you don’t want that. You want to be able to change
aspects of your components as a result of some user interaction (or some data getting returned
from a server or a billion other things!)

What we need is another way to store data on a component that goes beyond properties. We
need a way to store data that can be changed. What we need is something known as state! In
this chapter you learn all about it and how you can use it to create stateful components.

Using State

If you know how to work with properties, you totally know how to work with states... sort of.
There are some differences, but they are too subtle to bore you with right now. Instead, let’s
just jump right in and see states in action by using them in a small example.

What we are going to is create a simple lightning counter example as shown in Figure 8-1.

90 Chapter 8 Dealing with State

Figure 8-1 The app you will be building.

What this example does is nothing crazy. Lightning strikes the earth’s surface about 100 times
a second (http://environment.nationalgeographic.com/environment/natural-disasters/
lightning-profile/). We have a counter that simply increments a number you see by that same
amount. Let’s create it.

Our Starting Point

The primary focus of this example is to see how we can work with state. There is no point in
us spending a bunch of time creating the example from scratch and retracing paths that we’ve
walked many times already. That’s not the best use of anybody’s time.

Instead of starting from scratch, modify an existing HTML document or create a new one with
the following contents:

<!DOCTYPE html>
<html>

<head>
 <title>More State!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>
</head>

http://environment.nationalgeographic.com/environment/natural-disasters/lightning-profile/
http://environment.nationalgeographic.com/environment/natural-disasters/lightning-profile/

91Using State

<body>
 <div id="container"></div>
 <script type="text/babel">
 var LightningCounter = React.createClass({
 render: function() {
 return (
 <h1>Hello!</h1>
);
 }
 });

 var LightningCounterDisplay = React.createClass({
 render: function() {

 var divStyle = {
 width: 250,
 textAlign: "center",
 backgroundColor: "black",
 padding: 40,
 fontFamily: "sans-serif",
 color: "#999",
 borderRadius: 10
 };

 return(
 <div style={divStyle}>
 <LightningCounter/>
 </div>
);
 }
 });

 ReactDOM.render(
 <LightningCounterDisplay/>,
 document.querySelector("#container")
);
 </script>
</body>

</html>

At this point, take a few moments to look at what our existing code does. First, we have a
component called LightningCounterDisplay:

var LightningCounterDisplay = React.createClass({
 render: function() {

92 Chapter 8 Dealing with State

 var divStyle = {
 width: 250,
 textAlign: "center",
 backgroundColor: "black",
 padding: 40,
 fontFamily: "sans-serif",
 color: "#999",
 borderRadius: 10
 };

 return(
 <div style={divStyle}>
 <LightningCounter/>
 </div>
);
 }
});

The bulk of this component is the divStyle object that contains the styling information
responsible for the cool rounded background. The render function returns a div element that
wraps the LightningCounter component.

The LightningCounter component is where all the action is going to be taking place:

var LightningCounter = React.createClass({
 render: function() {
 return (
 <h1>Hello!</h1>
);
 }
});

This component, as it is right now, has nothing interesting going for it. It just returns the
word Hello! That’s OK—we’ll fix this component up later.

The last thing to look at is our ReactDOM.render method:

ReactDOM.render(
 <LightningCounterDisplay/>,
 document.querySelector("#container")
);

It just pushes the LightningCounterDisplay component into our container div element
in our DOM. That’s pretty much it. The end result is that you see the combination of
markup from our ReactDOM.render method and the LightningCounterDisplay and
LightningCounter components.

93Getting Our Counter On

Getting Our Counter On

Now that we have an idea of what we are starting with, it’s time to make plans for our
next steps. The way our counter works is pretty simple. We are going to be using a
 setInterval function that calls some code every 1000 milliseconds (aka 1 second). That
“some code” is going to increment a value by 100 each time it is called. Seems pretty
 straightforward, right?

To make this all work, we are going to be relying on three APIs that our React Component
exposes:

 ■ getInitialState—This method runs just before your component gets mounted, and it
allows you to modify a component’s state object.

 ■ componentDidMount—This method gets called just after our component gets rendered
(or mounted as React calls it).

 ■ setState—This method allows you to update the value of the state object.

We’ll see these APIs in use shortly, but I wanted to give you a preview of them so that you can
spot them easily in a lineup!

Setting the Initial State Value

We need a variable to act as our counter, and let’s call this variable strikes. There are a bunch
of ways to create this variable. The most obvious one is the following:

var strikes = 0 // :P

We don’t want to do that, though. For our example, the strikes variable is part of our
component’s state, and its value is what we display on screen. What we are going to do is
use the getInitialState method that we briefly saw a few moments ago and take care of
 initializing our variable inside it. You’ll see in a few moments what result that has on our
component’s state.

Inside your LightningCounter component, add the following highlighted lines:

var LightningCounter = React.createClass({
 getInitialState: function() {
 return {
 strikes: 0
 };
 },
 render: function() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
});

94 Chapter 8 Dealing with State

The getInitialState method automatically runs waaaay before your component
gets rendered, and what we are doing is telling React to return an object containing
our strikes property (initialized to 0). You may be wondering to whom or what we are
returning this object to? All of that is magic that happens under the covers. The object that gets
returned is set as the initial value for our component’s state object.

If we inspect the value of our state object after this code has run, it would look something like
the following:

var state = {
 strikes: 0
}

Before we wrap this section up, let’s visualize our strikes property. In our render method,
make the following highlighted change:

var LightningCounter = React.createClass({
 getInitialState: function() {
 return {
 strikes: 0
 };
 },
 render: function() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
});

What we’ve done is replaced our default Hello! text with an expression that displays the value
stored by the this.state.strikes property. If you preview your example in the browser, you
will see a value of 0 displayed. That’s a start!

Starting Our Timer and Setting State

Next up is getting our timer going and incrementing our strikes property. Like we mentioned
earlier, we will be using the setInterval function to increase the strikes property
by 100 every second. We are going to do all of this immediately after our component has been
rendered using the built-in componentDidMount method.

The code for kicking off our timer looks as follows:

var LightningCounter = React.createClass({
 getInitialState: function() {
 return {
 strikes: 0
 };
 },

95Getting Our Counter On

 componentDidMount: function() {
 setInterval(this.timerTick, 1000);
 },
 render: function() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
});

Go ahead and add these highlighted lines to our example. Inside our componentDidMount
method that gets called once, our component gets rendered, we have our setInterval method
that calls a timerTick function every second (or 1000 milliseconds).

We haven’t defined our timerTick function, so let’s fix that by adding the following
 highlighted lines to our code:

var LightningCounter = React.createClass({
 getInitialState: function() {
 return {
 strikes: 0
 };
 },
 timerTick: function() {
 this.setState({
 strikes: this.state.strikes + 100
 });
 },
 componentDidMount: function() {
 setInterval(this.timerTick, 1000);
 },
 render: function() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
});

What our timerTick function does is pretty simple. It just calls setState. The setState
method comes in various flavors, but for what we are doing here, it just takes an object as its
argument. This object contains all the properties you want to merge into the state object. In our
case, we are specifying the strikes property and setting its value to be 100 more than what it
is currently.

How does timerTick maintain context?

In regular JavaScript, the timerTick function won’t maintain context. You have to do extra work
to support that. The reason it works in the React world is because of something known as
autobinding. Now, aren’t you glad you know that?

96 Chapter 8 Dealing with State

Rendering the State Change

If you preview your app now, you’ll see our strikes value start to increment by 100 every
second (see Figure 8-2).

Figure 8-2 The strikes value increments by 100 every second.

Let’s ignore for a moment what happens with our code. That is pretty straightforward. The
interesting thing is how everything we’ve done ends up updating what you see on the screen.
That updating has to do with this React behavior: Whenever you call setState and update
 something in the state object, your component’s render method gets automatically called. This kicks
off a cascade of render calls for any component whose output is also affected. The end result
of all this is that what you see in your screen in the latest representation of your app’s UI state.
Keeping your data and UI in sync is one of the hardest problems with UI development, so it’s
nice that React takes care of this for us. It makes all of this pain of learning to use React totally
worth it—almost! :P

Optional: The Full Code

What we have right now is just a counter that increments by 100 every second. Nothing about
it screams Lightning Counter, but it does cover everything about states that I wanted you to
learn right now. If you want to optionally flesh out your example to look like my version that
you saw at the beginning, below is the full code for what goes inside our script tag:

var LightningCounter = React.createClass({
 getInitialState: function() {
 return {
 strikes: 0
 };
 },
 timerTick: function() {
 this.setState({
 strikes: this.state.strikes + 100
 });
 },

97Optional: The Full Code

 componentDidMount: function() {
 setInterval(this.timerTick, 1000);
 },
 render: function() {
 var counterStyle = {
 color: "#66FFFF",
 fontSize: 50
 };

 var count = this.state.strikes.toLocaleString();

 return (
 <h1 style={counterStyle}>{count}</h1>
);
 }
});

var LightningCounterDisplay = React.createClass({
 render: function() {
 var commonStyle = {
 margin: 0,
 padding: 0
 }
 var divStyle = {
 width: 250,
 textAlign: "center",
 backgroundColor: "#020202",
 padding: 40,
 fontFamily: "sans-serif",
 color: "#999999",
 borderRadius: 10
 };

 var textStyles = {
 emphasis: {
 fontSize: 38,
 ...commonStyle
 },
 smallEmphasis: {
 ...commonStyle
 },
 small: {
 fontSize: 17,
 opacity: 0.5,
 ...commonStyle
 }
 }

98 Chapter 8 Dealing with State

 return(
 <div style={divStyle}>
 <LightningCounter/>
 <h2 style={textStyles.smallEmphasis}>LIGHTNING STRIKES</h2>
 <h2 style={textStyles.emphasis}>WORLDWIDE</h2>
 <p style={textStyles.small}>(since you loaded this example)</p>
 </div>
);
 }
});

ReactDOM.render(
 <LightningCounterDisplay/>,
 document.querySelector("#container")
);

If you make your code look like everything you see above and run the example again, you
will see our lightning counter example in all its cyan-colored glory. While you are at it, take a
moment to look through the code to ensure you don’t see too many surprises.

Conclusion

We just scratched the surface on what we can do to create stateful components. While using
a timer to update something in our state object is cool, the real action happens when we start
combining user interaction with state. So far, we’ve shied away from the large amount of
mouse, touch, keyboard, and other related things that your components will come into contact
with. In an upcoming chapter, we are going to fix that. Along the way, you’ll see us taking
what we’ve seen about states to a whole new level! If that doesn’t excite you, then I don’t know
what will :P

9
Going from Data to UI

When you are building your apps, thinking in terms of props, state, components, JSX
tags, render methods, and other React-isms may be the last thing on your mind. Most of the
time, you are dealing with data in the form of JSON objects, arrays, and other data structures
that have no knowledge (or interest) in React or anything visual. Bridging the gulf between
your data and what you eventually see can be frustrating! Not to worry, though. This chapter
helps reduce some of those frustrating moments by running through some common scenarios
you’ll encounter!

The Example

To help make sense of everything you are about to see, we are going to need an example.
It’s nothing too complicated, so go ahead and create a new HTML document and throw the
 following stuff into it:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

100 Chapter 9 Going from Data to UI

<body>
 <div id="container"></div>
 <script type="text/babel">
 var Circle = React.createClass({
 render: function() {
 var circleStyle = {
 padding: 10,
 margin: 20,
 display: "inline-block",
 backgroundColor: this.props.bgColor,
 borderRadius: "50%",
 width: 100,
 height: 100,
 };

 return (
 <div style={circleStyle}>
 </div>
);
 }
 });

 var destination = document.querySelector("#container");

 ReactDOM.render(
 <div>
 <Circle bgColor="#F9C240"/>
 </div>,
 destination
);
 </script>
</body>

</html>

Once you have your document set up, go ahead and preview what you have in your browser.
If everything went well, you will be greeted by a happy yellow circle (see Figure 9-1).

101The Example

Figure 9-1 If everything went well, you will get this yellow circle.

If you see what I see, great! Now, let’s take a moment to understand what our example is doing.
The bulk of what you see comes from the Circle component:

var Circle = React.createClass({
 render: function() {
 var circleStyle = {
 padding: 10,
 margin: 20,
 display: "inline-block",
 backgroundColor: this.props.bgColor,
 borderRadius: "50%",
 width: 100,
 height: 100,
 };

 return (
 <div style={circleStyle}>
 </div>
);
 }
});

It is mostly made up of our circleStyle object that contains the inline style properties that
turn our boring div into an awesome circle. All the style values are hard-coded except for
the backgroundColor property. It takes its value from the bgColor prop that gets passed in.

102 Chapter 9 Going from Data to UI

Going beyond our component, the way we ultimately display our circle is via our usual
ReactDOM.render method:

ReactDOM.render(
 <div>
 <Circle bgColor="#F9C240"/>
 </div>,
 destination
);

We have a single instance of our Circle component declared, and we declare it
with the bgColor prop set to the color we want our circle to appear in. Now, having
our Circle component be defined as-is inside our render method is a bit limiting - especially
if you are going to be dealing with data that could affect what our Circle component does.
In the next couple of sections, we’ll look at the ways we have for solving that.

Your JSX Can Be Anywhere—Part II

In the “Meet JSX—Again”! chapter (Chapter 7), we learned that our JSX can actually live
outside of a render function and can be used as a value assigned to a variable or property. For
example, we can fearlessly do something like this:

var theCircle = <Circle bgColor="#F9C240"/>;

ReactDOM.render(
 <div>
 {theCircle}
 </div>,
 destination
);

The theCircle variable stores the JSX for instantiating our Circle component. Evaluating this
variable inside our ReactDOM.render function results in a circle getting displayed. The end
result is no different than what we had earlier, but having our Circle component instantiation
freed from the shackles of the render method gives us more options to do crazy and cool
things.

For example, you can go further and create a function that returns a Circle component:

function showCircle() {
 var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363"];
 var ran = Math.floor(Math.random() * colors.length);

 // return a Circle with a randomly chosen color
 return <Circle bgColor={colors[ran]}/>;
};

103Dealing with Arrays in the Context of JSX

In this case, the showCircle function returns a Circle component (boring!) with the value
for the bgColor prop set to a random color value (awesomesauce!). To have our example
use the showCircle function, all you have to do is evaluate it inside ReactDOM.render:

1 ReactDOM.render(
2 <div>
3 {showCircle()}
4 </div>,
5 destination
6);

As long as the expression you are evaluating returns JSX, you can put pretty much anything
you want inside the { and } curly brackets. That flexibility is really nice, because there are a
lot of things you can do when your JavaScript lives outside of the render function. A LOT OF
THINGS!

Dealing with Arrays in the Context of JSX

Now we are going to get to some fun stuff! When you are displaying multiple components, you
won’t always be able to manually specify them:

ReactDOM.render(
 <div>
 {showCircle()}
 {showCircle()}
 {showCircle()}
 </div>,
 destination
);

In many real-world scenarios, the number of components you display will be related to
the number of items in an array or array-like (aka iterator) object you are working with.
That brings along a few simple complications. For example, let’s say that we have an array
called colors that looks as follows:

var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363",
 "#85FFC7", "#297373", "#FF8552", "#A40E4C"];

What we want to do is create a Circle component for each item in this array (and set
the bgColor prop to the value of each array item). The way we are going to do this is by
 creating an array of Circle components:

var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363",
 "#85FFC7", "#297373", "#FF8552", "#A40E4C"];

var renderData = [];

for (var i = 0; i < colors.length; i++) {
 renderData.push(<Circle bgColor={colors[i]}/>);
}

104 Chapter 9 Going from Data to UI

In this snippet, we populate our renderData array with Circle components just like we
originally set out to do. So far so good. To display all of these components, React makes it very
simple. Take a look at the highlighted line for all you have to do:

var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363",
 "#85FFC7", "#297373", "#FF8552", "#A40E4C"];

var renderData = [];

for (var i = 0; i < colors.length; i++) {
 renderData.push(<Circle bgColor={colors[i]}/>);
}

ReactDOM.render(
 <div>
 {renderData}
 </div>,
 destination
);

In our render method, all we do is specify our renderData array as an expression that we
need to evaluate. We don’t need to take any other step to go from an array of components to
seeing something that looks like Figure 9-2 when you preview in your browser.

Figure 9-2 What you should see in your browser.

105Conclusion

Ok, while our example seems to work, we aren’t done yet! There is actually one more thing we
need to do, and this is a subtle one. The way React makes UI updates really fast is by having a
good idea of what exactly is going on in your DOM. It does this in several ways, but one really
noticeable way is by internally marking each element with some sort of an identifier. This
“marking” happens automatically when you explicitly specify elements in your JSX.

When you create elements dynamically (such as what we are doing with our array
of Circle components), these identifiers are not automatically set. We need to do some extra
work. That extra work takes the form of a key prop whose value React uses to uniquely identify
each particular component.

For our example, we can do something like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];
 renderData.push(<Circle key={i + color} bgColor={color}/>);
}

On each component, we specify our key prop and set its value to a combination of color and
index position inside the colors array. This ensures that each component we dynamically
create ends up getting a unique identifier that React can then use to optimize any future UI
updates. Now, we could just use the index position as the identifier, but if you have multiple
blocks of code where you are dynamically generating elements, you may get multiple elements
with duplicate index values.

Check Your Console Yo!

React is really good at telling you when you might be doing something wrong. For example, if
you dynamically create elements or components and don’t specify a key prop on them, you will
be greeted with the following warning in your console:

Warning: Each child in an array or iterator should have a unique “key” prop. Check the top-level
render call using <div>.

When you are working with React, it is a good idea to periodically check your console for any
messages it may have. Even if things seem to be working just fine, you’ll never know what you
might find :P

Conclusion

All the tips and tricks you’ve seen in this article are made possibly because of one thing: JSX is
JavaScript. This is what enables you to have your JSX live wherever JavaScript thrives. To us, it
looks like we are doing something absolutely bizarre when we specify something like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];
 renderData.push(<Circle key={i + color} bgColor={color}/>);
}

106 Chapter 9 Going from Data to UI

Even though we are pushing pieces of JSX to an array, just like magic, everything works in the
end when renderData is evaluated inside our render method. I hate to sound like a broken
record, but this is because what our browser ultimately sees looks like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];

 renderData.push(React.createElement(Circle,
 {
 key: i + color,
 bgColor: color
 }));
}

When our JSX gets converted into pure JS, everything makes sense again. This is what allows us
to get away with putting our JSX in all sorts of uncomfortable (yet photogenic!) situations with
our data and still get the end result we want! Because, in the end, it’s all just JavaScript.

10
Working with Events

So far, most of our examples only did their work on page load. As you probably guessed, that
isn’t normal. In most apps, especially the kind of UI-heavy ones we will be building, there is
going to be a ton of things the app does only as a reaction to something. That something could
be triggered by a mouse click, a key press, window resize, or a whole bunch of other gestures
and interactions. The glue that makes all of this possible is something known as events.

Now, you probably know all about events from your experience using them in the DOM world.
(If you don’t, then I suggest getting a quick refresher first: https://www.kirupa.com/html5/
javascript_events.htm.) The way React deals with events is a bit different, and these differ-
ences can surprise you in various ways if you aren’t paying close attention. Don’t worry. That’s
why you have this book! We start off with a few simple examples and then gradually look at
 increasingly more bizarre, complex, and (yes!) boring things.

Listening and Reacting to Events

The easiest way to learn about events in React is to actually use them, and that’s exactly what
we are going to do! To help with this, we have a simple example made up of a counter that
increments each time you click on a button. Initially, our example will look like Figure 10-1.

Figure 10-1 Our example.

https://www.kirupa.com/html5/javascript_events.htm
https://www.kirupa.com/html5/javascript_events.htm

108 Chapter 10 Working with Events

Each time you click on the plus button, the counter value will increase by 1. After clicking the
plus button a bunch of times, it will look sorta like Figure 10-2.

Figure 10-2 After clicking the plus button a bunch of times (23?).

Under the covers, the way this example works is pretty simple. Each time you click on the
button, an event gets fired. We listen for this event and do all sorts of React-ey things to get the
counter to update when this event gets overheard.

Starting Point

To save all of us some time, we aren’t going to be creating everything in our example from
scratch. By now, you probably have a good idea of how to work with components, styles, state,
and so on. Instead, we are going to start off with a partially implemented example that
contains everything except the event-related functionality that we are here to learn.

First, create a new HTML document and ensure your starting point looks as follows:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }

109Listening and Reacting to Events

 </style>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">

 </script>
</body>

</html>

Once your new HTML document looks like what you see above, it’s time to add our partially
implemented counter example. Inside our script tag below the container div, add the
following:

var destination = document.querySelector("#container");

var Counter = React.createClass({
 render: function() {
 var textStyle = {
 fontSize: 72,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold"
 };

 return (
 <div style={textStyle}>
 {this.props.display}
 </div>
);
 }
});

var CounterParent = React.createClass({
 getInitialState: function() {
 return {
 count: 0
 };
 },
 render: function() {
 var backgroundStyle = {
 padding: 50,
 backgroundColor: "#FFC53A",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

110 Chapter 10 Working with Events

 var buttonStyle = {
 fontSize: "1em",
 width: 30,
 height: 30,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold",
 lineHeight: "3px"
 };

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count}/>
 <button style={buttonStyle}>+</button>
 </div>
);
 }
});

ReactDOM.render(
 <div>
 <CounterParent/>
 </div>,
 destination
);

Once you have added all of this, preview everything in your browser to make sure things get
displayed. You should see the beginning of our counter. Take a few moments to look at what all
of this code does. There shouldn’t be anything that looks strange. The only odd thing will be
that clicking the plus button won’t do anything. We’ll fix that right up in the next section.

Making the Button Click Do Something

Each time we click on the plus button, we want the value of our counter to increase by one.
What we need to do is going to look roughly like this:

1. Listen for the click event on the button and specify an event handler.

2. Implement the event handler where we increase the value of our this.state.count
property that our counter relies on.

We’ll just go straight down the list—starting with listening for the click event. In React, you
listen to an event by specifying everything inline in your JSX itself. More specifically, you specify
both the event you are listening for and the event handler that will get called, all inside your markup.

111Listening and Reacting to Events

To do this, find the return function inside our CounterParent component, and make the
following highlighted change:

 .
 .
 .
return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count}/>
 <button onClick={this.increase} style={buttonStyle}>+</button>
 </div>
);

What we’ve done is told React to call the increase function when the onClick event is
 overheard. Next, let’s go ahead and implement the increase function—aka our event handler.
Inside our CounterParent component, add the following highlighted lines:

var CounterParent = React.createClass({
 getInitialState: function() {
 return {
 count: 0
 };
 },
 increase: function(e) {
 this.setState({
 count: this.state.count + 1
 });
 },
 render: function() {
 var backgroundStyle = {
 padding: 50,
 backgroundColor: "#FFC53A",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

 var buttonStyle = {
 fontSize: "1em",
 width: 30,
 height: 30,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold",
 lineHeight: "3px"
 };

112 Chapter 10 Working with Events

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count}/>
 <button onClick={this.increase} style={buttonStyle}>+</button>
 </div>
);
 }
});

All we are doing with these lines is making sure that each call to the increase function
 increments the value of our this.state.count property by 1. Because we are dealing with
events, your increase function (as the designated event handler) will get access to the event
argument. We have set this event argument to be accessed by e, and you can see that by
looking at our increase function’s signature (aka what its declaration looks like). We’ll talk
about the various events and their properties in a little bit.

Now, go ahead and preview what you have in your browser. Once everything has loaded, click
on the plus button to see all of our newly added code in action. Our counter value should
increase with each click! Isn’t that pretty awesome?

Event Properties

As you know, our events pass what is known as an event argument to our event handler.
This event argument contains a bunch of properties that are specific to the type of event
you are dealing with. In the regular DOM world, each event has its own type. For example,
if you are dealing with a mouse event, your event and its event argument object will be of
type MouseEvent. This MouseEvent object will allow you to access mouse-specific information,
like which button was pressed or the screen position of the mouse click. Event arguments
for a keyboard-related event are of type KeyboardEvent. Your KeyboardEvent object
contains properties which (among many other things) allow you to figure out which key
was actually pressed. I could go on forever for every other Event type, but you get the point.
Each Event type contains its own set of properties that you can access via the event handler for
that event!

Why am I boring you with things you already know? Well...

Meet Synthetic Events

In React, when you specify an event in JSX like we did with onClick, you are not directly
dealing with regular DOM events. Instead, you are dealing with a React-specific event
type known as a SyntheticEvent. Your event handlers don’t get native event argu-
ments of type MouseEvent, KeyboardEvent, etc. They always get event arguments of
type SyntheticEvent that wrap your browser’s native event instead. What is the fallout of this
in our code? Surprisingly not a whole lot.

113Listening and Reacting to Events

Each SyntheticEvent contains the following properties:

Property Name Type

bubbles boolean

cancelable boolean

currentTarget DOMEventTarget

defaultPrevented boolean

eventPhase number

isTrusted boolean

nativeEvent DOMEvent

preventDefault() void

isDefaultPrevented() boolean

isPropagationStopped void

target DOMEventTarget

timeStamp number

type string

These properties should seem pretty straightforward—and generic! The non-generic stuff
depends on what type of native event our SyntheticEvent is wrapping. This means that
a SyntheticEvent that wraps a MouseEvent will have access to mouse-specific properties such
as the following:

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY
DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey

Similarly, a SyntheticEvent that wraps a KeyboardEvent will have access to these additional
keyboard-related properties:

boolean altKey
number charCode

114 Chapter 10 Working with Events

boolean ctrlKey
boolean getModifierState(key)
string key
number keyCode
string locale
number location
boolean metaKey
boolean repeat
boolean shiftKey
number which

In the end, all of this means that you still get the same functionality in the SyntheticEvent
world that you had in the vanilla DOM world.

Now, here is something I learned the hard way. Don’t refer to traditional DOM event documenta-
tion when using Synthetic events and their properties. Because the SyntheticEvent wraps your
native DOM event, events and their properties may not map one-to-one. Some DOM events
don’t even exist in React. To avoid running into any issues, if you want to know the name of
a SyntheticEvent or any of its properties, refer to the React Event System document (https://
facebook.github.io/react/docs/events.html) instead.

Doing Stuff With Event Properties

By now, you’ve probably seen more about the DOM and SyntheticEvent stuff than you’d
probably like. To wash away the taste of all that text, let’s write some code and put all of this
newfound knowledge to good use. Right now, our counter example increments by one each
time you click on the plus button. What we want to do is increment our counter by ten when the
Shift key on the keyboard is pressed while clicking the plus button with our mouse.

The way we are going to do that is by using the shiftKey property that exists on the
SyntheticEvent when using the mouse:

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY
DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey

https://facebook.github.io/react/docs/events.html
https://facebook.github.io/react/docs/events.html

115Listening and Reacting to Events

The way this property works is simple. If the Shift key is pressed when this mouse event fires,
then the shiftKey property value is true. Otherwise, the shiftKey property value is false. To
increment our counter by 10 when the Shift key is pressed, go back to our increase function
and make the following highlighted changes:

increase: function(e) {
 var currentCount = this.state.count;

 if (e.shiftKey) {
 currentCount += 10;
 } else {
 currentCount += 1;
 }

 this.setState({
 count: currentCount
 });
},

Once you’ve made the changes, preview our example in the browser. Each time you click on
the plus button, your counter will increment by one just like it had always done. If you click
on the plus button with your Shift key pressed, notice that our counter increments by 10
instead.

The reason that all of this works is because we change our incrementing behavior depending
on whether the Shift key is pressed or not. That is primarily handled by the following lines:

if (e.shiftKey) {
 currentCount += 10;
} else {
 currentCount += 1;
}

If the shiftKey property on our SyntheticEvent event argument is true, we increment our
counter by 10. If the shiftKey value is false, we just increment by 1.

More Eventing Shenanigans

We are not done yet! Up until this point, we’ve looked at how to work with events in React
in a very simplistic way. In the real world, rarely will things be as direct as what we’ve seen.
Your real apps will be more complex, and because React insists on doing things differently,
we’ll need to learn (or re-learn) some new event-related tricks and techniques to make our apps
work. That’s where this section comes in. We are going to look at some common situations
you’ll run into and how to deal with them.

116 Chapter 10 Working with Events

You Can’t Directly Listen to Events on Components

Let’s say your component is nothing more than a button or another type of UI element that
users will be interacting with. You can’t get away with doing something like what we see in the
following highlighted line:

var CounterParent = React.createClass({
 getInitialState: function() {
 return {
 count: 0
 };
 },
 increase: function() {
 this.setState({
 count: this.state.count + 1
 });
 },
 render: function() {
 return (
 <div>
 <Counter display={this.state.count}/>
 <PlusButton onClick={this.increase}/>
 </div>
);
 }
});

On the surface, this line of JSX looks totally valid. When somebody clicks on our PlusButton
component, the increase function will get called. In case you are curious, this is what our
PlusButton component looks like:

var PlusButton = React.createClass({
 render: function() {
 return (
 <button>
 +
 </button>
);
 }
});

Our PlusButton component doesn’t do anything crazy. It only returns a single HTML element!

No matter how you slice and dice this, none of this matters. It doesn’t matter how simple or
obvious the HTML we are returning via a component looks like. You simply can’t listen for events
on them directly. The reason is because components are wrappers for DOM elements. What does
it even mean to listen for an event on a component? Once your component gets unwrapped
into DOM elements, does the outer HTML element act as the thing you are listening for the
event on? Is it some other element? How do you distinguish between listening for an event and
declaring a prop with a value?

117Listening and Reacting to Events

There is no clear answer to any of those questions. It’s too harsh to say that the solution is to
simply not listen to events on components, either. Fortunately, there is a workaround where
we treat the event handler as a prop and pass it on to the component. Inside the component,
we can then assign the event to a DOM element and set the event handler to the the value
of the prop we just passed in. I realize that probably makes no sense, so let’s walk through an
example.

Take a look at the following highlighted line:

var CounterParent = React.createClass({
 .
 .
 .
 render: function() {
 return (
 <div>
 <Counter display={this.state.count}/>
 <PlusButton clickHandler={this.increase}/>
 </div>
);
 }
});

In this example, we create a property called clickHandler whose value is the increase event
handler. Inside our PlusButton component, we can then do something like this:

var PlusButton = React.createClass({
 render: function() {
 return (
 <button onClick={this.props.clickHandler}>
 +
 </button>
);
 }
});

On our button element, we specify the onClick event and set its value to the clickHandler
prop. At runtime, this prop gets evaluated as our increase function, and clicking the plus
button ensures the increase function gets called. This solves our problem while still allowing
our component to participate in all this eventing goodness!

Listening to Regular DOM Events

If you thought the previous section was a doozy, wait till you see what we have here. Not all
DOM events have SyntheticEvent equivalents. It may seem like you can just add the on prefix
and capitalize the event you are listening for when specifying it inline in your JSX:

var Something = React.createClass({
 handleMyEvent: function(e) {
 // do something
 },

118 Chapter 10 Working with Events

 render: function() {
 return (
 <div onMyWeirdEvent={this.handleMyEvent}>Hello!</div>
);
 }
});

It doesn’t work that way! For those events that aren’t officially recognized by React, you have
to use the traditional approach that uses addEventListener with a few extra hoops to jump
through.

Take a look at the following section of code:

var Something = React.createClass({
 handleMyEvent: function(e) {
 // do something
 },
 componentDidMount: function() {
 window.addEventListener("someEvent", this.handleMyEvent);
 },
 componentWillUnmount: function() {
 window.removeEventListener("someEvent", this.handleMyEvent);
 },
 render: function() {
 return (
 <div>Hello!</div>
);
 }
});

We have our Something component that listens for an event called someEvent. We start
listening for this event under the componentDidMount method which is automatically
called when our component gets rendered. The way we listen for our event is by using
 addEventListener and specifying both the event and the event handler to call:

var Something = React.createClass({
 handleMyEvent: function(e) {
 // do something
 },
 componentDidMount: function() {
 window.addEventListener("someEvent", this.handleMyEvent);
 },
 componentWillUnmount: function() {
 window.removeEventListener("someEvent", this.handleMyEvent);
 },
 render: function() {
 return (
 <div>Hello!</div>
);
 }
});

119Listening and Reacting to Events

That should be pretty straightforward. The only other thing you need to keep in mind is
removing the event listener when the component is about to be destroyed. To do that, you can
use the opposite of the componentDidMount method, the componentWillUnmount method.
Inside that method, put your removeEventListener call to ensure no trace of our event
 listening takes place after our component goes away.

The Meaning of this Inside the Event Handler

When dealing with events in React, the value of this inside your event handler is different
from what you would normally see in the non-React DOM world. In the non-React world, the
value of this inside an event handler refers to the element that your event is listening on:

function doSomething(e) {
 console.log(this); //button element
}

var foo = document.querySelector("button");
foo.addEventListener("click", doSomething, false);

In the React world (when your components are created using React.createClass), the value
of this inside your event handler always refers to the component the event handler lives in:

var CounterParent = React.createClass({
 getInitialState: function() {
 return {
 count: 0
 };
 },
 increase: function(e) {
 console.log(this); // CounterParent component

 this.setState({
 count: this.state.count + 1
 });
 },
 render: function() {
 return (
 <div>
 <Counter display={this.state.count}/>
 <button onClick={this.increase}>+</button>
 </div>
);
 }
});

In this example, the value of this inside the increase event handler refers to the
CounterParent component. It doesn’t refer to the element that triggered the event. You get
this behavior because React automatically binds all methods inside a component to this.

120 Chapter 10 Working with Events

This autobinding behavior only applies when your component is created using React.
createClass. If you are using ES6 classes to define your components, the value of this inside
your event handler is going to be undefined unless you explicitly bind it yourself:

<button onClick={this.increase.bind(this)}>+</button>

There is no autobinding magic that happens with the new class syntax, so be sure to keep that
in mind if you aren’t using React.createClass to create your components.

React...Why? Why?!

Before we call it a day, let’s use this time to talk about why React decided to deviate from how
we’ve worked with events in the past. There are two reasons:

 ■ Browser Compatibility

 ■ Improved Performance

Let’s elaborate on these two reasons a little bit.

Browser Compatibility

Event handling is one of those things that mostly works consistently in modern browsers, but
once you go back to older browser versions, things get really bad really quickly. By wrapping all
of the native events as an object of type SyntheticEvent, React frees you from dealing with
event handling quirks that you would end up having to deal with otherwise.

Improved Performance

In complex UIs, the more event handlers you have, the more memory your app takes up.
Manually dealing with that isn’t difficult, but it is a bit tedious as you try to group events under
a common parent. Sometimes, that just isn’t possible. Sometimes, the hassle doesn’t outweigh
the benefits. What React does is pretty clever.

React never attaches event handlers to the DOM elements directly. It uses one event handler at
the root of your document that is responsible for listening to all events and calling the appropriate
event handler as necessary (see Figure 10-3).

121Conclusion

Figure 10-3 React uses one event handler at the root of your document.

This frees you from having to deal with optimizing your event handler-related code yourself.
If you’ve manually had to do that in the past, you can relax knowing that React takes care
of that tedious task for you. If you’ve never had to optimize event handler-related code
 yourself, consider yourself lucky :P

Conclusion

You’ll spend a lot of time dealing with events, and this chapter threw a lot of things at you.
We started by learning the basics of how to listen to events and specify the event handler.
Towards the end, we were fully invested and looking at eventing corner cases that you
will bump into if you aren’t careful enough. You don’t want to bump into corners. That is
never fun.

This page intentionally left blank

11
The Component Lifecycle

In the beginning, we started off with a very simple view of components and what they do.
As we learned more about React and did cooler and more involved things, it turns out our
 components aren’t all that simple. They help deal with properties, state, events, and often
are responsible for the well-being of other components as well. Keeping track of everything
 components do sometimes can be tough.

To help with this, React provides us with something known as lifecycle methods. Lifecycle
methods are (unsurprisingly) special methods that automatically get called as our component
goes about its business. They notify us of important milestones in our component’s life, and
we can use these notifications to simply pay attention or change what our component is about
to do.

In this chapter, we look at these lifecycle methods and learn all about what we can do with
them.

Meet the Lifecycle Methods

Lifecycle methods are not very complicated. We can think of them as glorified event handlers
that get called at various points in a component’s life, and just like event handlers, you can
write some code to do things at those various points. Before we go further, it is time for you to
quickly meet our lifecycle methods. They are:

 ■ componentWillMount

 ■ componentDidMount

 ■ componentWillUnmount

 ■ componentWillUpdate

 ■ componentDidUpdate

 ■ shouldComponentUpdate

 ■ componentWillReceiveProps

124 Chapter 11 The Component Lifecycle

We aren’t quite done yet. There are three more methods that we are going to throw into the
mix even though they aren’t strictly lifecycle methods, and they are:

 ■ getInitialState

 ■ getDefaultProps

 ■ render

Some of these names probably sound familiar to you, and some you are probably seeing for the
first time. Don’t worry. By the end of all this, you’ll be on a first name basis with all of them!
What we are going to do is look at these lifecycle methods from various angles—starting with
some code!

See the Lifecycle Methods in Action

Learning about these lifecycle methods is about as exciting as memorizing names for foreign
places (or distant star systems!) you have no plans to visit. To help make all of this more
 bearable, I am going to first have you play with them through a simple example before we get
all academic and read about them.

To play with this example, go to the following URL: https://www.kirupa.com/react/lifecycle
_example.htm Once this page loads, you’ll see a variation of the counter example we saw
earlier (see Figure 11-1).

Figure 11-1 A variation on the counter example.

Don’t click on the button or anything just yet. If you have already clicked on the button, just
refresh the page to start the example from the beginning. There is a reason why I am saying
that, and it isn’t because my OCD is acting up :P We want to see this page as it is before we
interact with it!

Now, bring up your browser’s developer tools and take a look at the Console tab. In Chrome,
you’ll see something that looks like Figure 11-2.

https://www.kirupa.com/react/lifecycle_example.htm
https://www.kirupa.com/react/lifecycle_example.htm

125Meet the Lifecycle Methods

Figure 11-2 The Console view in Chrome.

Notice what you see printed. You will see some messages, and these messages start out with the
name of what looks like a lifecycle method. If you click on the plus button once, notice that
your Console will show more lifecycle methods getting called (see Figure 11-3).

Figure 11-3 More lifecycle methods getting called.

Play with this example for a bit. What this example does is allow you to place all of these
lifecycle methods in the context of a component that we’ve already seen earlier. As you
keep hitting the plus button, more lifecycle method entries will show up. Eventually, once
your counter approaches a value of 5, your example will just disappear with the following
entry showing up in your console: componentWillUnmount: Component is about to be
removed from the DOM! At this point, you have reached the end of this example. Of course,
to start over, you can just refresh the page!

126 Chapter 11 The Component Lifecycle

Now that you’ve seen the example, let’s take a quick look at the component that is responsible
for all of this:

var CounterParent = React.createClass({
 getDefaultProps: function(){
 console.log("getDefaultProps: Default prop time!");
 return {};
 },
 getInitialState: function() {
 console.log("getInitialState: Default state time!");
 return {
 count: 0
 };
 },
 increase: function() {
 this.setState({
 count: this.state.count + 1
 });
 },
 componentWillUpdate: function(newProps, newState) {
 console.log("componentWillUpdate: Component is about to update!");
 },
 componentDidUpdate: function(currentProps, currentState) {
 console.log("componentDidUpdate: Component just updated!");
 },
 componentWillMount: function() {
 console.log("componentWillMount: Component is about to mount!");
 },
 componentDidMount: function() {
 console.log("componentDidMount: Component just mounted!");
 },
 componentWillUnmount: function() {
 console.log("componentWillUnmount: Component is about to be removed from the
DOM!");
 },
 shouldComponentUpdate: function(newProps, newState) {
 console.log("shouldComponentUpdate: Should component update?");

 if (newState.count < 5) {
 console.log("shouldComponentUpdate: Component should update!");
 return true;
 } else {
 ReactDOM.unmountComponentAtNode(destination);
 console.log("shouldComponentUpdate: Component should not update!");
 return false;
 }
 },

127Meet the Lifecycle Methods

 componentWillReceiveProps: function(newProps){
 console.log("componentWillReceiveProps: Component will get new props!");
 },
 render: function() {
 var backgroundStyle = {
 padding: 50,
 border: "#333 2px dotted",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count}/>
 <button onClick={this.increase}>
 +
 </button>
 </div>
);
 }
});

Take a few moments to look what all of this code does. It seems lengthy, but a bulk of it
is just each lifecycle method listed with a console.log statement defined. Once you’ve
gone through this code, play with the example one more time. Trust me. The more time you
spend in the example and figure out what is going on, the more fun you are going to have. The
 following sections where we look at each lifecycle method across the rendering, updating, and
 unmounting phases is going to be dreadfully boring. Don’t say I didn’t warn you.

The Initial Rendering Phase

When your component is about to start its life and make its way to the DOM, the following
lifecycle methods get called (see Figure 11-4).

128 Chapter 11 The Component Lifecycle

Figure 11-4 The lifecycle methods called initially.

What you saw in your console when the example was loaded was a less colorful version of
what you saw here. Now, we are going to go a bit further and learn more about what each of
these lifecycle methods do.

getDefaultProps
This method allows you to specify the default value of this.props. It gets called before your
component is even created or any props from parents are passed in.

getInitialState
This method allows you to specify the default value of this.state before your component is
created. Just like getDefaultProps, it too gets called before your component is created.

129Meet the Lifecycle Methods

componentWillMount
This is the last method that gets called before your component gets rendered to the DOM.
There is an important thing to note here. If you were to call setState inside this method,
your component will not re-render (aka have the render method get called and update what
gets displayed on screen).

render
This one should be very familiar to you by now. Every component must have this method
defined, and it is responsible for returning a single root node (which may have many child
nodes inside it). If you don’t wish to render anything (for some fancy optimization you might
be going for), simply return null or false.

componentDidMount
This method gets called immediately after your component renders and gets placed on the
DOM. At this point, you can safely perform any DOM querying operations without worrying
about whether your component has made it or not. If you have any code that depends on your
component being ready, you can specify all of that code here as well.

With the exception of the render method, all of these lifecycle methods can fire only once.
That’s quite different from the methods we are about to see next.

The Updating Phase

After your components get added to the DOM, they can potentially update and re-render when
a prop or state change occurs. During this time, a different collection of lifecycle methods will
get called. Yawn. Sorry...

Dealing with State Changes

First, let’s look at a state change! When a state change occurs, we mentioned earlier that your
component will call its render method again. Any components that rely on the output of
this component will also get their render methods called as well. This is done to ensure that
our component is always displaying the latest version of itself. All of that is true, but that is
only a partial representation of what happens.

When a state change happens, all the lifecycle methods in Figure 11-5 get called.

130 Chapter 11 The Component Lifecycle

Figure 11-5 Lifecycle methods called when a state change happens.

What these lifecycle methods do is outlined in the following sections.

shouldComponentUpdate

Sometimes, you don’t want your component to update when a state change occurs. This
method allows you to control this updating behavior. If you use this method and return
a true value, the component will update. If this method returns a false value, this component
will skip updating.

That probably sounds a little bit confusing, so here is a simple snippet:

shouldComponentUpdate: function(newProps, newState) {

 if (newState.id <= 2) {
 console.log("Component should update!");

 return true;
 } else {
 console.log("Component should not update!");

 return false;
 }
}

131Meet the Lifecycle Methods

This method gets called with two arguments which we name newProps and newState. What
we are doing in this snippet of code is checking whether the new value of our id state property
is less than or equal to 2. If the value is less than or equal to 2, we return true to indicate that
this component should update. If the value is not less than or equal to 2, we return false to
indicate that this component should not update.

componentWillUpdate

This method gets called just before your component is about to update. Nothing too exciting
here. One thing to note is that you can’t change your state by calling this.setState from this
method.

render

If you didn’t override the update via shouldComponentUpdate (by returning false), the code
inside render will get called again to ensure your component displays itself properly.

componentDidUpdate

This method gets called after your component updates and the render method has been called.
If you need to execute any code after the update takes place, this is the place to stash it.

Dealing with Prop Changes

The other time your component updates is when its prop value changes after it has been
rendered into the DOM. In this scenario, the lifecycle methods in Figure 11-6 get called.

Figure 11-6 Lifecycle methods when the component’s prop value changes.

132 Chapter 11 The Component Lifecycle

The only method that is new here is componentWillReceiveProps. This method returns one
argument, and this argument is an object that contains the new prop values that are about to
be assigned to it.

We saw the rest of the lifecycle methods earlier when looking at state changes, so let’s not
revisit them again. Their behavior is identical when dealing with a prop change.

The Unmounting Phase

The last phase we are going to look at is when your component is about to be destroyed and
removed from the DOM (see Figure 11-7).

Figure 11-7 Only one lifecycle method is active when your component is about to be destroyed
and removed from the DOM.

There is only one lifecycle method that is active here, and that is componentWillUnmount.
You’ll perform any cleanup-related tasks here such as removing event listeners, stopping timers,
etc. After this method gets called, your component is removed from the DOM and you can
say Bye! to it.

133Conclusion

Conclusion

Our components are fascinating little things. On the surface they seem like they don’t have
much going on. Like a good documentary about the oceans, when we look a little deeper and
closer, it’s almost like seeing a whole other world. As it turns out, React is constantly watching
and notifying your component every time something interesting happens. All of this is done
via the (extremely boring) lifecycle methods that we spent this entire tutorial looking at. Now,
I want to reassure you that knowing what each lifecycle method does and when it gets called
will come in handy one day. Everything you’ve learned isn’t just trivial knowledge, though
your friends will be impressed if you can describe all of the lifecycle methods from memory.
Go ahead and try it the next time you see them.

This page intentionally left blank

12
Accessing DOM Elements

There will be times when you want to access properties and methods on an HTML element
directly. In our React-colored world where JSX represents everything that is good and pure
about markup, why would you ever want to deal directly with the horribleness that is HTML?
As you will find out (if you haven’t already), there are many cases where dealing with HTML
elements through the JavaScript DOM API directly is easier than fiddling with “the React way”
of doing things.

To highlight one such situation, take a look at the Colorizer example in Figure 12-1.

Figure 12-1 Colorizer example.

136 Chapter 12 Accessing DOM Elements

If you have access to a browser, you can view it live at the following location: https://www
.kirupa.com/react/examples/colorizer.htm

The Colorizer colorizes the (currently) white square with whatever color you provide it. To see
it in action, enter a color value inside the text field and click/tap on the go button. If you don’t
have any idea of what color to enter, yellow is a good one! Once you have provided a color and
submitted it, the white square will turn whatever color value you provided (see Figure 12-2).

Figure 12-2 The white square turns yellow.

That the square changes color for any valid color value you submit is pretty awesome, but it
isn’t what I want you to focus on. Instead, pay attention to the text field and the button after
you submit a value. Notice that the button gets focus, and the color value you just submitted is
still displayed inside the form. If you want to enter another color value, you need to explicitly
return focus to the text field and clear out whatever current value is present. Eww! That seems
unnecessary, and we can do better than that from a usability point of view!

Now, wouldn’t it be great if we could clear both the existing color value and return focus to the
text field immediately after you submit a color? That would mean that if we submitted a color
value of purple, what we would see afterwards would look like Figure 12-3.

https://www.kirupa.com/react/examples/colorizer.htm
https://www.kirupa.com/react/examples/colorizer.htm

137Meet Refs

Figure 12-3 We get purple and the text field is ready for the next color.

The entered value of purple is cleared, and the focus is returned to the text field. This allows
us to enter additional color values and submit them easily without having to manually keep
jumping focus back and forth between the text field and the button. Isn’t that much nicer?

Getting this behavior right using JSX and traditional React techniques is hard. We aren’t even
going to bother with explaining how to go about that. Getting this behavior right by dealing
with the JavaScript DOM API on various HTML elements directly is pretty easy. Guess what we
are going to do? In the following sections, we use something known as refs that React provides
to help us access the DOM API on HTML elements. This chapter sounds really REALLY boring,
but it is going to be a fun one—I’m mostly sure of it.

Meet Refs

As you know very well by now, inside our various render methods, we’ve been writing
HTML-like things known as JSX. Our JSX is simply a description of what the DOM should
look like. It doesn’t represent actual HTML—despite looking a whole lot like it. Anyway, to
provide a bridge between JSX and the final HTML elements in the DOM, React provides us with
 something funnily known as refs (short for references).

138 Chapter 12 Accessing DOM Elements

The way refs work is a little odd. The easiest way to make sense of it is to look at an example.
Let’s say we have a render method from our Colorizer example that looks as follows:

render: function() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input
 onChange={this.colorValue}
 placeholder="Enter a color value">
 </input>
 <button type="submit">go</button>
 </form>
 </div>
);
}

Inside this render method, we are returning a big chunk of JSX representing (among other
things) the input element where we enter our color value. What we want to do is access
the input element’s DOM representation so that we can call some APIs on it using JavaScript.

The way we do that using refs is by setting the ref attribute on the element we would like to
reference the HTML of:

render: function() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input
 ref={}
 onChange={this.colorValue}
 placeholder="Enter a color value">
 </input>
 <button type="submit">go</button>
 </form>
 </div>
);
}

139Meet Refs

Because we are interested in the input element, our ref attribute is attached to it. Right now,
our ref attribute is empty. What you typically set as the ref attribute’s value is a JavaScript
callback function. This function gets called automatically when the component housing
this render method gets mounted. If we set our ref attribute’s value to a simple JavaScript
function that stores a reference to the referenced DOM element, it would look something like
the following highlighted lines:

 1 render: function() {
 2 var squareStyle = {
 3 backgroundColor: this.state.bgColor
 4 };
 5
 6 var self = this;
 7
 8 return (
 9 <div className="colorArea">
10 <div style={squareStyle} className="colorSquare"></div>
11
12 <form onSubmit={this.setNewColor}>
13 <input
14 ref={
15 function(el) {
16 self._input = el;
17 }
18 }
19 onChange={this.colorValue}
20 placeholder="Enter a color value">
21 </input>
22 <button type="submit">go</button>
23 </form>
24 </div>
25);
26 }

The end result of this code running once our component mounts is simple: we can access
the HTML representing our input element from anywhere inside our component by
calling this._input. Take a few moments to see how the highlighted lines of code help do
that. Once you are done, we’ll walk through this code together.

First, our callback function looks as follows:

function(el) {
 self._input = el;
}

This anonymous function gets called when our component mounts, and a reference to the
final HTML DOM element is passed in as an argument. We capture this argument using the el
 identifier, but you can use any name for this argument that you want. The body of this callback
function simply sets a custom property called _input to the value of our DOM element.
To ensure we create this property on our component, we use the self variable to create

140 Chapter 12 Accessing DOM Elements

a closure where the this in question refers to our component as opposed to the callback
 function itself. (Autobinding doesn’t happen automatically this time around!)

Taking a step back and looking at the bigger picture that ties everything together includ-
ing the render method we just saw, let’s look at the full Colorizer component with all of
the ref-related shenanigans highlighted:

var Colorizer = React.createClass({
 getInitialState: function() {
 return {
 color: '',
 bgColor: ''
 }
 },
 colorValue: function(e) {
 this.setState({color: e.target.value});
 },
 setNewColor: function(e){
 this.setState({bgColor: this.state.color});

 this._input.value = "";
 this._input.focus();

 e.preventDefault();
 },
 render: function() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 var self = this;

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input
 ref={
 function(el) {
 self._input = el;
 }
 }
 onChange={this.colorValue}
 placeholder="Enter a color value">
 </input>
 <button type="submit">go</button>
 </form>
 </div>
);
 }
});

141Meet Refs

Focusing just on what happens to our input element, when the form gets submitted and
the setNewColor method gets called, we clear the contents of our input element by calling
this._input.value = "". We set focus to our input element by calling this._input
.focus(). All of our ref- related work was simply to enable these two lines where we needed
some way to have this._input point to the HTML element representing our input element
that we define in JSX. Once we figured that out, we just call the value property and focus
method the DOM API exposes on this element.

Simplifying Further with ES6 Arrow Functions

Learning React is hard enough, so I have tried to shy away from forcing you to use ES6
 techniques by default. When it comes to working with the ref attribute, using arrow functions
to deal with the callback function does simplify matters a bit. This is one of those cases where
I recommend you use an ES6 technique.

As you saw a few moments ago, to assign a property on our component to the referenced
HTML element, we did something like this:

<input

 ref={

 function(el) {

 self._input = el;

 }

 }

 onChange={this.colorValue}

 placeholder="Enter a color value">

</input>

To deal with scoping shenanigans, we created a self variable initialized to this to ensure we
created the _input property on our component. That seems unnecessarily messy.

Using arrow functions, we can simplify all of this down to just the following:

<input

 ref={

 (el) => this._input = el

 }

 onChange={this.colorValue}

 placeholder="Enter a color value">

</input>

The end result is identical to what we spent all of this time looking at, and because of how
arrow functions deal with scope, you can use this inside the function body and reference the
component without doing any extra work. No need for an outer self variable equivalent!

142 Chapter 12 Accessing DOM Elements

Conclusion

In this tutorial, we saw how “easy” it is to access a DOM element directly. React used to provide
a much easier way of referencing elements. You could set the refs attribute on an element and
initialize it to a string value:

<button refs="myButton">Click me!</button>

You could then access this element after the component was mounted by doing something
like this.refs.myButton. Before you get really excited about using something like this over
our function callback approach with the ref attribute, this string-based approach is likely to be
deprecated. It works at the moment of this writing, but who knows when it will stop working.
Now, given that this is going away, you may be wondering why I told you about this. To be
frank, I really have no idea :P

13
Creating a Single-Page App

Using React Router

Now that you’ve familiarized yourself with the basics of how to work with React, let’s kick
things up a few notches. What we are going to do is use React to build a simple, single-page
app (also referred to as SPA by the cool kids—and people living in Scandinavia). As we talked
about in Chapter 1 forever ago, single-page apps are different from the more traditional
 multi-page apps that you see everywhere. The biggest difference is that navigating a single-page
app doesn’t involve going to an entirely new page. Instead, your pages (commonly known
as views in this context) typically load inline within the same page as illustrated in Figure 13-1.

Figure 13-1 Single-page apps use load views inline rather than load new pages.

144 Chapter 13 Creating a Single-Page App Using React Router

When you are loading content inline, things get a little challenging. The hard part is not
loading the content itself. That is relatively easy. The hard part is making sure that single-page
apps behave in a way that is consistent with what your users are used to. More specifically,
when users navigate your app, they expect that:

1. The URL displayed in the address bar always reflects the thing that they are viewing.

2. They can use the browser’s back and forward buttons—successfully.

3. They can navigate to a particular view (aka deep link) directly using the appropriate URL.

With multi-page apps, these three things come for free. There is nothing extra you have to
do for any of it. With single-page apps, because you aren’t navigating to an entirely new
page, you have to do real work to deal with these three things that your users expect to just
work. You need to ensure that navigating within your app adjusts the URL appropriately.
You need to ensure your browser’s history is properly synchronized with each navigation
to allow users to use the back and forward buttons. If users bookmark a particular view or
copy/paste a URL to access later, you need to ensure that your single-page app takes the user
to the correct place.

To deal with all of this, you have a bucket full of techniques commonly known as routing.
Routing is where you try to map URLs to destinations that aren’t physical pages, such as the
individual views in your single-page app. That sounds complicated, but fortunately there
are a bunch of JavaScript libraries that help us out with this. One such JavaScript library
is the star of this chapter, React Router (https://github.com/reactjs/react-router). React
Router provides routing capabilities to single-page apps built in React, and what makes it
nice is that it extends what you already know about React in familiar ways to give you all
of this routing awesomeness. In this chapter, you learn all about how it does that—and
 hopefully more!

The Example

Before we go further, let’s take a look at an example (see Figure 13-2).

https://github.com/reactjs/react-router

145The Example

Figure 13-2 A simple React app that uses React Router.

What you have here is a simple React app that uses React Router to provide all of the
 navigation and view-loading goodness! While the screenshot of the app looks nice and all,
this is one of those cases where you want to play with the app to see more of what it does. Go
ahead and open this page (https://www.kirupa.com/react/examples/react_router_final.htm) in
its own browser window, click on the various navigation tabs to see the different views, and use
the back and forward buttons to see them working.

In the following sections, we are going to be building this app in pieces. By the end, not only
will you have recreated this app, you’ll hopefully have learned enough about React Router to
build cooler and more awesomer things.

https://www.kirupa.com/react/examples/react_router_final.htm

146 Chapter 13 Creating a Single-Page App Using React Router

Building the App

The first thing we need to do is get the boilerplate markup and code for our app up and
running. Create a new HTML document and add the following content into it:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>

 </style>
</head>

<body>

 <div id="container">

 </div>

 <script type="text/babel">
 var destination = document.querySelector("#container");

 ReactDOM.render(
 <div>
 Hello!
 </div>,
 destination
);
 </script>
</body>

</html>

This starting point is almost the same as what you’ve seen for all of our other examples. This is
just a nearly blank app that happens to load the React and React-DOM libraries. If you preview
what you have in your browser, you’ll see a very lonely Hello! displayed.

Note: Still Keeping Things Simple

For now, we are continuing to rely on having our browser do all of the heavy lifting. We’ll look
into changing that up with a “modern” build process later, so enjoy the simplicity for now :P

147Building the App

Next, because React Router isn’t a part of React itself, we need to add a reference to it.
In our markup, find where we have our existing script references and add the following
 highlighted line:

<script src=”https://unpkg.com/react@15.3.2/dist/react.js”></script>
<script src=”https://unpkg.com/react-dom@15.3.2/dist/react-dom.js”></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>
<script src="https://npmcdn.com/react-router/umd/ReactRouter.min.js"></script>

By adding the highlighted line, we ensure the React Router library is loaded alongside the core
React, ReactDOM, and Babel libraries. At this point, we are in a good state to start building our
app and taking advantage of the sweet functionality React Router brings to the table.

Displaying the Initial Frame

When building a single-page app, there will always be a part of your page that will remain
static. This static part, also referred to as an app frame, could just be one invisible HTML
element that acts as the container for all of your content, or it could include some additional
visual things like a header, footer, navigation, etc. In our case, our app frame will involve our
navigation header and an empty area for content to load in. To display this, we are going to
create a component that is going to be responsible for this.

Inside your script tag just above your ReactDOM.render call, go ahead and add the following
chunk of JSX and JavaScript:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

 <div className="content">

 </div>
 </div>
)
 }
});

148 Chapter 13 Creating a Single-Page App Using React Router

Once you have pasted this, take a look at what we have here. What we have is a component
called App that returns some HTML. To see what this HTML looks like, modify your ReactDOM.
render call to reference this component instead of displaying the word Hello! Go ahead and
make the following highlighted change:

ReactDOM.render(
 <div>
 <App/>
 </div>,
 destination
);

Once you have done this, preview your app in the browser. You should see an unstyled version
of an app title and some list items (see Figure 13-3).

Figure 13-3 Unstyled version.

I know that this doesn’t look all fancy and styled, but that’s OK for now. We will deal with that
later. Going a bit deeper, what we’ve done is just create a component called App and display it via
our ReactDOM.render call. The important thing to call out is that there is nothing React Router -
specific here. ABSOLUTELY NOTHING! This is straight-up React 101. Let’s fix that by throwing React
Router into the mix. Replace the contents of your ReactDOM.render call with the following:

ReactDOM.render(
 <ReactRouter.Router>
 <ReactRouter.Route path="/" component={App}>

 </ReactRouter.Route>
 </ReactRouter.Router>,
 destination
);

149Building the App

Ignore how strange everything looks for a moment, and just preview your app in the
browser after you’ve made this change. If everything worked out properly, you will
see your App component displayed just like you saw earlier. Now, let’s figure out why that is the
case by learning more about what exactly is going on here. This is where we deviate a bit from
core React concepts and learn things specific to React Router itself.

First, what we did is specify our Router component:

ReactDOM.render(
 <ReactRouter.Router>
 <ReactRouter.Route path="/" component={App}>

 </ReactRouter.Route>
 </ReactRouter.Router>,
 destination
);

The Router component is part of the React Router API, and its job is to deal with all of the
routing-related logic our app will need. Inside this component, we specify what is known
as the routing configuration. That is a fancy term that people use to describe the mapping
between URLs and the views. The specifics of that are handled by another component
called Route:

ReactDOM.render(
 <ReactRouter.Router>
 <ReactRouter.Route path="/" component={App}>

 </ReactRouter.Route>
 </ReactRouter.Router>,
 destination
);

The Route component takes several props that help define what to display at what URL.
The path prop specifies the URL we are interested in matching. In this case, it is the root,
aka /. The component prop allows you to specify the name of the component you wish to
display. For this example, it is our App component. Putting this all together, what this Route
says is as follows: If the URL you are on contains the root, go ahead and display the App component.
Because this condition is true when you preview your app, you see the result of what happens
when your App component renders.

Displaying the Home Page

As you can sorta kinda see, the way React Router provides you with all of this routing functionality
is by using concepts in React you are already familiar with—namely components, props, and JSX.
What we have right now for displaying our app’s frame is a great example of this. Now, it’s time
to go even further. What we want to do next is define the content that we will display as part
of our home view.

150 Chapter 13 Creating a Single-Page App Using React Router

To do this, we are going to create a component called Home that is going to contain the
markup we want to display. Just above where you have your App component defined,
add the following:

var Home = React.createClass({
 render: function() {
 return (
 <div>
 <h2>HELLO</h2>
 <p>Cras facilisis urna ornare ex volutpat, et
 convallis erat elementum. Ut aliquam, ipsum vitae
 gravida suscipit, metus dui bibendum est, eget rhoncus nibh
 metus nec massa. Maecenas hendrerit laoreet augue
 nec molestie. Cum sociis natoque penatibus et magnis
 dis parturient montes, nascetur ridiculus mus.</p>

 <p>Duis a turpis sed lacus dapibus elementum sed eu lectus.</p>
 </div>
);
 }
});

As you can see, our Home component doesn’t do anything special. It just returns a blob of
HTML. Now, what we want to do is display the contents of our Home component when the
page loads. This component is the equivalent of our app’s “home page.” The way we do this is
simple. Inside our App component, we have a div with a class value of content. We are going
to load our Home component inside there.

The obvious solution might look something like this:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

 <div className="content">
 <Home/>
 </div>
 </div>
)
 }
});

151Building the App

Notice that we define our Home component inside that content div. If you preview your app,
things will even seem to work as expected (see Figure 13-4).

Figure 13-4 Increased functionality.

You see your navigation header, and then you see the contents of our Home component. While
this approach works, it is actually the wrong thing to do. It is wrong because it complicates
our desire to load other pieces of content as the user is navigating around our app. We’ve
 essentially hard-coded our app to only display the Home component. That’s a problem, but we’ll
come back to that in a little bit.

Interim Cleanup Time

Before we continue making progress on our app, let’s take a short break and make some stylistic
improvements to what we have so far.

Adding the CSS

Right now, our app looks very plain...and like something straight out of the 1800s. To fix this,
we are going to rely on our dear old friend, CSS. Inside the style tag, go ahead and add the
following style rules:

body {
 background-color: #FFCC00;
 padding: 20px;
 margin: 0;
}

152 Chapter 13 Creating a Single-Page App Using React Router

h1, h2, p, ul, li {
 font-family: Helvetica, Arial, sans-serif;
}
ul.header li {
 display: inline;
 list-style-type: none;
 margin: 0;
}
ul.header {
 background-color: #111;
 padding: 0;
}
ul.header li a {
 color: #FFF;
 font-weight: bold;
 text-decoration: none;
 padding: 20px;
 display: inline-block;
}
.content {
 background-color: #FFF;
 padding: 20px;
}
.content h2 {
 padding: 0;
 margin: 0;
}
.content li {
 margin-bottom: 10px;
}

Yes, we are using CSS in its markup form. We aren’t doing the inline style object approach that
we saw in Chapter 4. The reason has to do with convenience. Our components aren’t going
to be re-used outside of our particular app, and we really want to take advantage of CSS
 inheritance to minimize duplicated markup. Otherwise, if we didn’t use regular CSS, we’ll end
up with a bunch of giant style objects defined for almost every element in our markup. That
would make even the most patient among us annoyed when reading the code.

Anyway, once you have added all of this CSS, our app will start to look much better
(see Figure 13-5).

153Building the App

Figure 13-5 CSS styling added.

There is still some more work to be done (for example, our navigation links disappeared behind
the black banner), but we’ll fix all of those up in a little bit.

Avoiding the ReactRouter Prefix

We have just one more cleanup related task before we return to our regularly scheduled
programming. Have you noticed that every single time we call something defined by the React
Router API, we prefix that something with the word ReactRouter?

<ReactRouter.Router>
 <ReactRouter.Route path="/" component={App}>

 </ReactRouter.Route>
</ReactRouter.Router>

That is a bit verbose to have to repeat for every API call we make, and this is going to be more
of a problem as we dive further into the React Router API and use more things from inside it.

The fix for this involves using a new ES6 trick where you can manually specify which values
will automatically get prefixed. Towards the top of your script tag, add the following:

var { Router,
 Route,
 IndexRoute,
 IndexLink,
 Link } = ReactRouter;

154 Chapter 13 Creating a Single-Page App Using React Router

Once you’ve added this code, every time you use one of the values defined inside the brackets,
the prefix ReactRouter will automatically be added for you when your app runs. This means,
you can now go back to your ReactDOM.render method and remove the ReactRouter prefix
from our Router and Route component instances:

ReactDOM.render(
 <Router>
 <Route path="/" component={App}>

 </Route>
 </Router>,
 destination
);

If you preview your app now, nothing really should change. The end result is identical to what
you had before. The only difference is that our markup is a bit more compact.

Now, before we move on, you are probably wondering why the list of values that will
automatically be prefixed with ReactRouter contains a whole bunch of things beyond
the Router and Route values that we have used in our code so far. Think of these additional
values as a preview of the other parts of the React Router API we will be using shortly. Spoiler
alert! (Probably too late to mention that now, eh?)

Displaying the Home Page Correctly

We ended a few sections ago by saying that the way we currently have our home page
displayed is incorrect. Although you get the desired result when our page loads, this approach
doesn’t really make it easy for us to load anything other than the home page when users
 navigate around. The call to our Home component is hard-coded inside App.

The correct solution involves letting React Router handle which component to call depending
on what your current URL structure is. This involves nesting Route components inside
Route components to better define the URL-to-view mapping. Go back to our ReactDOM.
render method, and make the following highlighted change:

ReactDOM.render(
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>
 </Route>
 </Router>,
 destination
);

Inside our root Route element, we are defining another Route element of type IndexRoute (more
on who this is in a second!) and setting its view to be our Home component. There is one more
change we need to make. Inside our App component, remove the call to the Home component and
replace it with the following highlighted line:

155Building the App

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

 <div className="content">
 {this.props.children}
 </div>
 </div>
)
 }
});

If you preview your page now, you will still see your Home content displayed. The difference
this time is that we are displaying the Home content properly in a way that doesn’t prevent
other content from being displayed instead. This is because of two things:

1. What gets displayed inside App is controlled by the result of this.props.
children instead of a hard-coded component.

2. Our Route element inside ReactDOM.render contains an IndexRoute element whose
sole purpose for existing is to declare which component will be displayed when your app
initially loads.

All of this may seem even more bizarre than what you expected a few moments ago, but things
will make more sense as we use these various APIs more in the following sections.

Creating the Navigation Links

Right now, we just have our frame and home view setup. There isn’t really anything else
for a user to do here outside of just seeing what we have set as the home page. Let’s fix that
by creating some navigation links. More specifically, let’s linkify the navigation elements we
already have:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

156 Chapter 13 Creating a Single-Page App Using React Router

 <div className="content">
 {this.props.children}
 </div>
 </div>
)
 }
});

If you aren’t sure why these elements aren’t visible when you preview your page, that’s because
they blended in with the black background once we added the CSS in. No biggie there. We’ll fix
that in a few, but first let’s talk about how we are going to turn these elements into links.

The way you specify navigation links in React Router isn’t by directly using the tried and
tested a tag and throwing in a path via the href attribute. Instead, you specify your navigation
link using React Router’s Link components that are similar to a tags but offer a lot more
 functionality. To see the Link component in action, go ahead and modify our existing
 navigation elements to look like the following highlighted lines:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 <Link to="/">Home</Link>
 <Link to="/stuff">Stuff</Link>
 <Link to="/contact">Contact</Link>

 <div className="content">
 {this.props.children}
 </div>
 </div>
)
 }
});

Notice what have done here. Our Link components specify a prop called to. This prop specifies
the value of the URL we will display in the address bar. Indirectly, it also specifies the
 location we will be telling React Router we are virtually navigating to. Our Home link takes
users to the root (/), the Stuff link takes users to a location called stuff, and the Contact link
takes users to a location called contact.

If you preview your page and click on the links (which will now be visible because the CSS for
them will have kicked in), you won’t see anything new display. You will just see your Home
content because that is all that we had specified earlier. With that said, you can see the URLs
updating in the address bar. You’ll see your current page followed by a #/contact, #/stuff,
or #/ depending on which of the links you clicked. Oh, you’ll also see a random hash added
after the URL. That is progress!

157Building the App

Adding the Stuff and Contact Views

Our app is slowly taking its final shape...or it will get really close by the time we are done with
this section! What we are going to do next is define the components for our Stuff and Contact
views that we linked to earlier. In your code just below where you have your Home component,
go ahead and add in the following:

var Contact = React.createClass({
 render: function() {
 return (
 <div>
 <h2>GOT QUESTIONS?</h2>
 <p>The easiest thing to do is post on
 our forums.
 </p>
 </div>
);
 }
});

var Stuff = React.createClass({
 render: function() {
 return (
 <div>
 <h2>STUFF</h2>
 <p>Mauris sem velit, vehicula eget sodales vitae,
 rhoncus eget sapien:</p>

 Nulla pulvinar diam
 Facilisis bibendum
 Vestibulum vulputate
 Eget erat
 Id porttitor

 </div>
);
 }
});

What we have just added are the Stuff and Contact components that simply render
out HTML. All that remains is for us to update our routing configuration to include these two
components and display them at the appropriate URL.

In our ReactDOM.render method, go ahead and add the following two highlighted lines:

ReactDOM.render(
 <Router>
 <Route path="/" component={App}>
 <IndexRoute component={Home}/>

158 Chapter 13 Creating a Single-Page App Using React Router

 <Route path="stuff" component={Stuff} />
 <Route path="contact" component={Contact} />
 </Route>
 </Router>,
 destination
);

All we are doing here is updating our routing logic to display the Stuff component if the
URL contains the word stuff and to display the Contact component if the URL contains the
word contact. If you preview your page now, click on the Stuff and Contact links. If everything
worked out fine, you’ll see these views get loaded inside our app frame when you navigate to them.

Note: A Little Bit About Route Matching

Our route configuration is nothing more than a series of rules that determine what to do when a
URL matches the conditions we have laid out. The fancy term for that is route matching. The heu-
ristic React Router uses to match URLs is fully explained in the React Router documentation, but
for our case, we have a simple nested route where you can have multiple things that can match
at the same time. Our outer route matches if the URL contains /. Our inner routes then match if
the URL happens to contain stuff or contact.

What this means is simple. For each route that matches, the component that you specified to
display will appear. When you are navigating to a page like /stuff, the App component will dis-
play because the / exists in the URL. The Stuff component then displays because the path
for stuff is in the URL as well. That is why when we navigate to the Stuff or Contact pages, we
see them in addition to our frame. You can have deeply nested routes as well.

Take a look at the following configuration:

ReactDOM.render(

 <Router>

 <Route path="/" component={App}>

 <IndexRoute component={Home} />

 <Route path="stuff" component={Stuff}>

 <Route path="blah" component={MyBlah}/>

 </Route>

 <Route path="contact" component={Contact} />

 </Route>

 </Router>,

 destination);

In this example, notice that our Route element whose path is stuff now contains a nested
route for a path containing blah. This means if you happened to have a URL that is /stuff/

blah, the MyBlah component will be displayed in addition to the Stuff component and
the App component from the parent routes matching.

By nesting routes and following the route matching rules (https://github.com/reactjs/
react-router/blob/master/docs/guides/RouteMatching.md), you can display custom views
depending on a variety of URL arrangements you may expose in your app for your users to
 navigate to.

https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md
https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md

159Building the App

Creating Active Links

The last thing we are going to tackle is something that greatly increases the usability of our
app. Depending on which page you are currently displaying, we are going to highlight that link
with a blue background. For example, Figure 13-6 is what our app will look like when the Stuff
content is being displayed.

Figure 13-6 The Stuff content.

The way you accomplish this in React Router is by setting a prop called activeClassName
on your Link instances with the name of the CSS class that will get set when that link
is currently active. To make this happen, go back to your App component and make the
highlighted changes:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 <Link to="/" activeClassName="active">Home</Link>
 <Link to="/stuff" activeClassName="active">Stuff</Link>
 <Link to="/contact" activeClassName="active">Contact</Link>

160 Chapter 13 Creating a Single-Page App Using React Router

 <div className="content">
 {this.props.children}
 </div>
 </div>
)
 }
});

We specify the activeClassName prop and set it to a value of active. This ensures that
whenever a link is clicked (and its path becomes active), the link element’s class attribute at
runtime gets set to a value of active. To ensure our active links are styled differently, go ahead
and add the following CSS:

.active {
 background-color: #0099FF;
}

If you preview your app now, click on any of the links. Notice that the active link (and the
Home link) displays with a blue background. We aren’t done just yet, though. Our Home link
is always highlighted. It should only be highlighted when we load our Home page for the first
time or explicitly navigate to the Home link itself. To fix this, we need to change how we link
to our Home content. Instead of specifying our Home content with a Link element, we are
going to replace it with an IndexLink element instead.

Go ahead and make this change:

var App = React.createClass({
 render: function() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 <IndexLink to="/" activeClassName="active">Home</IndexLink>
 <Link to="/stuff" activeClassName="active">Stuff</Link>
 <Link to="/contact" activeClassName="active">Contact</Link>

 <div className="content">
 {this.props.children}
 </div>
 </div>
)
 }
});

Once your Home navigation element is represented by an IndexLink instead of a Link,
preview your app again. This time, when the app loads, you’ll notice that your Home link has
the cool blue background by default. When you navigate to the Stuff or Contact pages, the
Home link no longer has the highlight applied. And with this, your app is mostly good to go!

161Conclusion

Conclusion

By now, we’ve covered a good chunk of the cool functionality React Router has for helping you
build your single-page apps. This doesn’t mean that there aren’t more interesting things for you
to take advantage of. Our app was pretty simple with very modest demands on what routing
functionality we needed to implement. There is a whole lot more that React Router provides,
so if you are building a more complex single-page app than what we’ve looked at so far, you
should totally spend an afternoon taking a look the full React Router documentation
(https://github.com/reactjs/react-router/) and examples.

https://github.com/reactjs/react-router/

This page intentionally left blank

14
Building a Todo List App

If creating the Hello, World! example was a celebration of you getting your feet wet with React,
creating the quintessential Todo List app is a celebration of you approaching React mastery!
In this chapter, we tie together a lot of the concepts and techniques you’ve learned to create
something that works as follows: https://www.kirupa.com/react/examples/todo.htm

You start off with a blank app that allows you to enter tasks for later (see Figure 14-1).

Figure 14-1 A blank app with task entry.

https://www.kirupa.com/react/examples/todo.htm

164 Chapter 14 Building a Todo List App

The way this Todo List app works is pretty simple. Type in a task or whatever you want into the
text field and press Add (or hit Enter/Return). Once you’ve submitted your task, you will see it
appear as an entry. You can keep adding tasks to add additional entries and have them all show
up (see Figure 14-2).

Figure 14-2 You can add tasks and have them show up.

Pretty simple, right? In the following sections, we build this app from scratch and learn
(in awesomely painstaking detail) how things work along the way.

Getting Started

By now, you know the drill. We need a starting point, so go ahead and create a new HTML
document. Inside it, add the following content into it:

165Creating the UI

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
 <script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

 <style>

 </style>
</head>

<body>

 <div id="container">

 </div>

 <script type="text/babel">
 var destination = document.querySelector("#container");

 ReactDOM.render(
 <div>
 Hello!
 </div>,
 destination
);
 </script>
</body>

</html>

If you preview all of this in the browser, you will see the word Hello! appear. If you see that,
then you are in good shape. It’s time to start building our Todo List app!

Creating the UI

Right now, our app doesn’t do a whole lot. We’ll fix that by first getting the various UI
elements up and running. That isn’t very complicated for our app! The first thing we are going
to do to is get our input field and button to appear. This is all done by using the div, form,
input, and button elements!

166 Chapter 14 Building a Todo List App

All of that will live inside a component we are going to call TodoList. Go ahead and add the
following code above where you have your ReactDOM.render method:

var TodoList = React.createClass({
 render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }
});

Inside your ReactDOM.render method, we need to call our newly added TodoList component
to render it. Go ahead and replace your existing JSX with the following:

ReactDOM.render(
 <div>
 <TodoList/>
 </div>,
 destination
);

Save your changes and preview what you have right now in your browser. You’ll see something
that looks like Figure 14-3.

Figure 14-3 What you should see in the browser.

167Creating the UI

If you are surprised at what you see, take a few moments to look at the JSX we defined inside
the TodoList component. There shouldn’t be anything surprising there. We just defined a
handful of HTML elements that look really REALLY boring. Speaking of that, let’s make our
HTML elements look less boring by introducing them to so some CSS!

Inside your style block, add the following:

body {
 padding: 50px;
 background-color: #66CCFF;
 font-family: sans-serif;
}
.todoListMain .header input {
 padding: 10px;
 font-size: 16px;
 border: 2px solid #FFF;
}
.todoListMain .header button {
 padding: 10px;
 font-size: 16px;
 margin: 10px;
 background-color: #0066FF;
 color: #FFF;
 border: 2px solid #0066FF;
}

.todoListMain .header button:hover {
 background-color: #003399;
 border: 2px solid #003399;
 cursor: pointer;
}

Once you’ve added all of this, preview your app now. Because our HTML elements had the
appropriate className values set on them, our CSS will kick in and our example will now look
like Figure 14-4.

Figure 14-4 The improved example.

168 Chapter 14 Building a Todo List App

At this point, our app looks pretty good. It doesn’t do much, but at least we are making
 progress. In the next section, we will start to make our app actually do things.

Creating the Functionality

The actual implementation of our Todo List app functionality is not as crazy as you might
think. Let’s take a high-level view of how it works. The most important piece of data is the text
you enter into the text field. Each time you enter some text and submit the form, that text gets
visually displayed in a list below any previous pieces of text you submitted. So far, this makes
sense, right?

All of this is done by simply taking advantage of React’s state functionality. Inside
our state object, we have an array that is responsible for storing everything you enter (see
Figure 14-5).

Figure 14-5 Our tasks are stored in an array. I know. Not very exciting :-(

Each time this array of items gets updated with new text that you submit, we update what you
see with the newly submitted text. The rest of the work is just around setting up events and
event handlers to ensure we can submit the form and know exactly what text to add to our
array of items. In the following sections, we are going to turn all of this English we’ve seen here
into React-flavored JavaScript and JSX!

169Creating the Functionality

Initializing our State Object

The first thing we are going to do is initialize our state object with the array that will be
 responsible for storing all of the submitted text. Inside our TodoList component, add the
following highlighted lines:

var TodoList = React.createClass({
 getInitialState: function() {
 return {
 items: []
 };
 },
 render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }
});

What we are doing here is specifying the getInitialState method that gets called before our
component renders. Inside that method, we create an empty array called items that we can
then access via this.state.items from anywhere inside this component.

Handling the Form Submit

We add new items to our todo list when you submit the form either by pressing the Add
button or hitting Enter/Return on your keyboard. This behavior is mostly builtin to HTML and
our browsers know all about how to deal with this. We don’t have to write any special code for
dealing with the Enter/Return key or listening for a press on the Add button. The only thing we
need to worry about is dealing with what happens when the form actually gets submitted.

To do that, we listen to the onSubmit event on our form element. This event is fired every time
the form is submitted, and that includes hitting the Enter/Return key or fiddling with any element
that has a type attribute of submit on it. When the form is submitted and that event gets over-
heard, we will need to call an event handler. Let’s give that event handler a name of addItem.

170 Chapter 14 Building a Todo List App

Putting all of this together, inside your TodoList component’s render function, make the
following highlighted change:

render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
}

As we had hoped to do, we just linked our form element’s onSubmit event to the addItem event
handler. This event handler doesn’t exist, but we are going to fix that by adding the following
highlighted lines:

var TodoList = React.createClass({
 getInitialState: function() {
 return {
 items: []
 };
 },
 addItem: function(e) {

 },
 render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }
});

Our addItem event handler/function doesn’t do a whole lot right now, but the important thing
is that it exists! Next, we’ll fix the part where it doesn’t do a whole lot.

171Creating the Functionality

Populating Our State

Right now, our TodoList component’s state object contains the items array. What we need
to do is populate this array with the text that you enter into the input field. That means we
need a way to access our input element from within React. The way we are going to do that
is by setting a ref attribute (as you saw in Chapter 12) on our input element and storing the
reference to the HTML element that gets generated.

Inside our TodoList component’s render method, add the following line:

render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input ref={(a) => this._inputElement = a}
 placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }

When this highlighted code runs, which is immediately after this component mounts,
the _inputElement property will store a reference to the generated input element. Now that
we have done this, we can treat this element like we would any DOM element we might have
found using querySelector or equivalent function in the non-React world. What we are going
to do next is populate our items array!

Go ahead and modify the addItem method by adding the following lines:

addItem: function(e) {
 var itemArray = this.state.items;

 itemArray.push(
 {
 text: this._inputElement.value,
 key: Date.now()
 }
);

 this.setState({
 items: itemArray
 });

 e.preventDefault();
}

172 Chapter 14 Building a Todo List App

This looks like a lot of code you just added, but all we are doing here is putting into JavaScript
our earlier stated goal of populating our items array with text from our input field. Let’s walk
through this code in greater detail.

The first thing we do is create an array called itemArray that stores a reference to
our state object’s items property:

var itemArray = this.state.items;

Once we have this array, we add to it our recently submitted text entry from
our input element:

itemArray.push(
 {
 text: this._inputElement.value,
 key: Date.now()
 }
);

Notice that we aren’t just adding the text entry from our input element. We are instead
adding an object made up of the text and key properties. The text property stores
our input element’s text value. The key property stores the current time. This sounds like
a bizarre thing to do, but as you recall from Chapter 9, the goal is to have this key value be
unique for every entry that gets submitted. This is important because (spoiler alert!) we will
be using the data in this array to eventually generate some UI elements. This key value is
what React will use to uniquely identify each generated UI element, so by generating the key
using Date.now(), we ensure a certain level of uniqueness. Because this is an important (yet
easy to overlook) detail, we will revisit all of this again in a few moments.

Anyway, getting back on track, once we are done with the itemArray, all that remains is to set
our state object’s items property to it:

this.setState({
 items: itemArray
});

Almost done here! The last thing we do in this method is the following:

e.preventDefault();

The preventDefault method ensures we override the default onSubmit event. The reason we
do this is a bit obscure, but it is to ensure the following: all we want to do when we submit the
form is call the addItem method. If we didn’t stop the default behavior, our app will correctly
call addItem as desired when we submit the form. It will also trigger our browser’s default
POST behavior—which we definitely don’t want. By stopping the onSubmit event from
performing the default behavior, we get our desired behavior of calling the addItem method
without any of the unwanted side effects like an unnecessary POST action that might refresh
your page.

173Creating the Functionality

Displaying the Tasks

We are almost done here! The last-ish thing we are going to do is visualize the tasks that
currently live inside our state object’s items array. This is going to involve creating a whole
new component called TodoItems, passing around some props, using the map function, and
doing other awesome andrenaline-inducing things (Figure 14-6).

Figure 14-6 Adrenaline!

Anyway, the first thing we are going to do is define our TodoItems component. In your
code, just above where you have the TodoList component defined, go ahead and add the
following in:

var TodoItems = React.createClass({
 render: function() {

 }
});

There is nothing going on right now, but that’s OK.

Next, what we are going to do is call this component from inside the TodoList component’s
render method. Not only that, we are going to specify a prop and pass in our TodoList
component’s state object that contains our items array. Doing all of this is really simple, so go
ahead and add the following highlighted line to your TodoList component’s render method:

render: function() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>

174 Chapter 14 Building a Todo List App

 <input ref={(a) => this._inputElement = a}
 placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 <TodoItems entries={this.state.items}/>
 </div>
);
}

All we did here is instantiate our TodoItems component and pass in our items state property
to a prop called entries. At this point, if you run our app in the browser, nothing visible will
happen. Our TodoItems component is ready to render, and it has access to all of the tasks that
were submitted. The only problem is that it doesn’t really do anything with all of that, but we
are going to fix that up next.

Getting back to our TodoItems component, the first thing we are going to do is create a new
variable to store our passed in array of tasks. To do that, add the following highlighted line:

var TodoItems = React.createClass({
 render: function() {
 var todoEntries = this.props.entries;

 }
});

We just added a variable called todoEntries, and it stores the value from the entries prop
that we passed in based on the TodoList component’s this.state.items value. Sweet! Now,
our todoEntries variable stores an array containing a bunch of objects that each store a task
and a key. All that remains is to create the HTML elements that will be used to display our data.

In the first step towards accomplishing that, add the following highlighted lines of code to
create the li elements:

var TodoItems = React.createClass({
 render: function() {
 var todoEntries = this.props.entries;

 function createTasks(item) {
 return <li key={item.key}>{item.text}
 }

 var listItems = todoEntries.map(createTasks);
 }
});

We are using the map function to iterate every item inside todoEntries and call the
 createTasks function to create a list element for each entry:

175Creating the Functionality

function createTasks(item) {
 return <li key={item.key}>{item.text}
}

To reiterate a point we made earlier, since these list elements are dynamically created, we need
to help React keep track of them by specifying the key attribute and giving each a unique
value. We already solved this part of the problem when we stored our tasks initially, as you
recall:

itemArray.push(
 {
 text: this._inputElement.value,
 key: Date.now()
 }
);

Because of our earlier planning, we take the easy street right now by assigning our key
 attribute the item.key value that each item in our todoEntries array already contains. Our
list element’s visible content is simply the text value stored by item.text. There is no extra
 explanation needed for how we use that one. Quite refreshing, isn’t it?

Putting all of this together, this collection of list elements is fully processed and stored by
our listItems variable. All that remains at this point is to go from list elements inside an
array to list elements rendered on the screen. To accomplish that, go ahead and add the
 following highlighted lines:

var TodoItems = React.createClass({
 render: function() {
 var todoEntries = this.props.entries;

 function createTasks(item) {
 return <li key={item.key}>{item.text}
 }

 var listItems = todoEntries.map(createTasks);

 return (
 <ul className="theList">
 {listItems}

);
 }
});

What we are doing is returning an ul element whose contents are the list elements stored
by listItems. After you’ve added this, save your document and preview your app. You’ll see
something that looks like Figure 14-7 after entering a few tasks.

176 Chapter 14 Building a Todo List App

Figure 14-7 List element for the list items.

Our app works! Every task you submit shows up in its own list item. Take a few deep breaths
and relax for a few moments. This is awesome progress, and all we have left are a few little
things here and there that need to be wrapped up.

Adding the Finishing Touches

We are almost done here! First, what we have right now doesn’t look exactly like the example
we started out with. Our list of tasks looks a bit plain, but that can be fixed with some CSS
magic. Inside your style block, add the following style rules just below where your existing
style rules live:

.todoListMain .theList {
 list-style: none;
 padding-left: 0;
 width: 255px;
}

.todoListMain .theList li {
 color: #333;
 background-color: rgba(255,255,255,.5);
 padding: 15px;
 margin-bottom: 15px;
 border-radius: 5px;
}

If you preview your app now, you’ll see that the entered tasks look exactly as you expected
them to:

177Creating the Functionality

Next, have you noticed that whatever you enter into the input field doesn’t go away after
you submit the form? You have to manually clear out the field each time after submitting a
task...like an animal! That is annoying, but the fix for it is quite simple. Inside our TodoList
 component’s addItem method, add the following highlighted line:

addItem: function(e) {
 var itemArray = this.state.items;

 itemArray.push(
 {
 text: this._inputElement.value,
 key: Date.now()
 }
);

 this.setState({
 items: itemArray
 });

 this._inputElement.value = "";

 e.preventDefault();
}

178 Chapter 14 Building a Todo List App

All we are doing here is clearing our input element’s value property when the form is
 submitted and the addItem method gets called. This ensures that we no longer have to
 manually clear out our input field between each task we would like to submit. Simple bimple!

Conclusion

Our Todo app is pretty simple in what it does, but by building it from scratch, we covered
almost every little interesting detail React brings to the table. More importantly, we created an
example that shows how the various concepts we learned individually play together. That is
actually the important detail. Now, here is a quick question for you: does everything we’ve
done in this chapter make sense?

If everything we’ve done in this chapter makes sense then you are in good shape to tell your
friends and family that you are close to mastering React! If there are areas that you find
 confusing, I suggest you go back and re-read the chapters which address your confusion.

15
Setting Up Your React

Development Environment

The last major React-related topic we look at is less about React and more about setting up your
development environment to build a React app. Up until now, we’ve been building our React
apps by including a few script files:

<script src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>

These script files not only loaded the React libraries, but they also loaded Babel to help
our browser do what needs to be done when it encountered bizarre things like JSX
(see Figure 15-1).

180 Chapter 15 Setting Up Your React Development Environment

Figure 15-1 Our React approach.

To review what we mentioned earlier when talking about this approach, the downside is
 performance. As part of your browser doing all of the page-loading related things it normally
does, it is also responsible for turning your JSX into actual JavaScript. That JSX to JavaScript
conversion is a time-consuming process that is fine during development. It isn’t fine if every
user of your app has to pay that performance penalty.

181 Setting Up Your React Development Environment

The solution is to set up your development environment where your JSX to JS conversion is
handled prior to the user loading the page (see Figure 15-2).

Figure 15-2 JSX to JavaScript conversion as part of your app building process.

With this solution, your browser is loading your app and dealing with an already converted
(and potentially optimized) JavaScript file. Good stuff, right? Now, the only reason why we
delayed talking about all of this until now is for simplicity. Learning React is difficult enough.
Adding the complexity of build tools and setting up your environment as part of learning React
is just not cool. Now that you have a solid grasp of everything React does, it’s time to change
that with this chapter.

In the following sections, we look at one way to set up your development environment using
a combination of Node, Babel, and webpack. If all of this sounds bizarre to you, don’t worry.
You’ll be on a first name basis with all of these tools by the end of it.

182 Chapter 15 Setting Up Your React Development Environment

Note: Things May Change

Build tools and their dependencies change all the time. That is great news for us, but it makes
publishing information about it a challenge! This chapter contains the latest information
based on current (aka when this was written!) best-practices, but this information may change.
If you find that some tools and instructions aren’t working they way they are described,
please check out the (more frequently updated) online version of this article at the following
 location: https://www.kirupa.com/react/setting_up_react_environment.htm

Meet the Tools

Ok, it is time to move further away from generalities (and sweet diagrams). It is time to get
serious—er. It is time to meet the tools that we are going to be relying on to properly set up our
development environment.

Node.js

For the longest time, JavaScript was something you wrote to primarily have things happen
in your browser. Node.js changes all of this. Node.js allows you to use JavaScript to create
 applications that run on the server and have access to APIs and system resources that your
browser couldn’t even dream of. It is basically a full-fledged application development runtime
whose apps (instead of being written in Java, C#, C++, etc.) are built and run entirely on
JavaScript.

For our purposes, we are going to be relying on Node.js (well, the Node Package Manager, aka
NPM) to manage dependencies and tie together the steps needed to go from JSX to JavaScript.
Think of Node.js as the glue that makes our development environment work.

Babel

This one should be familiar to us! Simply put, Babel is a JavaScript transpiler. It turns your
JavaScript into…um...JavaScript. That sounds really bizarre, so let me clarify. If you are using
the latest JavaScript features, older browsers might not know what to do when they encounter
a new function or property. If you are writing JSX, well...no browser will know what to do with
that!

What Babel does is take your new-fangled JS or JSX and turn into a form of JS that most
browsers can understand. We’ve been using its in-browser version to transform our JSX into
JavaScript all this time. In a few moments, you’ll see how we can integrate Babel as part of our
build process to generate an actual browser-readable JS file from our JSX.

https://www.kirupa.com/react/setting_up_react_environment.htm

183Meet the Tools

webpack

The last tool we will be relying on is webpack. It is known as a module bundler. Putting
the fancy title aside, a lot of the frameworks and libraries your app includes have a lot of
 dependencies where different parts of the functionality you rely on might only be a subset
of larger components.

You probably don’t want all of that unnecessary code, and tools like webpack play an impor-
tant role to enable you to only include the relevant code needed to have your app work.
They often bundle all of the relevant code (even if it comes from various sources) into a single
file (see Figure 15-3).

Figure 15-3 Files packed into a single file.

We’ll be relying on webpack to bundle up the relevant parts of the React library, our JSX
files, and any additional JavaScript into a single file. This also extends to CSS (LESS/SASS) files
and other types of assets your app uses, but we’ll focus on just the JavaScript side here.

Your Code Editor

No conversation about your development environment can happen without talking about the
most important tool in all of this, your code editor (see Figure 15-4).

184 Chapter 15 Setting Up Your React Development Environment

Figure 15-4 Your code editor.

It doesn’t matter whether you use Sublime, Atom, VisualStudio Code, TextMate, Coda, or any
other tool. You will spend some non-trivial amount of time in your code editor not just to
build your React app but to also configure the various configuration files that Node, Babel, and
WebPack need.

It Is Environment Setup Time!

At this point, you should have a vague idea of what we are trying to do...the dream we are
trying to achieve! We even looked at the various tools that will play a role in making this
dream a reality. Now, it is time for the hard work to actually make everything happen.

Setting up our Initial Project Structure

The first thing we are going to do is set up our project. Go to your Desktop and create
a new folder called MyTotallyAwesomeApp. Inside this folder, create two more folders
called dev and output. Your folder arrangement will look a little bit like Figure 15-5.

185It Is Environment Setup Time!

Figure 15-5 Our current folder arrangement.

What we are doing here is pretty simple. Inside our dev folder, we will place all of our
 unoptimized and unconverted JSX, JavaScript, and other script-related content. In other
words, this is where the code you are writing and actively working on will live. Inside
our output folder, we will place the result of running our various build tools on the script files
found inside the dev folder. This is where Babel will convert all of our JSX files into JS. This is
also where webpack will resolve any dependencies between our script files, and place all of the
important script content into a single JavaScript file.

The next thing we are going to do is create the HTML file that we will point our browser to.
Inside the MyTotallyAwesomeApp folder, use your code editor to create a new HTML file
called index.html with the following contents:

<!DOCTYPE html>
<html>

<head>
 <title>React! React! React!</title>
</head>

<body>
 <div id="container"></div>

 <script src="output/myCode.js"></script>
</body>

</html>

Be sure to save your file after adding this content in. Now, speaking of the content, our
markup is pretty simple. Our document’s body is just an empty div element with an id value

186 Chapter 15 Setting Up Your React Development Environment

of container and a script tag that points to the final JavaScript file (myCode.js) that will get
generated inside the output folder:

<script src="output/myCode.js"></script>

Besides those two things, our HTML file doesn’t have a whole lot going for it. If we had to
 visualize the relationship of everything right now, it looks a bit like Figure 15-6.

Figure 15-6 What your current project structure looks like.

I’ve dotted the line to the myCode.js file in our output folder because that file doesn’t exist
there yet. We are pointing to something in our HTML that currently is non-existent, but that
won’t stay that way for long.

187It Is Environment Setup Time!

Installing and Initializing Node.js

Our next step is to install Node.js. Visit the Node.js site (https://nodejs.org/) to install the
version that is appropriate for your operating system (see Figure 15-7).

Figure 15-7 The download buttons on the Node.js site.

I tend to always install the latest version, so you should go with that as well. The download
and installation procedure isn’t particularly exciting. Once you have Node.js installed, test
to make sure it is truly installed by launching the Terminal (on Mac), Command Prompt (on
Windows), or equivalent tool of choice and typing in the following and pressing Enter:

node -v

If everything worked out properly, you will see a version number displayed that typically
 corresponds to the version of Node.js you just installed. If you are getting an error for whatever
reason, follow the troubleshooting steps listed here (https://github.com/npm/npm/wiki/
Troubleshooting).

Next, we are going to initialize Node.js on our MyTotallyAwesomeApp folder. To do this, first
navigate to the MyTotallyAwesomeApp folder using your Terminal or Command Prompt.
On OS X, this will look like Figure 15-8.

Figure 15-8 Navigate to the MyTotallyAwesomeApp folder.

https://nodejs.org/
https://github.com/npm/npm/wiki/Troubleshooting
https://github.com/npm/npm/wiki/Troubleshooting

188 Chapter 15 Setting Up Your React Development Environment

Now, go ahead and initialize Node.js by entering the following:

npm init

This will kick off a series of questions that will help set up Node.js on our project. The first
question will ask you to specify your project name. Hitting Enter will allow you to specify the
default value that has already been selected for you. That is all great, but the default name
is our project folder, which is MyTotallyAwesomeApp. If you hit Enter, because it contains
capital letters, it will throw an error (see Figure 15-9).

Figure 15-9 Our project folder name includes capital letters, triggering an error.

Go ahead and enter the lowercase version of the name, mytotallyawesomeapp. Once you’ve
done that, press Enter. For the remaining questions, just hit Enter to accept all the default
values. The end result of all of this is a new file called package.json that will be created in
your MyTotallyAwesomeApp folder (see Figure 15-10).

189It Is Environment Setup Time!

Figure 15-10 The package.json file shows up in your folder.

If you open the contents of package.json in your code editor, you’ll see something that looks
similar to the following:

{
 "name": "mytotallyawesomeapp",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Don’t worry too much about the contents of this file, but just know that one of the results
of you calling npm init is that you have a package.json file created with some weird
 properties and values that Node.js totally knows what to do with.

190 Chapter 15 Setting Up Your React Development Environment

Installing the React Dependencies

What we are going to do next is install our React dependencies so that we can use the React
and React DOM libraries in our code. If you are coming from a pure web development
 background, this is going to sound strange. Just bear with me on this.

In your Terminal or Command Prompt, enter the following to install our React dependencies:

npm install react react-dom --save

Once you Enter this, a lot of weird stuff will show up on your screen. You may even see a
bunch of warnings, but they should be safe to ignore. What is happening is that the React
and React-DOM libraries (and stuff that they depend on) is getting downloaded from a giant
 repository of Node.js packages found here: https://www.npmjs.com/

If you take a look at your MyTotallyAwesomeApp folder, you’ll see a folder called node_modules.
Inside that folder, you’ll see a bunch of various modules (aka what Node.js calls what we mere
mortals just call libraries). Let’s update our visualization of our current file/folder structure to look
like Figure 15-11.

Figure 15-11 The updated folder structure.

https://www.npmjs.com

191It Is Environment Setup Time!

The list of modules you see right now is just the beginning. We’ll be adding a few more by the
time you reach the end of this, so don’t get too attached the number of items you see inside
our node_modules folder :P

Adding our JSX File

Things are about to get (more!) interesting. Now that we’ve told Node.js all about our interest
in React, we are one step closer towards building a React app. We are going to further enter
these waters by adding a JSX file that is a modified version of the example we saw in Chapter 3
when looking at Components.

Inside our dev folder, using the code editor, create a file called index.jsx with the following
code as its contents:

import React from "react";
import ReactDOM from "react-dom";

var HelloWorld = React.createClass({
 render: function() {
 return (
 <p>Hello, {this.props.greetTarget}!</p>
);
 }
});

ReactDOM.render(
 <div>
 <HelloWorld greetTarget="Batman"/>
 <HelloWorld greetTarget="Iron Man"/>
 <HelloWorld greetTarget="Nicolas Cage"/>
 <HelloWorld greetTarget="Mega Man"/>
 <HelloWorld greetTarget="Bono"/>
 <HelloWorld greetTarget="Catwoman"/>
 </div>,
 document.querySelector("#container")
);

Notice that the bulk of the JSX we added is pretty much unmodified from what we had
earlier. The only difference is that what used to be script references for getting the React and
React DOM libraries into our app has now been replaced with import statements pointing to
our react and react-dom Node.js packages we added a few moments ago:

import React from "react";
import ReactDOM from "react-dom";

Now, you are probably eagerly wondering when we can build our app and get it all working
in our browser. Well, there are still a few more steps left. Figure 15-12 shows what the current
visualization of our project looks like.

192 Chapter 15 Setting Up Your React Development Environment

Figure 15-12 The current project.

Our index.html file is looking for code from the myCode.js file which still doesn’t exist.
We added our JSX file, but we know that our browser doesn’t know what to do with JSX. We
need to go from index.jsx in our dev folder to myCode.js in the output folder. Guess what
we are going to do next?

193It Is Environment Setup Time!

Going from JSX to JavaScript

The missing step right now is turning our JSX into JavaScript that our browser can understand.
This involves both webpack and Babel, and we are going to configure both of them to make
this all work.

Setting up webpack

Since we are in Node.js territory and both webpack and Babel exist as Node packages, we need
to install them both just like we installed the React-related packages.

To install webpack, enter the following in your Terminal / Command Prompt:

npm install webpack --save

This will take a few moments while the webpack package (and its large list of dependencies)
gets downloaded and placed into our node_modules folder. After you’ve done this, we need
to add a configuration file to specify how webpack will work with our current project. Using
your code editor, add a file called webpack.config.js inside our MyTotallyAwesomeApp folder
(see Figure 15-13).

194 Chapter 15 Setting Up Your React Development Environment

Figure 15-13 Adding webpack.config.js.

Inside this file, we will specify a bunch of JavaScript properties to define where our original,
unmodified source files live and where to output the final source files. Go ahead and add
the following JavaScript into webpack.config.js:

195It Is Environment Setup Time!

var webpack = require("webpack");
var path = require("path");

var DEV = path.resolve(__dirname, "dev");
var OUTPUT = path.resolve(__dirname, "output");

var config = {
 entry: DEV + "/index.jsx",
 output: {
 path: OUTPUT,
 filename: "myCode.js"
 }
};

module.exports = config;

Take a few moments to see what this code is doing. We defined two variables called DEV and
OUTPUT that refer to folders of the same name in our project. Inside the config object, we have
two properties called entry and output that use our DEV and OUTPUT variables to help map
our index.jsx file to become myCode.js.

Setting up Babel

The last piece in our current setup is to transform our index.jsx file to become regular
JavaScript in the form of myCode.js. This is where Babel comes in. To install Babel, let’s go
back to our trusty Terminal / Command Prompt and enter the following Node.js command:

npm install babel-loader babel-preset-es2015 babel-preset-react --save

With this command, we install the babel-loader, babel-preset-es2015, and babel-preset-react
packages. Now we need to configure Babel to work with our project. This is a two-step process.

The first step is to specify which Babel presets we want to use. There are several ways of doing
this, but my preferred way is to modify package.json and add the following highlighted
content:

{
 "name": "mytotallyawesomeapp",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "babel-loader": "^6.2.4",

196 Chapter 15 Setting Up Your React Development Environment

 "babel-preset-es2015": "^6.9.0",
 "babel-preset-react": "^6.5.0",
 "react": "^15.1.0",
 "react-dom": "^15.1.0",
 "webpack": "^1.13.1"
 },
 "babel": {
 "presets": [
 "es2015",
 "react"
]
 }
}

In the highlighted lines, we specify our babel object and specify the es2015 and react preset
values.

The second step is to tell webpack about Babel. In our webpack.config.js file, go ahead and
add the following highlighted lines:

var webpack = require("webpack");
var path = require("path");

var DEV = path.resolve(__dirname, "Dev");
var OUTPUT = path.resolve(__dirname, "output");

var config = {
 entry: DEV + "/index.jsx",
 output: {
 path: OUTPUT,
 filename: "myCode.js"
 },
 module: {
 loaders: [{
 include: DEV,
 loader: "babel",
 }]
 }
};

module.exports = config;

We added the module and loaders objects that tell webpack to pass the index.jsx file defined in
our entry property to turn into JavaScript through Babel. With this change, we’ve pretty much
gotten our development environment setup for building a React app.

197It Is Environment Setup Time!

Building and Testing Our App

The last (and hopefully most satisfying) step in all of this is building our app and having
the end-to-end workflow work. To build our app, what you type varies on whether you are
on the Terminal or on the Command Prompt.

For the Terminal on the Mac, enter the following:

./node_modules/.bin/webpack

In the Command Prompt on Windows, enter this instead:

node_modules\.bin\webpack.cmd

This command runs webpack and does all the things we’ve specified in our webpack.config.js
and package.json configuration files. Your output in your Terminal / Command Prompt will look
something like Figure 15-14.

Figure 15-14 The webpack output.

Besides seeing something that vaguely looks like a successful build displayed in cryptic text
form, go to your MyTotallyAwesomeApp folder. Open your index.html file in your browser.
If everything was set up properly, you’ll see our simple React app displaying (see Figure 15-15).

198 Chapter 15 Setting Up Your React Development Environment

Figure 15-15 The simple React app displaying.

If you venture into the Output folder and look at myCode.js, you’ll see a fairly hefty (~700Kb)
file with a lot of JavaScript made up of the relevant React, ReactDOM, and your app code all
organized there.

From this point, you can build your app, add new assets, and make the typical changes you
normally would. The only difference between what we had been doing throughout this book
and what we are doing now is simple—what your browser cares about is generated for you by the
various build tools and packager. Your browser is no longer taking all of this React JSX/ES6/etc. stuff
and converting it into normal HTML/CSS/JS on the fly during page load.

Conclusion

Well...that just happened! In the preceding many sections, we followed a bunch of bizarre
and incomprehensible steps to get our build environment set up to build our React app. What
we’ve seen is just a very small part of everything you can do when you put Node, Babel, and
webpack together. The unfortunate thing is that covering all of that goes well beyond the scope
of learning React, but if you are interested in this, you should definitely invest time in learning
the ins and outs of all of these build tools. There are a lot of cool things you can do.

For more information on those cool things, check out the following links:

 ■ Babel: https://babeljs.io/

 ■ npm Documentation: https://docs.npmjs.com/

 ■ webpack module bundler: https://webpack.github.io/

 ■ React Tooling Integration: https://facebook.github.io/react/docs/tooling-integration.html

 ■ Bower: https://bower.io/

https://babeljs.io/
https://docs.npmjs.com/
https://webpack.github.io/
https://facebook.github.io/react/docs/tooling-integration.html
https://bower.io/

16
The End

So...here we are. After 15 chapters, we’ve covered a lot of ground when it comes to learning
how to use React to build cool things. A while ago, we started off by discussing the problems
associated with building complex UIs and how React was going to make that a breeze.
Hopefully in the chapters since, you got a really good idea of how you can use React to
 accomplish this.

While we may be done with the formal content in this book, this doesn’t mean that our
 interaction is over. If you ever have any questions or run into any issues working with React,
I’d like to hear from you. The easiest way to contact me is by posting on the forums at
http://forum.kirupa.com, but you can also ping me via Twitter (@kirupa) or send me an e-mail
(kirupa@kirupa.com). I’ll do my best to respond to you as quickly as I can.

See you all next time!

Cheers,

http://forum.kirupa.com

This page intentionally left blank

Index

Symbols
{ } (curly brackets), 33, 86–87

… (spread) operator

explained, 78

transferring properties with, 78–80

A
accessing

DOM elements

ES6 arrow functions, 141

references, 137–141

when to use, 135–137

properties, 33

active links, creating, 159–160

activeClassName property, 159–161

addEventListener function, 118–119

addItem event handler, 170, 171, 177–178

Alpert, Ben, 86

Animaniacs Good Idea / Bad Idea

sketches, 36

APIs (application programming

interfaces), 9

app frames, 147–149

application programming interfaces (APIs), 9

apps

catalog browser app

multi-page design, 2–3

SPA (single-page app) model, 3–6

creating with React Router

202 apps

app frame, 147–149

boilerplate markup and code,
146–147

Contact component, 157–158

CSS (Cascading Style Sheets),
151–153

example, 144–145

Home component, 149–151

home page, displaying, 149–151,
154–155

Link component, 156

navigation links, 155–156, 159–160

overview, 143–144

ReactRouter prefix, 153–154

render method, 148–149, 154

Route component, 149

route matching, 158

Router component, 149

Stuff component, 157–158

first React app

blank HTML page, creating, 15–16

destination, changing, 18–19

name, displaying, 16–18

styles, 19–20

MyTotallyAwesomeApp

index.jsx file, 191–192

initial project structure, 184–186

Node.js initialization, 187–189

React dependencies, 190–191

testing, 197–198

Todo List app

addItem event handler, 171, 177–
178

app functionality, 168

form submission, 169–170

functionality, 168

initial code listing, 164–165

overview, 163–164

render method, 166, 171, 173–174

state object initialization, 169

state object population, 171–172

styles, 167, 176–178

task display, 173–176

TodoItems component, 173–176

UI (user interface), 165–168

architecture (MVC), 11

arguments. See properties

arrays of components, 103–105

arrow functions (ES6), 141

attributes. See properties

autobinding, 95

automatic UI state management, 7–8

avoiding ReactRouter prefix, 153–154

B
Babel

overview, 182

referencing, 16, 86

website, 198

background color, customizing, 45–47

backgroundColor property (letterStyle

object), 46

bgcolor attribute, 46

blank HTML pages, creating, 15–16

Bower, 198

browser compatibility, 120

building apps. See apps

button counter

event handler, 110–112

event listening

regular DOM events, 117–119

SyntheticEvent type, 116–117

event properties, 114–115

initial code listing, 108–110

203componentDidMount method

lifecycle methods

componentDidMount method, 129

componentDidUpdate method, 131

componentWillMount method, 129

componentWillReceiveProps
 method, 132

componentWillUnmount
method, 132

componentWillUpdate method,
131

getDefaultProps method, 128

getInitialState method, 128

initial code listing, 124–127

initial rendering phase, 127–129

render method, 129, 131

shouldComponentUpdate method,
130–131

unmounting phase, 132

updating phase, 129–132

overview, 107–108

SyntheticEvent type, 112–114

this keyword, 119–120

Buttonify component, 35–36

C
calling functions, 25

camelcase, 86

capitalization (JSX), 87–88

Card component, 58–59

Cascading Style Sheets. See CSS

(Cascading Style Sheets)

catalog browser app

multi-page design, 2–3

SPA (single-page app) model, 3–6

changing destination, 18–19

child components

overview, 34–36

passing properties to, 63–65

transferring properties to

component hierarchy and, 69–74

problems with, 69–77

spread operator (…), 78–80

Circle component

array of, 103–105

circleStyle object, 101

initial code listing, 99–102

render method, 102

showCircle function, 102–103

theCircle variable, 102

circleStyle object, 101

class names, 85–86

CleverComponent, 34

code editors, 183–184

color of background, customizing,

45–47

color palette card

Card component, 58–59

component definitions, 56–58

component identification, 53–56

generated HTML, 66

Label component, 61–63

overview, 49–51

properties, passing to child
 components, 63–65

Square component, 60–61

visual element identification, 51–53

Colorizer component

behavior of, 135–137

references, 137–141

comments, 86–87

compiler. See Babel

component hierarchy, 55–56, 69–70

componentDidMount method, 93, 94–95,

118, 129

204 componentDidUpdate method

event listening, 116–119

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

creating

Card component, 58–59

component definitions, 56–58

component identification, 53–56

generated HTML, 66

Label component, 61–63

overview, 49–51

properties, 63–65

Square component, 60–61

visual element identification, 51–53

definition of, 23–24, 29

events. See events

generated HTML, 40–41

HelloWorld component

creating, 30–32

properties, 32–34

Home, 149–151

Label, 77

Letter, 37–39

lifecycle methods

button counter example, 124–127

componentDidMount method, 129

componentDidUpdate method, 131

componentWillMount method, 129

componentWillReceiveProps
 method, 132

componentWillUnmount
method, 132

componentWillUpdate
method, 131

definition of, 123

getDefaultProps method, 128

componentDidUpdate method, 131

components

arrays of, 103–105

Buttonify, 35–36

capitalization of, 87–88

child components, 34–36

Circle

array of, 103–105

circleStyle object, 101

initial code listing, 99–102

render method, 102

showCircle function, 102–103

theCircle variable, 102

CleverComponent, 34

color palette card

Card component, 58–59

component definitions, 56–58

component identification, 53–56

generated HTML, 66

Label component, 61–63

overview, 49–51

properties, passing to child
 components, 63–65

Square component, 60–61

visual element identification, 51–53

Colorizer

behavior of, 135–137

references, 137–141

component hierarchy, 55–56, 69–70

composability. See also color palette
card

advantages of, 66

definition of, 49

overview, 49–51

Contact, 157–158

CounterParent

event handler, 110–112

205composability of components

px suffix, omitting, 45

style object, creating, 43

styles, applying, 43–45

TodoItems, 173–176

TodoList

addItem event handler,
171, 177–178

app functionality, 168

form submission, 169–170

functionality, 168

initial code listing, 164–165

overview, 163–164

render method, 166, 171, 173–174

state object initialization, 169

state object population, 171–172

styles, 167, 176–178

task display, 173–176

UI (user interface), 165–168

componentWillMount method, 129

componentWillReceiveProps method, 132

componentWillUnmount method, 132

componentWillUpdate method, 131

composability of components

advantages of, 66

color palette card example

Card component, 58–59

component definitions, 56–58

component identification, 53–56

generated HTML, 66

Label component, 61–63

overview, 49–51

properties, passing to child
 components, 63–65

Square component, 60–61

visual element identification, 51–53

definition of, 49

overview, 49–51

getInitialState method, 128

initial rendering phase, 127–129

overview, 123–124

render method, 129, 131

shouldComponentUpdate method,
130–131

unmounting phase, 132

updating phase, 129–132

LightningCounterDisplay

componentDidMount method, 93,
94–95

full code listing, 96–98

getInitialState method, 93–94

initial code, 90–92

initial state value, setting, 93–94

overview, 89–90

setInterval function, 93

setState method, 93, 95

state change, rendering, 96

strikes variable, 93–94

timerTick function, 94–95

Link, 156

multiple components, displaying,
103–105

PlusButton, 116–117

properties

specifying, 33–34

transferring. See transferring
 properties

Route, 149

Router, 149

Shirt, 74–77

Stuff, 157–158

styling with CSS, 41–42

styling with React

customizable background color,
45–47

overview, 42

206 configuring development environment

strikes variable, 93–94

timerTick function, 94–95

createClass method, 30

createElement function, 82–84

CSS (Cascading Style Sheets)

applying, 40–42

first React app, 19–20

HTML versus JSX, 84–85

SPA (single-page app) example, 151–153

Todo List app, 167, 176–178

curly brackets ({ }), 33, 86–87

customizing background color, 45–47

D
DE. See development environment

deep links, 144

dependencies, installing, 190–191

design

multi-page design, 2–3

SPA (single-page app) model, 3–6

destination, changing, 18–19

destination variable, 18–19

dev folder, 184–185

development environment

advantages of, 179–181

Babel, 182

building apps, 197–198

code editors, 183–184

Node.js

installing, 187–189

overview, 182

setup

index.jsx file, 191–192

initial project structure, 184–186

Node.js, 187–189

React dependencies, 190–191

configuring development environment

index.jsx file, 191–192

initial project structure, 184–186

Node.js, 187–189

React dependencies, 190–191

webpack, 193–195

console warnings, 105

Contact component, 157–158

container elements, 18

CounterParent component

event handler, 110–112

event listening, 116–119

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

counters

button counter

event handler, 110–112

event listening, 116–119

event properties, 114–115

initial code listing, 108–110

lifecycle methods, 124–127

overview, 107–108

SyntheticEvent type, 112–114

this keyword, 119–120

LightningCounterDisplay

componentDidMount method, 93,
94–95

full code listing, 96–98

getInitialState method, 93–94

initial code, 90–92

initial state value, setting, 93–94

overview, 89–90

setInterval function, 93

setState method, 93, 95

state change, rendering, 96

207first React app

transferring properties with, 138–139

ellipses (…) operator

explained, 78

transferring properties with, 78–80

EmberJS templates, 10

environment. See development environment

errors in ranges, 105

ES6 arrow functions, 141

event handlers

addItem, 170

overview, 110–112

this keyword, 119–120

events

browser compatibility, 120

button counter

event handler, 110–112

event listening, 116–119

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

definition of, 107

event handlers

addItem, 170

overview, 110–112

this keyword, 119–120

KeyboardEvent type, 112

listening to, 116–119

MouseEvent type, 112

onSubmit, 169–170

performance, 120–121

SyntheticEvent type, 112–114

F
files, index.jsx, 191–192

first React app

blank HTML page, creating, 14–15

webpack, 193–195

webpack, 183

displaying

home page, 149–151, 154–155

multiple components, 103–105

name, 16–18

tasks in Todo List app, 173–176

div element

first React app, 18

HelloWorld component, 32

styling with CSS, 41–42

documentation

npm documentation, 198

React Router, 161

document.body argument (render

method), 17

DOM elements, accessing

ES6 arrow functions, 141

references, 137–141

when to use, 135–137

DOM manipulation, 8

E
editors (code), 183–184

elements

capitalization in JSX, 87–88

div

first React app, 18

HelloWorld component, 32

styling with CSS, 41–42

DOM elements, accessing

ES6 arrow functions, 141

references, 137–141

when to use, 135–137

form, 169–170

inefficiencies with UI elements, 26–29

outputting multiple, 27

208 first React app

help, forum.kirupa.com, 199

hierarchies

component hierarchy, 55–56, 69–70

visual hierarchy, 52

Home component, 149–151

home page, displaying, 149–151, 154–155

HTML elements, capitalization in JSX, 87–88

HTML templates, 6

I
identifying

components, 53–56

visual elements, 51–53

increase function, 110–112, 115

index.html file, 185–186

index.jsx file, 191–192

initial project structure, 184–186

initial rendering phase (lifecycle methods),

127–129

initial state value, 93–94

initializing

Node.js, 187–189

state object, 169

inline styles

applying, 43–45

Circle component, 101

customizable background color, 45–47

overview, 42

px suffix, omitting, 45

style object, creating, 43

input element, 138–139

_input property, 139–140

installing

Babel, 195–196

Node.js, 187–189

React dependencies, 190–191

webpack, 193–195

itemArray, creating, 172

destination, changing, 18–19

name, displaying, 16–18

styles, 19–20

folders

dev, 184–185

node_modules, 190

output, 184–185

form submission, 169–170

formatDistance function, 25

forum.kirupa.com, 199

frames (app), 147–149

functions. See also methods

addEventListener, 118–119

calling, 25

createElement, 82–84

ES6 arrow functions, 141

explained, 24–26

formatDistance, 25

getDistance, 32–33

increase, 110–112, 115

printStuff, 78

removeEventListener, 119

setInterval, 93

showCircle, 102–103

timerTick, 94–95

G
generated HTML

color palette card, 66

Letter component, 40–41

getDefaultProps method, 128

getDistance function, 32–33

getInitialState method, 93–94, 128, 169

H
HelloWorld component

creating, 30–32

properties, 32–34

209lifecycle methods

K
KeyboardEvent type, 112

keywords

table of, 85–86

this, 119–120

L
Label component, 61–63, 77

Letter component

generated HTML, 40–41

overview, 37–39

styling with CSS, 41–42

styling with React

customizable background
color, 45–47

letterStyle object, creating, 43

overview, 42

px suffix, omitting, 45

styles, applying, 43–45

letterStyle object

creating, 43

customizable background color, 45–47

overview, 85

px suffix, omitting, 45

style attribute, 43–45

lifecycle methods

button counter example, 124–127

componentDidMount method, 129

componentDidUpdate method, 131

componentWillMount method, 129

componentWillReceiveProps
 method, 132

componentWillUnmount method, 132

componentWillUpdate method, 131

definition of, 123

getDefaultProps method, 128

getInitialState method, 128

J
JavaScript

JSX-to-JavaScript transformation.
See also development environment

Babel, 182

overview, 81–83

test app, 197–198

webpack, 183, 193–196

visuals defined in, 9–11

JSX

arrays, 103–105

capitalization, 87–88

class names, 85–86

comments, 86–87

CSS (Cascading Style Sheets) and, 84–85

explained, 10–11, 14–15

first React app

blank HTML page, creating, 14–15

destination, changing, 18–19

name, displaying, 16–18

styles, 19–20

index.jsx file, 191–192

JSX-to-JavaScript transformation.
See also development environment

Babel, 182

overview, 81–83

test app, 197–198

webpack, 183, 193–196

location in code, 88

methods. See methods

reserved keywords, 85–86

root nodes, returning, 83–84

style attribute, 84–85

JSX-to-JavaScript transformation. See also

development environment

Babel, 182

test app, 197–198

webpack, 183, 193–196

210 lifecycle methods

addItem, 170, 171, 177–178

button counter example, 124–127

componentDidMount, 93, 94–95,
118, 129

componentDidUpdate, 131

componentWillMount, 129

componentWillReceiveProps, 132

componentWillUnmount, 132

componentWillUpdate, 131

createClass, 30

definition of, 123

getDefaultProps, 128

getDefaultProps method, 128

getInitialState, 93–94, 128, 169

initial rendering phase, 127–129

overview, 123–124

preventDefault, 172

render

Card component, 59

Circle component, 102, 104–106

Colorizer component, 138

first React app, 16–18

HelloWorld component, 30–32

initial rendering phase, 129

Label component, 62

LightningCounterDisplay
 component, 92

overview, 26, 129, 131

SPA (single-page app) example,
148–149, 154

Square component, 60–61

Todo List app, 166

TodoList component, 171, 173–174

updating phase, 131

setNewColor, 141

setState, 93, 95

shouldComponentUpdate, 130–131

unmounting phase, 132

initial rendering phase, 127–129

overview, 123–124

render method, 129, 131

shouldComponentUpdate method,
130–131

unmounting phase, 132

updating phase

prop changes, 131–132

state changes, 129–131

LightningCounterDisplay component

componentDidMount method, 93

full code listing, 96–98

getInitialState method, 93–94

initial code, 90–92

initial state value, setting, 93–94

overview, 89–90

setInterval function, 93

setState method, 93

state change, rendering, 96

strikes variable, 93–94

timerTick function, 94–95

Link component, 156

links

active links, 159–160

deep links, 144

navigation links, 155–156

listening to events

regular DOM events, 117–119

SyntheticEvent type, 116–117

listItems variable, 175–176

logo (React), 7

M
matching routes, 158

Matryoshka dolls analogy, 9

messages, console warnings, 105

methods. See also functions

211properties

overview, 85

px suffix, omitting, 45

style attribute, 43–45

props, 79

state object

initializing, 169

populating, 171–172

onClick event handler, 110–112

onSubmit event, 169–170

operators, spread (…)

explained, 78

transferring properties with, 78–80

output folder, 184–185

outputting multiple elements, 27

P
palette card. See color palette card

passing properties

color palette card example, 63–65

component hierarchy and, 69–74

problems with, 74–77

spread operator (…)

example, 78–80

explained, 78

performance, events and, 120–121

PlusButton component, 116–117

populating state object, 171–172

preventDefault method, 172

printStuff function, 78

properties

accessing, 33

activeClassName, 159–161

bgcolor, 46

event properties, 114–115

HelloWorld component, 32–34

prop changes, 131–132

updating phase, 129–132

MouseEvent type, 112

multi-page design, 2–3

multiple components, displaying,

103–105

multiple elements, outputting, 27

MVC architecture, 11

MyTotallyAwesomeApp

index.jsx file, 191–192

initial project structure, 184–186

Node.js initialization, 187–189

React dependencies, 190–191

testing, 197–198

N
names

class names, 85–86

displaying, 16–18

navigation links, creating, 155–156

Node Package Manager (NPM).

See Node.js

node_modules folder, 190

Node.js

initializing, 187–189

installing, 187–189

overview, 182

nodes (root), returning, 83–84

NPM (Node Package Manager). See Node.js

npm documentation, 198

O
objects

circleStyle object, 101

letterStyle

creating, 43

customizable background color,
45–47

212 properties

route matching, 158

Router component, 149

Stuff component, 157–158

documentation, 161

referencing, 147

React Tooling Integration, 198

ReactRouter prefix, 153–154

reconciliation, 8

ref attribute, 138–139

references, 137–141

referencing

Babel JavaScript compiler, 16

React library, 15

React Router, 147

regular DOM events, listening to, 117–119

removeEventListener function, 119

render method

Card component, 59

Circle component, 102, 104–106

Colorizer component, 138

first React app, 16–18

HelloWorld component, 30–32

initial rendering phase, 129

Label component, 62

LightningCounterDisplay
component, 92

overview, 26

SPA (single-page app) example,
148–149, 154

Square component, 60–61

Todo List app, 166

TodoList component, 171, 173–174

updating phase, 131

renderData array, 104

rendering state change, 96

reserved keywords, 85–86

root nodes, returning, 83–84

ref, 138–139

specifying

component call, 34

component definition, 33

style, 43–45, 84–85

SyntheticEvent type, 113–114

transferring

color palette card example, 63–65

component hierarchy and, 69–74

problems with, 74–77

spread operator (…), 78–80

vendor-prefixed properties, 59

props object, 79

px suffix, omitting, 45

Q-R
React dependencies, installing, 190–191

React Event System document, 114

React Router

creating SPAs (single-page apps) with

active links, 159–160

app frame, 147–149

boilerplate markup and code,
146–147

Contact component, 157–158

CSS (Cascading Style Sheets),
151–153

displaying, 149–151

example, 144–145

Home component, 149–151

home page, displaying, 154–155

Link component, 156

navigation links, 155–156

overview, 143–144

ReactRouter prefix, 153–154

render method, 148–149, 154

Route component, 149

213state management

154–155

Link component, 156

navigation links, 155–156

overview, 143–144

ReactRouter prefix, 153–154

render method, 148–149, 154

Route component, 149

route matching, 158

Router component, 149

Stuff component, 157–158

model, 3–6

specifying properties

component call, 34

component definition, 33

spread operator (…)

explained, 78

transferring properties with, 78–80

Square component, 60–61

state change, rendering, 96

state management

lifecycle methods, 129–131

LightningCounterDisplay

componentDidMount method,
93, 94–95

getInitialState method, 93

initial code, 90–92

initial state value, setting, 93–94

overview, 89–90

setInterval function, 93

setState method, 93, 95

strikes variable, 93–94

LightningCounterDisplay component

full code listing, 96–98

initial code, 90–92

overview, 89–90

setInterval function, 93

state change, rendering, 96

Route component, 149

route matching, 158

Router component, 149

routing, 144, 149. See also React Router

Russian Matryoshka dolls analogy, 9

S
setInterval function, 93

setNewColor method, 141

setState method, 93, 95

setting up development environment

index.jsx file, 191–192

initial project structure, 184–186

Node.js, 187–189

React dependencies, 190–191

webpack, 193–195

shiftKey property (SyntheticEvent), 114–115

Shirt component, 74–77

shouldComponentUpdate method, 130–131

showCircle function, 102–103

simple catalog browser app

multi-page design, 2–3

SPA (single-page app) model, 3–6

single-page app (SPA). See SPA

(single-page app)

SPA (single-page app)

creating with React Router

active links, 159–160

app frame, 147–149

boilerplate markup and code,
146–147

Contact component, 157–158

CSS (Cascading Style Sheets),
151–153

example, 144–145

Home component, 149–151

home page, displaying, 149–151,

214 state management

timerTick function, 94–95

todoEntries variable, 174

TodoItems component, 173–176

TodoList component

addItem event handler, 171, 177–178

app functionality, 168

form submission, 169–170

functionality, 168

initial code listing, 164–165

overview, 163–164

render method, 166, 171, 173–174

state object initialization, 169

state object population, 171–172

styles, 167, 176–178

task display, 173–176

TodoItems component, 173–176

UI (user interface), 165–168

tools

Babel, 182

code editors, 183–184

Node.js

installing, 187–189

overview, 182

webpack

installing, 193–195

overview, 183

transferring properties

color palette card example, 63–65

component hierarchy and, 69–74

problems with, 74–77

spread operator (…)

example, 78–80

explained, 78

transpilation from JSX to JavaScript. See
also development environment

Babel, 182

overview, 81–83

timerTick function, 94–95

UI (user interface), 7–8

state object. See also state management

initializing, 169

populating, 171–172

strikes variable, 93–94

Stuff component, 157–158

style attribute, 43–45, 84–85

styles

CSS (Cascading Style Sheets)

applying, 40–42

HTML versus JSX, 84–85

SPA (single-page app) example,
151–153

Todo List app, 167, 176–178

first React app, 19–20

inline approach

Circle component, 101

customizable background color,
45–47

overview, 42

px suffix, omitting, 45

style object, creating, 43

styles, applying, 43–45

overview, 37

submitting forms, 169–170

support, forum.kirupa.com, 199

swatchComponent variable, 88

SyntheticEvent type, 112–114

T
tasks, displaying in Todo List app, 173–176

templates

EmberJS templates, 10

HTML templates, 6

theCircle variable, 102

this keyword, 119–120

215webpack

listItems, 175–176

strikes, 93–94

swatchComponent, 88

theCircle, 102

todoEntries, 174

vendor-prefixed properties, 59

views, 143

virtual DOM, 8

visual hierarchy, 52

visuals

defining in JavaScript, 9–11

identifying, 51–53

visual hierarchy, 52

W-X-Y-Z
WebkitFilter property, 59

webpack

installing, 193–195

overview, 183

website, 198

test app, 197–198

webpack, 183, 193–196

U
UI (user interface). See also events

Circle component example

array of, 103–105

initial code listing, 99–102

render method, 102

showCircle function, 102–103

theCircle variable, 102

inefficiencies with, 26–29

state management, 7–8

Todo List app, 165–168

unmounting phase (lifecycle methods), 132

updating phase (lifecycle methods)

prop changes, 131–132

state changes, 129–131

V
variables

destination, 18–19

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web
Edition, which provides several special online-only features:

 ■ The complete text of the book

 ■ Bonus material on animating content with React Motion and making
Ajax/server-related calls

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with
any modern web browser that supports HTML5.

To get access to the Learning React Web Edition all you need to do is register this
book:

1. Go to www.informit.com/register

2. Sign in or create a new account.

3. Enter ISBN: 9780134546315

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your
Account page. Click the Launch link to access the product.

http://www.informit.com/register

This page intentionally left blank

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

http://www.informit.com/learningseries
http://www.informit.com

Addison-Wesley Cisco Press IBM Press Microsoft Press Pearson IT Certif ication Prentice Hall Que Sams VMware Press

REGISTER YOUR PRODUCT at informit.com/register

 Download available product updates.

 Access bonus material when applicable.

 Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

 Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

 Shop our books, eBooks, software, and video training.
 Take advantage of our special offers and promotions (informit.com/promotions).
 Sign up for special offers and content newsletters (informit.com/newsletters).
 Read free articles and blogs by information technology experts.
 Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.informit.com
http://www.informit.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com

	Cover
	Title Page
	Copyright Page
	Contents
	1 Introducing React
	Old School Multi-Page Design
	New School Single-Page Apps
	Meet React
	Automatic UI State Management
	Lightning-fast DOM Manipulation
	APIs to Create Truly Composable UIs
	Visuals Defined Entirely in JavaScript
	Just the V in an MVC Architecture

	Conclusion

	2 Building Your First React App
	Dealing with JSX
	Getting Your React On
	Displaying Your Name
	It’s All Still Familiar
	Changing the Destination
	Styling It Up!

	Conclusion

	3 Components in React
	A Quick Review of Functions
	Changing How We Deal with the UI
	Meet the React Component
	Creating a Hello, World! Component
	Specifying Properties
	Dealing with Children

	Conclusion

	4 Styling in React
	Displaying Some Vowels
	Styling React Content Using CSS
	Understand the Generated HTML
	Just Style It Already!

	Styling Content the React Way
	Creating a Style Object
	Actually Styling Our Content
	You Can Omit the “px” Suffix
	Making the Background Color Customizable

	Conclusion

	5 Creating Complex Components
	From Visuals to Components
	Identifying the Major Visual Elements
	Identifying the Components

	Creating the Components
	The Card Component
	The Square Component
	The Label Component
	Passing Properties, Again!

	Why Component Composability Rocks
	Conclusion

	6 Transferring Properties (Props)
	Problem Overview
	Detailed Look at the Problem
	Meet the Spread Operator
	Properly Transferring Properties
	Conclusion

	7 Meet JSX—Again!
	What Happens with JSX?
	JSX Quirks to Remember
	You Can Only Return A Single Root Node
	You Can’t Specify CSS Inline
	Reserved Keywords and className
	Comments
	Capitalization, HTML Elements, and Components
	Your JSX Can Be Anywhere

	Conclusion

	8 Dealing with State
	Using State
	Our Starting Point

	Getting Our Counter On
	Setting the Initial State Value
	Starting Our Timer and Setting State
	Rendering the State Change

	Optional: The Full Code
	Conclusion

	9 Going from Data to UI
	The Example
	Your JSX Can Be Anywhere—Part II
	Dealing with Arrays in the Context of JSX
	Conclusion

	10 Working with Events
	Listening and Reacting to Events
	Starting Point
	Making the Button Click Do Something
	Event Properties
	Doing Stuff With Event Properties
	More Eventing Shenanigans
	Listening to Regular DOM Events
	The Meaning of this Inside the Event Handler

	React...Why? Why?!
	Browser Compatibility
	Improved Performance

	Conclusion

	11 The Component Lifecycle
	Meet the Lifecycle Methods
	See the Lifecycle Methods in Action
	The Initial Rendering Phase
	The Updating Phase
	The Unmounting Phase

	Conclusion

	12 Accessing DOM Elements
	Meet Refs
	Conclusion

	13 Creating a Single-Page App Using React Router
	The Example
	Building the App
	Displaying the Initial Frame
	Displaying the Home Page
	Interim Cleanup Time
	Displaying the Home Page Correctly
	Creating the Navigation Links
	Adding the Stuff and Contact Views
	Creating Active Links

	Conclusion

	14 Building a Todo List App
	Getting Started
	Creating the UI
	Creating the Functionality
	Initializing our State Object
	Handling the Form Submit
	Populating Our State
	Displaying the Tasks
	Adding the Finishing Touches

	Conclusion

	15 Setting Up Your React Development Environment
	Meet the Tools
	Node.js
	Babel
	webpack
	Your Code Editor

	It Is Environment Setup Time!
	Setting up our Initial Project Structure
	Installing and Initializing Node.js
	Installing the React Dependencies
	Adding our JSX File
	Going from JSX to JavaScript
	Building and Testing Our App

	Conclusion

	16 The End
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

